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Abstract

Let G be an almost simple group with socle G¢. In this paper we prove that whenever G /G is abelian, then there
exists an abelian subgroup A of G such that G = AG(. We propose a few applications of this structural property of
almost simple groups.

1. Introduction
The main result of this paper is the following consequence of the classification of the finite simple groups.

Theorem 1. Let G be an almost simple group with socle Go. If G/G is abelian, then G contains an
abelian subgroup A such that G = AG).

Notice that in general it is not true that if N is a normal subgroup of a finite group G and G/N
is abelian, then N has an abelian supplement in G. For example, if G is a finite p-group and N is the
Frattini subgroup of G, then G/N is abelian, but G is the unique supplement of N, so the statement fails
whenever G is not abelian. However, Theorem | has also some consequences beyond almost simple
groups. In fact, we will prove the following corollary as well, on groups with F(G) = 1, where F(G) is
the Fitting subgroup of G.

Corollary 2. Let G be a finite group and suppose that F(G) = 1. Let N = soc(G). If a, b are two
elements of G and [a, b] € N, then there exist n,m € N such that [an,bm] = 1.

We now describe an application of the previous corollary that was our original motivation to look for
results in this direction. Let G be a finite noncyclic group and denote by d(G) the smallest cardinality of
a generating set of G. The rank graph I'(G) associated to G is the graph whose vertices are the elements
of G and where x and y are adjacent vertices if there exists a generating set X of G of cardinality d(G)
such that {x, y} is a subset of X. Moreover, we denote by A(G) the subgraph of I'(G) induced by its
non-isolated vertices. When d(G) = 2, the graph I'(G) is known with the name of generating graph. It
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Table 1. The proof of Theorem I in the various cases. Notice that Altg = PSL,(9) has
been considered in the linear one.

Gy Reference
alternating Alt,, Gy # Altg Corollary 7
classical An-1(q) =PSL,(q) Theorem 19
2An-1(q) =PSU,(q) Theorem 19
B, (q),Cn(q) Theorem 21
D, (q) Theorem 25, 26
’D.(q) Theorem 24
exceptional Es(q) Theorem 22
2Es(q) Theorem 23
E7(q) Theorem 21
*D4(q), Es(q), Fu(q). Ga(q), Corollary 7

2By(2"),%G2(3"),2F4 (2"

sporadic all Corollary 7

was defined by Liebeck and Shalev in [14], and it has been widely studied by several authors; as survey
references, we recommend [5] and [15]. Many strong structural results about I'(G) are known in the
case where G is simple, and this reflects the rich group theoretic structure of these groups. For example,
if G is a nonabelian simple group, then the only isolated vertex of I'(G) is the identity [13] and the graph
A(G) is connected with diameter two [3], and if |G| is sufficiently large, it admits a Hamiltonian cycle
[4] (it is conjectured that the condition on |G| can be removed). Moreover, in recent years, there has been
considerable interest in attempting to classify the groups G for which I'(G) shares the strong properties
of the generating graphs of simple groups. Recently, a remarkable result has been proved — that the
identity is the unique isolated vertex of I'(G) if and only if all proper quotients of G are cyclic [6]. An
open question is whether A (G) is connected for any finite group G with d(G) = 2. The answer is known
to be positive if G is soluble [9] (and in this case, the diameter of A(G) is at most three [16]), if G is a
direct product of finite simple groups [10] (but examples in which the diameter is arbitrarily large can be
exhibited) or if G is a group whose proper quotients are all cyclic [6]. However, only partial results are
known for arbitrary finite groups. Clearly, the same question can be asked in the more general case when
d(G) > 2.In arecent preprint [18], Corollary 2 plays a crucial role in the proof of the following result.

Theorem 3 [18]. If d(G) > 3, then A(G) is connected.

When d(G) = 2, the techniques used to prove Theorem 3 encounter some obstacles, but they can
suggest a starting point for the case of the generating graph as well.

The proof of Theorem | strongly depends on the classification of the finite simple groups. It is
articulated in various cases which are proved separately along the paper. Table | contains, for every
non-abelian simple group Gy, the location of the corresponding proof. The statement is clearly true if
G /Gy is cyclic: indeed, in this case, (g) is an abelian supplement of G in G for every g € G such that
G = (Gy, g). This implies in particular that Theorem 1 is true if Gy is an alternating group (with the
possible exception of Altg) or a sporadic simple group (see Corollary 7), so we may restrict our attention
to the case when Gy is a simple group of Lie type. To explore the different possibilities that can arise
when Gy is a simple group of Lie type, a detailed knowledge of the automorphism group of G is needed.
Recall in particular that if @ € Aut(Gy), then there exist inner, diagonal, field and graph automorphisms,
8,0, ¢, p such that @ = gdpp. The easiest case is when all the diagonal automorphisms of G are inner.
In this case, Aut(Gy) splits over G so, in the assumption of Theorem 1, G certainly admits an abelian
complement in G. Clearly, the same argument can be applied whenever Aut(Gy) splits over Gg. The
simple groups with this property have been classified in [17] (see Theorem 9). Unfortunately, in many
cases, Aut(Go) does not split over Gy. In these cases, the proof of Theorem | requires harder work that
goes by a case-by-case inspection. Roughly speaking, denoting by d the index of Inn(Gy) in the group
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Inndiag(Gy) of the inner-diagonal automorphisms of Gy, the larger d is, the more situations arise in
which the proof of Theorem 1 requires greater care. Already when Go = PSL,(g), although d < 2 in
this case, the proof is not immediate. We discuss this case in Theorem 10, and we suggest the reader
to pay particular attention to the proof of this theorem, which is, up to some extent, representative of
the type of arguments needed in the general case. When Gy is a linear or a unitary group, we give
an explicit construction of an abelian supplement of G¢ in G. This requires patient and tiring work to
cover the different possibilities, but it can be easily followed even by the reader less familiar with the
properties of simple groups since it is essentially based on elementary considerations of linear algebra.
As a by-product of our proof, a description of maximal abelian subgroups of Out(Gy) is obtained.

The analysis of the remaining simple groups of Lie type is somewhat facilitated by the fact that d is
at most 4, although a more detailed description of Aut(Gy) and its action on root subgroups is needed.
The arguments for the different families of simple groups of Lie type are similar, but each family has its
own peculiarities, so a case-by-case analysis is unavoidable.

We conclude this introduction by giving an outline of the structure of the paper. We begin with
Section 2 in which we set the stage with some notation and preliminary results. Then, invoking the
classification of the finite simple groups, we roughly classify the possibilities for G in Theorem 1. We
notice already in Section 2 that the alternating and sporadic groups can be easily ruled out. Thus, in the
following sections, we look at the different possibilities for the simple groups of Lie type. In Sections 3,
we deal with linear and unitary groups. After that, in Section 4, we give more details on groups of Lie
type, viewed as Chevalley groups, which will be the framework in which we deal with the remaining
cases.

o Section 5: groups of type C,(q), B,(q) and E7(q);
o Sections 6 and 7: groups of type E¢(q) and %E¢(g);
o Section 8: groups of type 2D, (g);

o Sections 10 and 11: groups of type D, (g).

Finally, in Section 12, we conclude with the proof of Corollary 2.

2. Notation and preliminary results

In this section, we will present the main strategy for the proof of Theorem 1 and prove some preliminary
results which will also establish the main theorem for some families of almost simple groups. We fix
the notation we will use throughout all the paper.

As usual, if X is a subgroup of group Y, we will denote by Cx (Y) and Nx (Y¥) the centraliser and the
normaliser of Y in X, respectively. Moreover, if x1,x, € X, then [x,x;] = xl‘lxz‘ Ly xs.

If X is a matrix, we denote by ‘X the transpose of X.

For a finite group H, let

v : Aut(H) — Out(H) = Aut(H)/Inn(H)

be the canonical projection. If Gy is a finite non-abelian simple group, we identify Gy = Inn(Gy), and
from now on, v will usually denote the above map for H = Gy.

Recall that a subgroup H of a finite group G is said to be a supplement for a normal subgroup N of G if
HN = G. The following definition will provide the language we will use in the proof of our main result.

Definition 4. Let H be a finite group. If T is an abelian subgroup of Out(H), we say that T < Aut(H)
is a T-abelian supplement if 7' is abelian and surjects onto T in the quotient by Inn(H). An almost
simple group G with socle G is said to be abelian supplemented if 7 = G /G is abelian and there is a
T-abelian supplement in Aut(Gy).

Notice in particular that if 7 and T are as in the previous definition and v(G) = T, then G = TGy
with T abelian. Therefore, proving Theorem | is equivalent to proving that for every non-abelian simple
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Table 2. Index d of Gy in Inndiag(Gy).

Gy d
untwisted An-1(q) =PSL, (q) (n,g-1)
B, (q), Cn(q) (2,9-1)
Dy (q) 4,9" - 1)
E¢(q) B,qg-1)
E7(q) (2,9-1)
Es(q), Fa(q), Ga(q) 1
twisted 2A,_1(q) =PSU, (q) (n,g+1)
2Dy (q) (4,q"+1)
2Es(q) (3.g+1)
2B1(2").°D4(q).*G2(3"), 2 F4(2") 1

group G and every abelian 7' < Out(Gy), there exists a T-abelian supplement. The strategy of the proof
of Theorem 1 is in fact the following: given G, we analyse all the abelian subgroups 7 of Out(Gy)
and, by the classification of the finite simple groups, prove that there exists a T-abelian supplement in
a case-by-case inspection. Actually, it is not necessary to check each abelian subgroup of Out(Gy), but
only the maximal abelian ones, as it is shown by the following lemma.

Lemma 5. Let T < S < Out(Gy) with T and S abelian. If there exists an S-abelian supplement, then
there exists a T-abelian supplement as well.

Proof. Let S be an S-abelian supplement. Let T be the preimage of T by the map v| 5. Then T < §, and
so it is abelian; moreover, v(T) = v|s(T) = T, and so T is a T-abelian supplement. O

In particular, whenever Out(G)) is abelian, to prove Theorem 1, it is enough to check that there exists
an Out(Gy)-abelian supplement.

Now we will establish some results that give sufficient conditions on Out(Gy) and an abelian subgroup
T for the existence of a T-abelian supplement.

Lemma 6. Let T be a cyclic subgroup of Out(H), for a finite group H. Then there exists a T-abelian
supplement.

Proof. Let T = (t) and let 7 € Aut(H) be a preimage of ¢ under v. Then T = (7) is a T-abelian
supplement. O

The previous lemma, together with Lemma 5, shows the following.

Corollary 7. If Gy is a finite non-abelian simple group and Out(Gy) is cyclic, then every almost simple
group G with socle G is abelian supplemented. This holds for

o Gog=Alt,, n>5 withn # 6;
o Go ="Da(q), Es(q), Fa(q), G2(q), *B2(2"),%G2(3"),* Fa(2")";
o Gy is a sporadic simple group.

Noticing that Altg = PSL;(9), this corollary reduces our investigation to the groups of Lie type.

In what follows, Gy = *L(gq) is a simple group of Lie type and ¢ = p", where p is a prime. The
list of finite simple groups of Lie type and a full explanation of the notation *L(g) may be found in
Section 4. We denote by d the index of G in Inndiag(Gy), the subgroup of Aut(Gy) generated by the
inner and diagonal automorphisms of G (see Section 4 or [7] for further details). We give the values of
d in Table 2 to provide a quick reference to look up, since such values play a central role in the proofs.

The Tits group 2F4(2)’, also considered as a group of Lie type, does not appear in Table 2. It is well
known that Aut(>F4(2)") = 2F4(2), and the extension does not split. We are now able to state another
fundamental ingredient for the proof of Theorem 1.

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.160

Forum of Mathematics, Sigma 5

Lemma 8. If Aut(H) splits over Inn(H), then there exists a T-abelian supplement for every abelian
T < Out(H).

Proof. Let K be a complement of Inn(H) in Aut(H). Then K = Out(H) and the subgroup of K
corresponding to T is a T-abelian supplement. O

In [17], Lucchini, Menegazzo and Morigi gave a complete classification of all simple groups of Lie
type Gy for which Aut(Gy) splits over Gg. Their main result is the following.

Theorem 9. Let Gy = *L,,(q) be a simple group of Lie type, g = p™. Then Aut(Gy) splits over G if
and only if one of the following conditions holds:

(1) Gy is untwisted, not of type Dy (q), and (qT_l, d,m)=1;

(2) Go = Du(q) and (<, d,m) = 1;

(3) Gy is twisted, not of type >D,,(q) or >F4(2)’, and (q—;l, d,m)=1;
4) Go =2D,(q), and either n is odd or p = 2.

We are now ready to begin the investigation of the various types of almost simple groups, starting
with the ones with linear socle.

3. Linear amd unitary groups

In this section, we prove Theorem [ in the linear case. We begin with the easiest case n = 2, which is
better understood on its own and gives us an explicit model for the more general setting. Then we deal
with the case n > 3. More specifically, we prove some technical lemmas and analyse all the different
types of maximal abelian subgroups 7' of the outer automorphism group, showing the existence of
T-abelian supplements in each case. Finally, the main result of this section is contained in Theorem 19.

We start by recalling the structure of the automorphism group of PSL,, (¢) (a more detailed description
can be found in [23, 3.3.4]). The group PGL,,(g) acts as a group of automorphisms of PSL,,(¢), and
the corresponding quotient group PGL,,(g)/PSL,(q) is a cyclic group of order d = (n,q — 1), called
the group of diagonal outer automorphisms. This group is generated by the element ¢ corresponding
to the automorphism of GL,,(¢g) induced by the conjugation with the diagonal matrix diag(4,1...,1),
being A a generator of the multiplicative group ;. The automorphism group of the field F, of order
q = p™ is a cyclic group of order m generated by the Frobenius automorphism x + x?. This induces
an automorphism ¢ of GL,,(¢) by mapping each matrix entry to its p-th power. We denote by I'L,,(¢)
the semidirect product of GL, (g) with this group of field automorphisms, and correspondingly the
extension of PGL,, (¢) by the induced group of field automorphisms is denoted by PI'L,,(g). The duality
automorphism of GL,(g) is the map that takes a matrix to the transpose of its inverse. For n = 2, this
duality map is an inner automorphism of SL;(g). For n > 2, the duality automorphism induces an
automorphism y of PSL,,(¢) of order 2 that spans Aut(PSL, (¢))/PI'L,,(¢). We shall identify field and
graph automorphisms with their corresponding images in Out(PSL,(¢)). They generate a subgroup
{¢,y) which is isomorphic to the direct product of a cyclic group of order m with a cyclic group of
order 2. It can be easily seen that ¢ = 67 and 67 = 67",

We identify the general unitary group GU,(q) as the subgroup of the unitary matrices of GL,,(g?).
Let Gy := PSU,(q). The quotient PGU,,(¢)/PSU,(q) is cyclic of order d = (n, g + 1), generated by
the automorphism ¢ induced by the conjugation with the diagonal matrix diag(4, 1, ..., 1), denoting by
A and element of the field F 2 of order g + 1. The outer automorphism group of Gy is described in [23,
3.6.3]. We have

Out(Go) = (6) = (¢),

where ¢ is the field automorphism which raises the coefficients of every matrix to the power p. In
particular, we have |¢| = 2m and 6¢ = 7.
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Theorem 10. Let G be a finite almost simple group with socle Go = PSLy(q). Then G contains an
abelian subgroup H such that G = HGy.

Proof. Let Z := Z(GL,(q)). We can suppose that g is odd; otherwise, d = 1 and Aut(Gy) splits over
Gy. In this case, Out(Gg) = (&) X (@), with |6| = 2, |¢| = m and [, ¢] = 1. So Out(G) is abelian, and
by Lemma 5, it is enough to prove the case G = Aut(Gy).

Let
{0 -2a (A= 0
]
‘We have
A7 0)(0 -7\ (2% 0 0 -a%\ e
A9B = 1 0 =1 .. =17 A
0 1 0 1 A2 0
Therefore,

[A.¢B] € Z,
v(AZ) =6, and v(¢pBZ) can be ¢6 or ¢. In any case,
v({AZ, ¢BZ)) = Out(Gy),
and therefore,
(A, ¢B)Z/Z
is an Out(Gy)-abelian supplement. m]

From now on, Gy € {PSL,(¢),PSU, (¢)} withn > 3,s0d = (n,q + ¢), with e = —1 in the linear
case, e = 1 in the unitary case. We write also Z for the center of GL, (¢) or GU,(q), respectively. If
Go = PSL,(g), then Out(Go) = (6) = (¢, y), with [¢| = m, |y| =2, [¢,y] = 1,6% =P and 67 =57\
If Gy = PSU,,(g), then Out(Gy) = () = (¢), with |¢| = 2m and 5% = 5P.

The following lemma shows that in order to prove Theorem 1 in the linear and unitary cases when
n > 3, it is sufficient to investigate only two cases, which we will deal with in Propositions 15 and 18,
respectively.

Lemma 11. To prove Theorem | in the linear and unitary case when n > 3, we can reduce our
investigation to finding abelian supplements for the abelian subgroups T < Out(Gy) of the following
form:

(1) T = (6%, ¢*y*67) withe € {0,1}, k | d and k # d;
2 T= (6”1/2, qﬁséj,yék) with d even.

Notice that for unitary groups, case (2) does not occur, and in case (1), € = 0.

Proof. Proving Theorem 1 for an almost simple group G is equivalent to finding a T-abelian supplement
for every abelian T < Out(Gy). By Corollary 7, we can assume that 7 is not cyclic. Let 7: Out(Go) —
Out(Go)/(6) = (¢, y). f n(T) = (¢*y¥) is cyclic, then T is of the form T = <6", q)syséj) with k | d,
and we are in case (1). If 7(T) is not cyclic, then n(T) = (¢*,y). Suppose d is odd. Then T is 2-
generated and of the form T = <¢561, 76k>. Since d is odd, ys¥ is conjugate to y in (8,y), so up to
conjugation, we can assume k = 0 and therefore 6/ = 1, since [¢*6/,y] = 1; therefore, T := T is a T-
abelian supplement. Suppose d is even. If T is 2-generated, it is of the form 7" = <¢)S 8/, 76k>, and since
692 € Z(0Out(Gy)), T is contained in an abelian subgroup of Out(Gy) of the form <6d/2, 567, 76k>,
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and we are in case (2). If it is 3-generated, it is of the form T = <6l, ¢36f,y5k>, and in order to be
abelian, we should have [¢, y6%] = 1; therefore, [ = d/2, and again we are in case (2). O

In the sequel, we will use a lot the following special matrices defined from some integers w,l,c € Z
with w > 2 (we choose to define such matrices only for w > 2 to avoid ambiguity in the definition and
behaviour when w = 1; this choice is irrelevant in the proofs). Let F be the algebraic closure of the field
with p elements and A be an element of FF of order g + ¢, with ¢ € {—1, 1}. Then we define

00...0 (-)w 1Al
10...0 0

Ay = 01...0 0 € GL,, (F)

and

ctv=b o 00

0 Acw-2) 00
Xy,c = € GL,, (F)
0 0 ¢
0 0 01
Notice that
detA,, ;= 1".

Remark 12. Notice that A,, ; and X,, . can be viewed as elements of GL, (q) if e = —1 and as elements
of GU,(g) if e = 1.

We now introduce a technical lemma which is the key ingredient of the proofs in this section.

Lemma 13. Let w, [, ¢ € Z be integers withw > 2 and
A=A, (1) X =Xy c(4).
If
cw=I1p*(-1)* -1 mod g +e,
then we have
APV X = QA
Proof. First, notice that
00...0 (=Dw-1a™!
10...0 0
AY=|01...0 0
00..1 0
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and therefore,

0...0 (-yw=lalr=n”
10...0 0
A 2|01...0 0
00...1 0
The statement follows by computing the action of A?"Y“X and 1€ A on the canonical basis. mi

We show now the existence of T-abelian supplements for T of type (1). We start with the following
lemma.

Lemma 14. Let n,m > 1, and d = (n,m). Then there exists an integer y such that yn = d mod m and
(y,d) = 1. In particular, we find an integer y such that yn = d mod g + e and (y,d) = 1.

Proof. Since (4, %) = 1, there exists y € Z such that y4 = 1 mod 2. Now let

@y a

dzpf‘...p?ipi+l S

be its prime factorisation, where we have ordered the primes in a way such that p; divides y if and only
ifl <i<L
Let

— m
y=)’+171”+1"'1713-

For every p;, we have that p; does not divide y because if 1 < i < I, then y is divisible by p; while

Py - piy is ot (since (y, %) = 1), and if [ <i <[, p; divides Py - pi'y but not y. Therefore,
(y,d) = 1; moreover, y =y mod “7 and yn = d mod m. O

Proposition 15. Let T = <6k, ¢Sy86f> be abelian with k | d and k # d. Then there exists a T-abelian
supplement.

Proof. By Lemma 14, there exists y € Z such that yn = d mod g + ¢ and (y,d) = 1. Since T is abelian,
5k = (5k)¢57‘96’ = gkp* (=17
which means d | k((—1)®p® — 1) or, equivalently,
t](-D)%p* -1, t:=d/k.
First, suppose t = n,sot =d = n and k = 1. In this case, T = (5, ¢*y*) and
T o= (An1, 67X, ciepsa )Z/2
is a T-abelian supplement since v(A,,1Z) = ¢§ and by applying Lemma 13 with

(=D®p* - 1)

n

(w,l,c) = (n, 1,
we have
[An,l’¢S7£Xn M] eZ.

So in the sequel, we can suppose ¢ # n.
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Step 1. We construct matrices A, X such that det A = 1% and [A, ¢°y*X] € Z.

Since f | nand t # 1, n, we have that both ¢ > 2 and n — ¢ > 2, and so we can define

A="1Y )
( 0 Ant,ky)

First, notice that
det A = det A, ydet Ay g—y = 22 = 2K,

therefore v(AZ) = 6.
Letr := ((-1)¢p® — 1)/t and define

XI O
X =" .
( 0 Xn—t,yr)

We have that
y(p*(-1)¢ =1)=yrt mod g +e,
so applying Lemma 13 with (w, [, ¢) = (¢, y, yr), we get
AP N pra,
Moreover, recalling that kf = d = ny mod g + e, we have that
k=P’ -1)=(k—y)rt =krt—yrt=yr(n—t) mod g +e,
so applying Lemma 13 with (w,/,¢) = (n—t, k —y, yr), we get

¢s’ysxn—t,yr

— yr
n—t,k—y =4 An—t,k—y~

Therefore, we have
APV = A
or, equivalently,
[A,¢°y°X] € Z.

Step 2. We find a matrix C such that [A, C] = 1 with detC = A. Moreover, C € GL,(q) if e = —1,
C eGU,(q) ife=1.

Recall that (y, t) = 1, so there exist a, b € Z such that ay + bt = 1. Let
C() = /leta,y.
We have that [A, ,,Co] = 1 and

det Co = det A, A% = 199*" = ),
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Let

(G0
c=(37)

We have [A,C] =1 and detC = detCy = A.
Step 3. We complete the proof by constructing a T-abelian supplement.

Let u € Z such that v(XZ) = 6*. Combining Steps | and 2, we get
[A.¢"y*XCT™] € Z,
with v(AZ) = 6% and v(XC/™Z) = 6“6/~ = §/. Therefore,
T:=(A,¢*y°XC/™)Z/Z
is a T-abelian supplement. O

To continue our investigation, we need a few more lemmas.

Lemma 16. Let A, B € GL,,(q). Then

[¢°A,yB] =1
if and only if

B=ATB? A.
Proof. Easy computation. O
Lemma 17. Assume that we are in linear case, so e = —1 and A is an element of order q — 1 in F,. If

a, B € Z are such that
B=2a+p°’B modg-1,
then
[¢° X, as Y Xw gl = 1.

Proof. Since X,, o, X g are diagonal, for Lemma 16, we just need to check that

Xop = Xopa X2

w,B w,a-
By inspecting the coeflicients on the diagonal, for every 1 < i < w, we have

ABOw=i) Y QaspB) (w=i) _ qa(w=i) )p*Bw=i) a(w=i).

by the hypothesis on @ and S. O

We show now the existence of T-abelian supplements for T of type (2). Remember that this case
occurs only when T is linear.

Proposition 18. Let d be even and suppose T is abelian of the form T = <6d/ 2 567, yok > Then we can
find a T-abelian supplement.
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Proof. As in the previous case, this proof is articulated in different steps.
Step 1. We find an integer y € Z such that yn = d mod ¢ — 1 and y is odd.
This follows from Lemma 14 and the fact that d = (n, ¢ — 1) is assumed to be even.

Step 2. We construct matrices A, X4,X, € GL,(g) such that detA = 242 and T, =
(A, ¢°X4,vX,)Z/Z is abelian.

Since n — 2 > 2, we can define

A= Azy 0 ,
0 An—Z,d/Z—y

so that v(AZ) = 6%/2 since
det A = det Ay, det A, 9 gp—y = 224> = 2912,

Let r := (p® — 1)/2. Considering the automorphisms ¢* and 7, let us now argue as in Step 1 of
Proposition 15 and construct

X5 0
Xy =" ,
o= (% x5
so that
AP Xo = T A,
and
_ [Xo-y 0
= ( 0 Xn—2,—y)’
so that
A" = 17VA.
Since

—y=2yr—yp® modgq -1,
by Lemma 17, we have
[¢SX2,yra ')’XZ,—y] = [¢SXn—2,yr: 7Xn—2,—y] =1,
and therefore,
[¢SX¢’7X7] =1
From this, we obtain that
Ti = (A, ¢* Xy, vX,)Z/Z
is abelian.

Step 3. We construct matrices X, X, € GL,(gq) such that detX) = AYdetX, and T, =
(4,6°x;,7%;)2/2 s abelian.
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Let us define
Cy = (A(z;fy (1)) €GL.(q), Cy:= ( 2 (1)) € GL,(q),
and
Xy =X4Cy, X, :=X,C,y.
Since Cg4, Cy € CqL,, (q)(A), we have
APXe = prA, A5 = 7A
A straightforward computation shows also that

[¢Sx;,yx;] - 1.

Therefore,
det X; =det X, detC,, = det X, detAs , = 27 det X,,
and
Ty = <A, ¢SX’,yx;>Z/Z
is abelian.

Step 4. We complete the proof by constructing a T-abelian supplement.

Letv(X,Z) = 6" for some u € Z, so v(X},Z) = 6. Given thaty is odd, one of u — k or y +u — k is
even. Since yd* is conjugate to y8Y in (8, y) if y — x is even, one of y* or y§“*Y is conjugate to y5¥.
Let

7 - fl if u — k is even
7 ifu+y—kiseven

so that there exists a matrix R € GL,(q) such that v(T®) = (69/2, ¢*5', y5* ) for some I € Z. Notice that
this group being abelian means 2/ = —k(p* — 1) mod d. In the same way, since T = (6/2, ¢*6/, yo*)
is abelian, it means that 2j = —k(p® — 1) mod d, but then 2/ = 2j mod d, which means [ = j mod d/2
and v(TR) = T. Therefore, T := T® is a T-abelian supplement. O

We have therefore proved Theorem 1 in the linear and unitary cases.

Theorem 19. Let G be an almost simple group with socle Gy € {PSL,,(q),PSU,(q)}. If G/Gy is
abelian, then G contains an abelian subgroup H such that G = HG.

4. Notation for groups of Lie type

By Theorem 9 and Table 2, to prove Theorem 1, we are left to deal with the following cases:

B, (9),Cn(q), Dn(q), E7(q), g =p".p # 2,
’Dn(q), g =p™, p # 2,neven,

Es(q), g =p™,q =1mod 3,
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and
’E¢(q), ¢ =p™.q =—-1mod 3.

We give a brief introduction of the tools that we are going to use.

For the definitions and automorphisms of simple groups of Lie type, we refer to [7] (see also [20]).
The automorphism groups of the finite simple groups of Lie type (untwisted and twisted) have been
determined by Steinberg in [19] and by Griess, Lyons in [12]. We denote by F, the field with g = p™
elements, where p is a prime. We briefly recall that the Chevalley group (or untwisted group of Lie type)
L(g), viewed as a group of automorphisms of a Lie algebra Lg, over F,, obtained from a complex finite
dimensional simple Lie algebra L, is the group generated by certain automorphisms x,, (), where ¢ runs
over F, and & runs over the root system @ associated to L. The finite untwisted groups of Lie type L(q)
are

An(Q)sn > 1,Bn(61),cn(41)a” > Z,Dn(t]),” = 4’ E6(CI)»E7(¢])’E8(CI), F4(6])»G2(CI)

It is well known that L(q) is simple, except in the case L(g) = A1(2), A1(3), B2(2), G2(2) ([7, Theorem
11.1.2]). The groups A (2), A1(3) are soluble. The group B, (2) is isomorphic to Ss. The derived group
of G»(2) is isomorphic to PSU3(3).

Forevery @ € @, 1 € F;, one defines 14 (1) = X (1)X_q (=t x4 (1), ng = ne(1) and the subgroup
N =(nq(1) | @ € ®,1 € Fy) of L(q).

Let A = {ay,...,a,} be a system of simple roots of ®. We shall use the numbering and the
description of the simple roots in terms of the canonical basis (e, ..., e,) of an appropriate R” as in
[1], Planches I-IX. We denote by Q the root lattice, by P the weight lattice and by W the Weyl group; s;
is the simple reflection associated to «;, {wy, .. .,w,} are the fundamental weights, wq is the longest
element of W, and A = (a;;) is the Cartan matrix (hence, @; = 3. ; a;;w;).

Let Hom(Q,F) be the group of F,-characters of Q (i.e., group homomorphisms from Q to
IF;‘). For any y € Hom(Q, F;), one defines the automorphism h(y) of Lg, ([7, p. 98]). Let
H = {h(x) | x € Hom(Q,FX)}. The map y — h(y) is an isomorphism of Hom(Q,F*) onto
H. We have H < NautLg, (L(g)). The automorphism of L(q) induced by hA(y) maps x,(t) to
hO)xa(Dh(x)™" = xo(x(a)t) ([7, p. 100]). Let H = A N L(g). Then h(y) lies in H if and only
if y can be extended to an F,-character of P. The number d in Table 2 relative to the untwisted case
is the order of H/H. We denote by Inndiag(L(g)) the group L(g)H, the group of inner-diagonal au-
tomorphisms of L(g). Any automorphism ¢ of F; induces a field automorphism, still denoted by ¢, of
L(q), which is defined by x,()? = x4(¢?). In particular, the automorphism x +— x” of F, induces
the field automorphism denoted by g — g!P! of L(g). Note that 1( )P = h(y)P = h(py) for every
IF,-character y of Q.

We recall that a symmetry of the Dynkin diagram of L(g) is a permutation p of the nodes of the
diagram, such that the number of bonds joining nodes i/, j is the same as the number of bonds joining
nodes p(i), p(j), for any i # j. A nontrivial symmetry p of the Dynkin diagram can be extended to
a map of the space E = RP into itself (an isometry if L = A,, D,, Eg), still denoted by p. This map
yields an outer automorphism, again denoted by p, of L(g); p is said to be a graph automorphism of
L(q) (see [7, p. 200-210] for the detailed description). It is defined as follows.

(a) If L(q) = Au(q), n > 2, D,(q), E¢(q)
Xo ()P =Xp(a) (Yal),

where @ € @, t € F,, yo € Z; the y, can be chosen so that y, = 1 if @ € £A.
(b) If L(q) = B2(q), Fa(g) and g = 2™

xXo ()P = Xp(a) (t/l(p(a))),
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where o € @, t € F,, A(@) = 1 if @ is short, (@) = 2 if « is long. Note that p? is the field
automorphism x4 (1) > x4(#%), so p has order 2m.
() If L(q) = G2(q) and g = 3™

xaf(t)p =Xp(a) (t/l(p<a))),

where & € @, t € F,, A(@) = 1 if @ is short, /(o) = 3 if & is long. Note that p? is the field
automorphism X, (f) — x4(#3), so p has order 2m.

Graph and field automorphisms commute; the subgroup R they generate (denoted by ®xI'x in [11,
Theorem 2.5.12]) normalises Inndiag(L(q)). We have

L(q) < L(q)H = Inndiag(L(q)) < Inndiag(L(q)) : R = Aut(L(q)).

We shall identify field and graph automorphisms with their corresponding images in Out(L(q)). The
action of Out(L(q))/Outdiag(L(g)) on Outdiag(L(q)) is described in [2, §1.7.2] and [11, Theorem

2.5.12].
We have H <N and N/H = W. For w € W, we denote by w a representative of w in N; for each
i=1,...,n,ng, is arepresentative of s; in N. For short, we denote n,, by n;. Note that n; lies in L(p),

so that it is fixed by field automorphisms of L(g).

Next, we consider the finite twisted groups. These are defined as certain subgroups of appropriate
untwisted groups L(g*) over the field F;s with ¢° elements, g = p™ as usual (the list may be found in
[7,p. 251]):

An(@)sn > 2,°Dy(q),n > 4,°Du(q), E¢(q), B2 (2°™*1), 2F4(22™41),2Go (32,

Note that for the types A,, D,, Eg, we have used the notation *L(qg) instead of *L(¢*) (used in [7, p.
251]) to stick with the notation in [17]. They are all simple, except for the groups 24 (2), ?B»(2), 2F4(2)
and 2G,(3) ([7, Theorem 14.4.1]). The groups ?A5(2), 2B»(2) are soluble. The derived subgroup of
2G,(3) is isomorphic to the simple group PSL;(8). The derived subgroup 2F4(2)” of %F4(2) has index
2 in 2F4(2), and it is a simple group called the Tits group. For the simple groups Gg of type D4 (q),
2B, (221 2R, (271 2G, (32D, 2F,(2), the group Out(Gy) is cyclic ([11, Theorem 2.5.12, 12]).
Therefore, every almost simple group G with socle Gy is abelian supplemented (Corollary 7). Moreover,
we have 24,,(q) = PSU,,(¢), so we are left to deal with 2D,,(¢) and *E¢(q). We observe that if n is odd or
p =2, then Aut(’D,,(g)) splits over °D,,(q) (Theorem 9), so that there exists a T-abelian supplement for
every abelian 7 < Out(?D,,(¢q)) (Lemma 8). In view of this discussion, we shall deal with the remaining
cases. Below, we give a short description of these groups

So, let us assume that L is of type D, or E¢, and 7 is an order 2 symmetry of the Dynkin diagram.
The twisted group %L(q) is a certain subgroup of the Chevalley group L(g?) ([7, Definition 13.4.2]).
Let E be the real vector space spanned by the roots (or the weights). Then 7 induces an automorphism
(in fact an isometry), still denoted by 7, of E fixing both Q and P. Let y be an F .-character of
Q (or P). We say that y is self-conjugate if y(t(x)) = x(x)? for every x in Q (or P). Let H' =
{hx) | x : O — F:z is a self-conjugate character of Q}. We have A' < NAmLIqu (’L(g)). Let
H' = H' n2L(q). Then h(y) lies in H' if and only if x can be extended to a self-conjugate F, .-
character of P. The number d in Table 2 relative to the twisted case is the order of H'/H'. We denote

by Inndiag(*L(q)) the group *L(q)H" of inner-diagonal automorphisms of *L(q). Any automorphism
¢ of F 2 induces the field automorphism ¢ of L(q?), which leaves 2L (q) invariant and therefore induces

an automorphism of 2L(g) (also called a field automorphism). If R! is the group of field automorphisms
of 2L(q), we have
2L(q) < L(q)A" = Inndiag(’L(q)) < Inndiag(*L(q)) : R' = Aut(*L(q)).
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In general, we have (1 — z) P < Q for every z € W. For Coxeter elements, equality holds:

Lemma 20. Let ay,...,a, be the simple roots (in any fixed order), wy,...,w, the corresponding
fundamental weights. Then

(I=s1sp)w; =@+ 1@ + - + Zim1@iny

with z1,...,2i-1 € Z. In particular, (1 — sy ---5,)P = Q.

Proof. We have s;(w;) = w; — 6;;a; for every i, j. Fori = 1, we have s -+ - s,w1 = sjw1 = w — ay;
hence, (1 —s1---s,)w; = ay. Let 1 <i < n. Then sy - -s;-1(@;) = @y + z1a1 + -+ + Zi—1@i—1, With
Zu €Zforu=1,...,i —1. Then

(I=s1-sp)wi =w; =51+ 50 = w; = 51+ si-1 (Wi — @;)

=w;— (Wi =81 8-1@;) =81 Sim1@; = @ + 2101 + - - + 2o 11

]

Let y be a character of Q, w in W. We define the character w y in the following way. For x € Q, we
put wy (x) := x(w™lx) (i.e., wy = y o w™!). We also define 7y, where 7 is a graph automorphism, by
(tx)x == y(t7'x) for x € Q (hence, Ty = y o 7 1). Note that for w € W, we have ([7, Theorem 7.2.2])

WwhOOWw™ = h(wy).

Since we are assuming @ of type D,, or Eg, there is a Coxeter element w in W fixed by 7. We may
choose a representative w of w in N over the prime field and fixed by 7. Let F = ¢/ or ¢/, for some
integer j. Then F fixes w and acts on H; hence, it induces an automorphism g of Hom(Q, FX) given by
F(h(x)) = h(g(x)).Let y : QO — F; be a fixed character, x = wh(y). We shall look for an element
y = h(x’) € H such that [x, Fy] = 1; that is,

xFy=Fyx & y 'F'xFy=x &< y 'F(x)y=x
so that

h(x") " Wh(g(x)h(x') = Wwh(x).

U= Wwh(=w™y"); hence,

We have ii(x")™w = ™ h(x") W = wh(w™ )"
Wwh(=w™ x)h(g(x)h(x') = wh(x),
h(-w™ X h(g(x)h(x') = h(x),
and finally,
A(1L-why)=h((1-gx), (1-why =1-gyx,
X' o(l=w)=(1-g)x.

We shall be interested in the following cases:
F s> slP'l then

x'o(1-w)=(1-pHy,
F : s+ slP17 then

X' o(l-w)=(1-pr)x.
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By Lemma 20, we have (1-w)~'Q = P.Let A = |P/Q| = det A. Then AP < Q. Note thatif ® = D,,
with n even, then 2P < Q since P/Q = C, X C; (the inverses of the Cartan matrices may be explicitly
found in [22]). We put A = |P/Q| unless ® = D,,, n even, in which case we put A| = 2. Then

A(1-w)'Q <0,

and we may define the character
Ly =xoA(l -w) 0 —>]F;

and h(¢y) € H.
We start with the cases B, (q), C,(¢), E7(q).

5. Cu(q), Bu(q),n = 2, E7(q)

Here, L is of type Cp,, B, or E7, Go = L(q), q = p™, d = (¢ — 1,2), and we assume that Aut(G) does
not split over Gy, so (qT_l, d,m) # 1. Therefore, d = 2 and p is odd:

Out(Go) = (6) x (¢),
|6] =2, |¢| = m. We fix an F,-character y of Q which cannot be extended to a character of P, so that
h(x) induces ¢ in Out(Go). We look for an F,-character x’ so that [Wwh(yx), ¢h(x’)] = 1; that is,
X' o(l-w)=(1-px.
We have A| = 2,50 {, = y 02(1 —w)~. We take

’ l_p
x=—=te

so h(x’) = h({X)l_Tp. Therefore,

T = (wh(x), ph(x"))

is an Out(Gy)-abelian supplement (arguing as in the PSL;(q) case).
We have proved the following.

Theorem 21. Let G be a finite almost simple group with socle Gy = C,(q), By (q) or E7(q). Then G
contains an abelian subgroup A such that G = AG.

6. Ec(q)

Here, L is of type Eg, Gy = L(q), ¢ = p™, d = (¢ — 1, 3), and we assume that Aut(Gg) does not split
over Gy, SO (qT_l, d,m) # 1. Therefore, d = 3 and p # 3:

Out(Go) = (6) = (¢, ),

where |§| =3, |¢| =m, 6% = 67,67 =6 and [¢, 7] = 1. We fix an F4-character y of Q which can
not be extended to a character of P.

Let : Out(Gg) — Out(Gg)/{6) = (¢, 7). Let T be a noncyclic abelian subgroup of Out(Gy). If
n(T) is not cyclic, then 7(T) = (¢*, 7). Therefore, T = ($*6’, 76%). But 76* is conjugate to 7 under (5);
hence, we may assume T = (¢°6°, 7),50T = (¢*,7) < (¢, 7) and T = (¢*, ) is a T-abelian supplement.

We are left with the case where 7(T) is cyclic; that is, 7(T) = (¢°7€). Then T = (5, $*7¢). Since
p # 3, wehave p =1 or —1 mod 3.
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Let p = 1 mod 3. Then [6,¢] = 1, and we get £ = 0, T < (0, ¢), so by Lemma 5, it is enough to
consider the case

p=1 mod3,T={J0¢) (case 1).

Let p = —1 mod 3. Then 6% = sLIfe=1,T = (5, ¢°7). Since 8, ¢°7] = 1, s must be odd.
Therefore, T < (8, ¢, ¢*) = (5, ¢7).Ife = 0,T = (8, ¢*), sosiseven, and again, T < (5, ¢>) < (9, ¢7).
Therefore, it is enough to consider

p=-1 mod3,T={(d,¢T1) (case 2).
Summarising, we only have to deal with cases 1, 2.

We consider the Coxeter element w = 515456535255, fixed by the graph automorphism 7. In fact, we
have

T(a1) = a6, T(@2) = @2, 7(a3) = a5, T(4) = a4, 7(as5) = a3, 7(as) = 1.
We choose a representative w of w in N over the prime field and fixed by 7, w = njn4nensnsns, for

instance. Hence, 7 = wr, w¢ = ¢. Here, ¢ is the field automorphism of G sending x to x[P!. We
use the notation ¢~ 'x¢ = x[P]. We have A = 3,50 ¢, = y 03(1 —w)~!.

Case1l: p = 1mod 3, T = (6, ¢).
We take

so h(x’) = h({)()l}l. Therefore,

T = (wh(x), h(x"))

is a T-abelian supplement.

Case2: p=—-1mod 3, T = (6, ¢7).
Since Twg = —1, we have

(1+7)P=(1+1)woP = (wog+1two)P =(wog— 1)P = (1 —wy)P < Q.
Hence, by Lemma 20,
1+ (1-w)'Q=(1+7)P<Q,

so yo(1+7)(1-w) lisan [F,-character of Q. We look for an [F, -character x” so that [Wh(x), ¢7h(x’)] =
1; that is,

x'o(I-w)=(-pr)y.
Wehave l —=pr=1+p—p—pr=1+p—p(l+7),and we may define

, 1+ -
¥==Fo-pxo+ni-w
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obtaining a character which satisfies y” o (1 —w) = (1 — pt) y. Therefore,

T = Gih(x). ¢th(x"))
is a T-abelian supplement.
We have proved the following.

Theorem 22. Let G be a finite almost simple group with socle Gy = E¢(q). If G/ G is abelian, then G
contains an abelian subgroup A such that G = AG.

7. %E¢(q)

Here, L is of type Eg, Go = %E¢(q) < E¢(q%), g = p™,d = (g +1,3), and we assume that Aut(G) does
not split over Go; that is, (q—:;],d,m) # 1. Therefore, d =3 and ¢ = —1 mod 3, so p = —1 mod 3 and m
is odd:

Out(Go) = (6) = (¢),

where |6] =3, || =2m, 6% =671,
It is enough to consider the case T = (6, ¢*). We fix a self-conjugate [F2-character y of Q which can

not be extended to a self-conjugate F »-character of P (so that h(y) € A'\ HY.

We consider the same Coxeter element w = 515456535255 as in the previuos section, and the same
representative w = nynqngnsnans, which lies in Go.

We look for an element (') € H' so that [Wwh(y), #*h(x’)] = 1; that is,

x o (l-w)=(1-pHy.

We have Ay =3,50 ¢, = xy 03(1 —w)~!. We take

, 1-p?
so h(x') = h(g) . )
Note that since y is self-conjugate and 7w = wr, {,, and x’ are self-conjugate, so 2(x’) lies in H L
Therefore,

T = (Wwh(x),$*h(x"))

is a T-abelian supplement.
We have proved the following.

Theorem 23. Let G be a finite almost simple group with socle Gy = *Eg(q). If G/ Gy is abelian, then G
contains an abelian subgroup A such that G = AGy.

8. 2D, (q), n even

Here, L is of type D, n even, Gy = 2D, (q) < D,(¢*), g = p™, d = (¢ + 1,2), and we assume that
Aut(Gg) does not split over Gg. Therefore, d =2, p # 2, and

Out(Go) = (6) X (),

where |6]| =2, |¢| = 2m.
It is enough to consider the case T = Out(Go). We fix a self-conjugate F»-character y of Q which
can not be extended to a self-conjugate F,-character of P (so that h(y) € H' \ H").

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.160

Forum of Mathematics, Sigma 19

We consider the Coxeter element w = s157 - - - §,-15,, fixed by 7 (which exchanges a,-; and a;,),
and the representative w = nyny - - - n,_1n,, which lies in Gy. We look for an element h(y’) € A so
that [wh(y), ¢h(x’)] = 1; that is,

X' o(l-w)=(1-p)x.

We have A1 = 2 (since n is even), so {,, = y o 2(1 - w)~'. We take

1-p
s0 h(x') = h({,) 7 )
Since y is self-conjugate and 7w = wt, {, and y’ are self-conjugate, so h(x’) lies in H ! Therefore,

T = (wh(x), ¢h(x"))

is an Out(Gy)-abelian supplement.
We have proved the following.

Theorem 24. Let G be a finite almost simple group with socle Go = ?D,,(q). Then G contains an abelian
subgroup A such that G = AG.

9. The remaining case

In the next sections, we shall deal with the remaining case: D, (g), g = p™. We shall use the identifica-
tions with classical groups as in [7, Theorem 11.3.2] and [8, 1.11, 1.19]. Here, A is a generator of FZ.
We have Gy = PQ] (q), Inndiag(Go) = P(CO2,(q)°), where CO2,(q) if the conformal orthogonal
group; that is, the group of orthogonal similitudes of ]Ffi"; CO3,(q)° is the subgroup of index 2 of
CO»,(q) of elements which do not interchange the two families of maximal isotropic subspaces of Fé".
If (e,...,en, fi,..., fn) is the canonical basis of ]Fg", the bilinear form on FEI" corresponds to the

matrix
Ol’l In
s (2 )
We define the homomorphism 7 : CO,,(g)° — ]F; by

n(X)=u if XK,X = uk,.

For u € F;, leto, = (16‘ H(}n ) so that n(o,) = u.

The graph automorphism 7 of D,, exchanging a,,— and «,, is induced by conjugation with

In—l 0 On—l 0
0 0 1
TI’L - 0 . 0 I 0 € OZH(Q),
0O 1 0 O
2= 1,x7 = 1,x7,.
Xq;(2)" =xq;(2),i=1,....n =2, Xg, (2)7 = X0,(2), X0, (2)" = Xq,_, (2).

We shall deal with the cases n odd and even separately.
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10. D,(q),n > 3,n odd

Here, L is of type D, n odd, Go = D,,(q), g = p™, d = (4,q — 1), and we assume that Aut(G) does
not split over Gy; hence, (qT_l, d,m) # 1. In particular, d = 2 or 4, and p is odd. Moreover, m is even;
hence, 4 divides g — 1. Therefore, d = 4.

Out(Go) = (8,7,¢ | 6* =12 =1,6" =67, ¢" = [1,¢] = 1,6% = 67).
In Q3 (g), we choose

0p-1 0 I,q

wet O

| 01

7 Lot 00,
0

— o O O

n—
0

a representative of the longest element w( of the Weyl group. We have W(z) =1, wot, = TaWo = K,,. Let
X € CO2,(9)°, n(X) = p (ie., XK, X = puKy). Then 'X = uK, X 'K, so that

X! = p(X) Wota Xt = n(X) "o X T, (10.1)

We start with D3, exploiting the fact that D3 = A3. Let V = F‘; with canonical basis B = (vq,...,Vv4)

overF,,V = F: with the same basis over F,,. Let
0 :GL(V) = GL(AYV), [ A%f.

We choose the basis 3 for V, and the basis C = (v12, V13, V23, V34, V42, V14), Where vij =viAvj, for A2V,
We endow A2V with the symmetric bilinear form with matrix K3 with respect to C. Then o-(GL(V)) <
CO(N*V)°, o(GL(V)) < CO(A*V)°, and, by considering bases, we obtain the homomorphism o :

GL4(g) > COg(q)°. We have
X 13 0 13 03 _ X
”'(OM)F’@bue)‘ow

in particular,
I3 0
det( 0 /l) =H= 7](0#)'

Moreover, o : uly — 1i2Is. If X € GL4(q), det X = p, then X = Y(’g 2)with Y € SLi(q), o(X) =
a(Y)o, with o (Y) € Qf(¢q) ([21, Theorem 12.20]); hence,

n(o(X)) = u=detX. (10.2)
From (10.1) and (10.2), we get
a(’X™ =(a(X))™" = (det X) go (X) Twio. (10.3)
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For X, Y € GL4(q), z € FX, we get

y'xPly=z2x = o loX)Plo) = 2o (X)
YIx Yy =X = Z'o(X)"Z=22det(X)o(X), Z = oo (Y) (10.4)

X ly=zxlPlx = o(X)7Z=2det(X)ZPlo(X), Z = oo (Y)

since W(gp] = Wy.
In Section 3, for a given abelian subgroup 7 of Out(PSL4(gq)), we have exhibited a T-abelian supple-
ment 7 by giving matrices in GL4(g): the map o~ allows to solve the problem for G = PQ¢(q), by giving
matrices in COg(q)°. Now we consider D,,, n odd, n = 1 + 2m, n > 3. The space ]F(ZI" is the orthogonal
direCt sum Féﬂ = UGBUJ_’ Where U = <el LA en737 f] LIRS ] fn*3>5 UJ_ = <el’l*27 el’l*] > en, fn—Za fn*l’ fn>’
withdimU = 2n—6 = 4(m — 1). Moreover, U is the direct orthogonal sum of subspaces of dimension 4:

Ui ={e1, e, fi, f2), ., Un-1 = {€n-4, €n-3, fn-a, fu-3).

To define an isometry or more generally an orthogonal similitude of IF?]", we may give matrices X; €
CO4(q)°, (X)) =p,i=1,...,m—1,X € CO¢(q)°, n(X) = u and define Y in GL,,(q) by

Y=X19---eX,-1 9 X.

Then Y € CO3,(q)°, with n(Y) = u. If Y € CO4,(q)° fixes U+, then it fixes U, and if we write
Y=XoZ, with X € CO¢(q)°, Z € CO2,-6(q)°, and consider the action of ¢ and 7, we get

ylrl = xlp] EBZ[p], Y"=X"9Z

since 7, acts on the basis (eq,...,en, fi,..., fn) just by switching e, and f, (here, YT = 7,Y1,,
X' =13X13).

We shall proceed as follows. Assume 7 is an abelian subgroup of Out(Gy). We consider the analogous
subgroup T of Out(PSL4(q)). From the PSL4(q) case, we have an abelian subgroup of Aut(PSL4(q))
given by explicit matrices in GL4(g). By using o, we obtain corresponding matrices in COg(gq)°
satisfying certain relations. For each such matrix X, we define a matrix X; € CO4(q)° and finally define
the matrix Y = X; @ --- ® X; & X in CO»,(q)° (m — 1 copies of X|). We shall then obtain a T-abelian
supplement 7 in Aut(Gy).

Let A, B € GLy(q) with

B'APIB = zA, detA =y, 7= 2PV

andletv € ]F;. Our aim is to define orthogonal similitudes of F‘; (with respect to the form given by K5).
We put

= a(A) = A 0 I 0,
A=A =10, 471 [\ 0, (detA)D

B 0, \(Ib 0o o _
02 tB—l )(02 VIZ) € CO4(Q) ’ U(b) =V.

) € C04(q)°, n(a)=detA

b=b(B,v) =(

From B~'AlPIB = ,u%(p‘l)A, we get

blalPlp = ,u%(p_l)a, n(a) =detA = u,n(b) =v.
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We shall take
_(0-n _(u2® 0 [p] (p-1)
A—(lo), _( , BlAPIB = 2PV g,
0-40 0
1 0 00
a—a(A)—a(,u)— O 0 O_ sn(a)_#s (105)
00 o0
prP Do 0 0\/1000
0 1 0 00100
b=>b(B,v)=b(u,v)= 0 04 Lo-n o ll00vo0 , (b)) =v. (10.6)
0 0 0 1/\000 v

Then
blalPlb = 2P Va, p(a(p) =, n(b(,v)) = v.
Note that for any i € Z, we have
B N(ANIPIB = y21(PD Al det AT = 4,
b(detA,v)'a(A) P p(det A, v) = p2' PV g(AT), n(a(AD)) = det A’ = i, n(b) = v.
We shall make use of the explicit matrices in GL4(g) from Section 3.

10.1. p =1 mod 4

By Lemma 11, in the case when p = 1 mod 4, the maximal abelian subgroups of Out(D3(gq)) =
Out(PSL4(q)) are (0, ¢), <62, ®, T> and (62, o, 7(5>. We are therefore going through such cases.

Case T = (0, ¢). In the PSL4(qg) case, we took

000 -1 A7« 0 00
L_|tooo] | o 122 0 o
010 0¥ 0 0 a7 of
001 0 0 o 0 1

T =(L,$M)Z(GL4(4))/Z(GL4(q))
We have M~ LIPIM = 257 L hence in CO¢(q)°, with £ = o-(L), m = o(M), by (10.2), (10.4),

m Pl = 27 e,

(1) D

n(f)=detL=2, n(m)=detM =2

We look for a, b € CO4(q)° satisfying the same relations using the above procedure. We take u = A4,

v:/lS(pzfl),a:a(/l),b:b(/l, S cifweputAj=a®---®a®l,Bi=b®---®Db®m, then

-1
A1, By € COzn(CI)O,BIIA{p]Bl =27 A

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.160

Forum of Mathematics, Sigma 23

and

T = (A1, 6B1)Z(CO2.(9)°) | Z(CO2(q)°)

is a T-abelian supplement.

CaseT = (6%, ¢, 7).
In the PSL4(g) case for <62, o, y), we took

p-1

0-100 A7 0 0 0 2710 00
1000 0 1 0 O 0100
L= 00 0—/1’M_ 0 0/1”7_10’1\/_ 0 oatof
001 0 0 0 1 0001

T=(L ¢M,yNYZ/Z,
with
MLy = 2L, NY(L™YN = 2,L, (M™")N = z3NP1m,
2 =3P =47y =1, det L = A%, det M = AP det N = 172,
Hence, in COg4(q)°, with € = (L), m = o(M), n = o (N),
m WPl = AP T =0, mTn = AP nlPly,
n(€) =detL = 22, n(m) =detM = AP~ n(n) = n(io)n(o-(N)) = det N = 172.
Recall that 7,, acts trivially on U; hence, we have to define matrices a, b, ¢ € CO4(q)° such that
b 'alPlp =P 'a, ¢ lac=a, be = AP 'elPlp, thatis, b 'clPlp =2~ (P D¢,
n(a) =A%, n(b) =7~ n(c) =172
Once we have solved b~'alPlb = AP~1a, we may take ¢ = a~'. We take
a=a(2®),b=b%2""",c=al.
IfweputA| =a®---®adl,B| =bd---®@bdm,C; =c®d---®cdn,then A, B|,C; € CO»,(q)°, with
By'AlPIB, = a771A,, ¢7'ATC) = Ay, BTCy = a77'C[P1By,
(A1) = 2, n(By) = AP~ n(C1) =172,
so that
T =(A1,¢B\,7C)Z|Z
is a T-abelian supplement.
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CaseT = <62, @, T5>. In the PSL4(g) case for <62, @, 76>, we took

_ 1-p
0-10 0 270 0 0\0-100\2 0-1 0 0
1000 o1 0 offtooo 10 00
E=loo0a™=| ¢ o= ollo o 10l M=o 0 a0l
0010 o o o 1/\00O0I1 00 01

T=(L,¢M,yN)Z/Z,
with

MLy = 2L, NTYCLTYN = 2oL, (('MTYN = z3NIPI M,

2 =22 2 = a7 =1 det L = 22, det M = 22P7D detN = 7L
Hence, in CO¢(q)°, with € = oo (L), m = 0o(M), n = woo (N),

m Pl = AP YT =€, mTn = /l%(p_l)n[l’]m,

n(0) = det L = A%, p(m) = det M = 22P7D n(n) = n(ig)(o-(N)) = det N = 17"
We have to define matrices a, b, c € CO4(q)° such that

b 'alPlp =P 'a, ¢ lac=a, be =/l%("_l)c[”]b, thatis, b 'clPlp =/l_%(p_l)c,

n(a) = 2 n(b) = "~V p(c) =7,
Once we have solved b~ ¢[P1p = 13 (P=D ¢, we may take a = ¢ 2. We take
c=a(A ™), b= b(/l_l,/l%(p_l)),a =72
IfweputA; =a®---®ad®l,B =b®-- - ®bdm,C; = c®---®cdn, then Ay, B, C; € CO2,(q)°, with

B'APIB = a71A, ¢ ATCy = Ay, BICy = 22 Py,

n(An) = 2,n(B) = 270 p(cy) = a7,
so that
T =(A1,¢B1,7C1)Z/Z
is a T-abelian supplement.
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10.2. p =—-1mod 4

By Lemma 11, in the case when p = —1 mod 4, the maximal abelian subgroups of Out(D3(g)) =
Out(PSL4(q)) are (6, ¢7), (62, ¢, 7) and (6%, ¢3, 7). We are therefore going through such cases.

Case T = (0, ¢71). In the PSL4(q) case for (9, ¢y), we took

3(=p-1)

000 -2 A1 0 0 O
L_|toool | o e Sl )
01007 0 0 /1%’10’
0010 o 0 0 1

T=(L ¢yM)Z/Z,
with
ML M =275 L, detL = A,det M = 173+
Hence, in COg4(q)°, with £ = o-(L), m = woo (M),
m (P = 2=y,
n(0) = det L = A, 7(m) = n(io)n(o-(M)) = det M = 172 P+
We have to define matrices a, b € CO4(q)° such that
b~ lalPlp = /l%(”_l)a, n(a) = ,n(b) = A3 (),
We take
a=a(d),b=b(,1 Py,
IfweputA|=a®---®a®d(,Bi=b®---®b&m,then A}, B| € CO3,(q)°, with
BN (AP)TBy =3PV Ay, p(A) = A, n(By) = 2720,
so that
T =(A,¢tB)Z/Z

is a T-abelian supplement.

Case T = (62, ¢, 7). In the PSL4(q) case for (6, ¢, y), we took
T=(L ¢M,yN)Z/Z,

with the same L, M, N asinthecase p = 1 mod 4, T = (62, o, y). We define Ay, By, Cy € CO»,(q)° as
in this case, and T = (A, ¢B1,7C|)Z/Z is a T-abelian supplement.

Case T = (6%, ¢0,76). In the PSL4(g) case for (62, ¢5,y5), we took
T=(L,¢M,yN)Z|Z,

with the same L, M, N as in the case p = 1 mod 4, T = <52,¢, 76). Again, we define Ay, B1,C; €
CO»,(q)° in the same way, and T = (A1, ¢B1,7C1)Z/Z is a T-abelian supplement.
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We have proved the following.

Theorem 25. Let G be an almost simple group with socle Gy = D, (q), n odd. If G| Gy is abelian, then
there exists an abelian subgroup A such that G = AG.

11. D, (g), n even

Here, L is of type D, neven, Go = D,(q), g = p™, d = (2, q — 1), and we assume that Aut(G) does
not split over Go; hence, (%, d,m) # 1. In particular, d # 1; hence, p is odd, m is even and d = 4,
I:I/H = (Cy X (.

If n = 4, then

Out(Go) = ({61,62,03) X (¢)) : S5,
where S3 = (p,7), 7> = 1, p* = 1,616, = 63,67 = ¢ = [p, ¢] = [1,¢] = 1,6] = 62,65 = 63,8} = 62,

6’; =03, 6‘3) =0].
If n # 4, then

Out(Go) = ({81, 62,83) X () : (1),

where 72 = 1, 6165 = 63, 6? =¢™ =[1,¢] =1, 517 =7, 537 = §3.
Note that (761)% = 761761 = 6281 = 63, (762)? = 63; hence,

(63, 0,761) = (¢, 761) = ($,762).

We have to consider the following cases. Assume 7 is an abelian, noncyclic subgroup of (8, 62, ¢, T)
(which is Out(Gy) if n # 4).

Let D = (61, 62), m : Out(Go) — Out(Gy)/D = {p, 7). If n(T) is cyclic, then n(T) = (¢*7¢). If
e=0,T < (D, ¢*), so

T < (61,02, ).

Ife=1,T < (D, ¢°7), and T contains an element @ = ¢*76, 6 € D, § # 1, so either T = (53, ¢°7) or
T = (63, ¢°181) = (03, p°702). In the first case,

T < (03,9, 7).

In the second case,
T <{¢,761) =(¢,762).
If 7(T) is not cyclic, then n(T) = {¢*, 7). Therefore, either

T <03, ¢,7)

or
T <(63,9,701) = (¢, 761) = (9, 762).

Therefore, if T < (81, 02, ¢, T), by Lemma 5, we only have to deal with the following cases:

case I: T ={61,62, ),
case2: T =(63,90,7),
case 3: T =(¢,761) = (¢, 702).
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Assume n = 4. Let M = (61, 62, ¢), £ : Out(Gy) — Out(Gy)/M = {p, 1), and T a noncyclic abelian
subgroup of Out(Gg) not contained in (¢, p, 7). Hence, £(T) = {1}, {p't) or {p). However, p'r is
conjugate to 7; therefore, we may assume {(7T) = {1}, (1) or {p).

If £(T) = {1} or (1), we are in the previous case T < (41, 02, ¢, 7). We are left with £(T) = {p),
T < {61,62,¢,p),50T = {¢*,¢"pd), 6 € D, § # 1 since T is abelian and not contained in (¢, p, 7). It
follows that T < (¢, pd). Moreover, since {(p) acts transitively on {d1, 52,53} and [p, ¢] = 1, we may
assume

case4: T = (¢, pd2) only for Dy4.
We use the same procedure used to deal with the odd n case. It is convenient to start with Gy = D,(q) =

PQ}(q) = PSLy(q) x PSLa(q).
We have
0
ny = (_0
0

Note that ny = mn;m and nyny = npng. If

—_

SoOoO—
[=l=lw]

1

o oo
o oo
oxroo
Sx o oo

is a diagonal matrix in CO4(q)°, then a1 (g) = %, ar(g) = % We define 61, 65, 3. Let
1000
m=(d4t¢)
0001

in CO4(g)°. Then a; (hy) = 7', @z (hy) = 1. We write for short &, — h(y;) € H, where y; = (171, 1)
is the F,-character of Q with yi(a1) = A7 xi(az) = 1. We define §; := h(y1)Go. Moreover,
2 =xio7T= (127", hy = hi, hy — h(x2) € H, 65 := h(x2)Go; finally, h3 := hihy, and hence,
hy = h(x3), x3 = x1+x2 = (17,271, 63 := h(x3)Go, 50 65 = 6162.

Let
p-1
LE AT A
_ _ |- | 0o a7 0 o
xi=nmhi=|%50071)Y=l 5 ‘0 1 0
00-10 p-l
0 02

Then x1, y are in CO4(q)° with

p-1

n() =n(h) = A, p(y) =27y~ xlPly = 2% % y7 =y,
We take x; := x{ = nahy, Then

_ ot
nlx2) =n(h) =4,y 1x2[p]y =A7 x3, X1X2 = X2X1.

We put x3 := x1x2. We have x] = x3, n(x3) = A2. Since ny, ny are in Q7 (q), x; induces 6; fori =1,2,3.
However, we have y — h(y), v = (A%,A%), so y induces d3 if p = —1 mod 4 and the identity if
p =1 mod 4.

We are in a position to deal with the 3 cases for D5:
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Case 1: T = (61, 62) X (¢). From the above discussion, we have

_ -1 [pl, _ 2t -1.0pl, _ Bt .
X1X2 =X2X1, Y X, y=A17Zx1, Yy Xy y=A47 xp;

hence,
T = (x1,x0,¥)Z/Z

is a T-abelian supplement.
Case 2: T = (63) X (¢) X (7). We have

X =xs, y =y, yxPly=arly
hence,

T=(x3,¢y.7)Z/Z

is a T-abelian supplement.

Case 3: T = (101, ¢). We have
Y=y, yalPly = 3y
hence,
T = (tx1,¢y)Z|Z

is a T-abelian supplement. Note that y induces the identity if p = 1 mod 4 and 63 if p = —1 mod 4, but

_ 2
x3 = (Tx1)~.
We now deal with Gy = D,,(g), neven,n=2m,n > 4. Letc; =a;,i=1,...,n—2, and
Cn-1=p-1 = (@1 +az+- - +@p3), cp=ap— (a1 +a3+ - +a,3).
Then %cn,l, %cn are in P, and so (cy,...,cy) is a Z-basis of Q and (cy,...,cCn2, %cn,l, %cn) is a

Z-basisof P.If y : O — F; is a character, then y can be extended to a character of P if and only if

x(cn-1) and y(c,) are in (]F;)2.
We define the characters yrq, Yo, 3 : Q — Fi; As usual, A is a generator of ]Fz; ‘We have

l//l(a',i): 17 i = 1,...,7/1—2, l//l(a'n—l):/l7 w1(an): 1a

hence, ¥(cp-1) = A, ¥1(cy) = 1. Then we put ¥ = ¢y o7, s0 Ya(cy—1) = 1, ¥2(cy) = A, and
Y3 = Y1 + 2, 0 Y3(cn-1) = Y3(cn) = A Finally 61 := h(y1)Go, 62 := h(¥2)Go, 63 := h(¥3)Go;
hence, 63 = 66,. Each §; induces the corresponding diagonal automorphism of D, (g) relative to @,
a;, (denoted above with the same symbols).

LetU = {ey,...,en2, f1,..., fu2). Then IF%I" is the orthogonal direct sum ]P'(ZI" =Uo UL, Ut =
{€n-1>€ns fu-1, fn), with dimU = 2n — 4 = 4(m — 1). Moreover, U is the direct orthogonal sum of
subspaces of dimension 4:

Ui ={e1, ez, fi, f2)s ..., Un—1 = {en=3, en-2, fu-3, fa-2).
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To define an isometry or more generally an orthogonal similitude of IF?]", we give matrices X; € CO4(q)°,
n(X;)=p,i=1,...,m—1,X € CO4(q)°, n(X) = u and define Y in GL,,(g) by

Y=Xio---&X,-19X.

Then Y € CO2,(q)°, with n(Y) = p. If Y € CO,,(q)° fixes U+, then it fixes U, and if we write
Y=XoZ, with X € CO4(q)°, Z € CO2,-4(q)°, and consider the action of ¢ and 7, we get

ylrl = xlpr] @Z[P], Y'=X"aZ

since 7 acts on the basis (e1, ..., e, f1,- .., fn) just switching e, and f, (here, Y™ = 7,Y7,, XT =
T2XT2).

We shall proceed as follows. Assume 7 is an abelian subgroup of Out(Gy), G of type D, (T <
(61,62, ¢,7) if Go = D4(q)). We consider the analogous subgroup 7 of Out(D;(q)). From the D,
case, we have an abelian subgroup of Aut(D,(g)) given by explicit matrices in CO4(q)°. For each such
matrix X, we define matrices X; € CO4(g)°andY = X1 & --- & X; & X in CO»,,(q)° (m — 1 copies of
X1). We shall then obtain a T-abelian supplement 7" in Aut(Gy).

Recall the matrices a(u), b(u, v) in CO4(q)° defined in (10.5), (10.6) and the matrices x;, x3, X3,
y € CO4(q)° defined to deal with D,. We have

_ -1 [pl, _ 2t -1 [pl, _ 2t
X|X2 =XoX1, Y X y=A472x, Yy X, y=47 x3,

n(x1) =n(x2) = A, n(y) = 277!, and also
x3=x3, Yy =), y‘lxg[”]y =271y, p(x3) = A%

Wetake u =4, v = AP~ 1 that is,

01200
-10 00

a=a=| "y o o 1 |Ex0 n@ =2,
00-20

2P 0 0
0 1 0 0
0 0P g
0 0 o0 ar!

b=b(a,a"7") = ,n(b) = a7,
sob~lalPlp = 22(P=Dg. We put

Al=a® - ®ad®x, A=A =a® - ©adx,B=00---®b®y.
| —— | — | —
m-—1 m-—1 m-—1

Then Ay, Ay, B € CO2,(q)°, (A1) =n(Az) = A, 7(B) = AP~ and
A1Ar = AAy, BT'APIB =3 D4, BlAlPIB = 20 g,
If, moreover, A3 = A A,, then
AT =As, B"=B, B'alPlp=ara,,

and (A3) = 2%, Also, (tA)? = ATA| = A2A| = As.
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Fory = /1%“’_1), we have

(@B)ict.n=ry vy Ly v vy,
~—— —————
n—4

and
cn_i(B) = cp(B) = y*™ = 22(P=D(2=m)

so B induces 63 if m is odd and p = —1 mod 4, and the identity otherwise.
For u € ]FZ;, let

100 0 1000 1000
{oxo 0 |lo100]| |OpoOO ~
000u'/\OOO u 0001
IfH(p) = h(p) @ - & h(p) in CO2,(q)°, then
—————
m

(@i (H))izt,on = (o™ 1),
—_—
n-2

Coot(H(w)) = ™2, cp(H(u) = p™ ",
Note that A; induces the same diagonal automorphism in Out(G) as H(A) since A|H(1)™' € N.

Therefore, A; induces 67 if m is odd, and &, if m is even. Hence, A, induces 0, if m is odd, & if m is
even. It follows that A3 induces 3.

Case 1: T = (6,,6) X (¢). In the D, (g) case, we took
T = (x1,x2, $y)Z(C04(9)°)/Z(CO4(q)°).
Then
T = (A1, A2, $B)Z(CO2,(9)°)/ Z(CO24(9)°)

is a T-abelian supplement in Aut(Gy).

Case 2: T = (63) x (¢) x (1). In the D1»(q) case, we took T = {x3, ¢y, T)Z/Z. Then
T =(As,¢B,7)Z/Z

is a T-abelian supplement in Aut(Gy).

Case 3: T = (161, ¢). In the D, (q) case we took T = (1x|, ¢y)Z/Z. Then
T =(tA,¢B)Z/Z
is a T-abelian supplement in Aut(Gy).
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We finally deal with the last case.
Case 4: T = (¢, pd2), only for D4(g). We have defined the matrices A}, B in CO5,(g)°: in the case

n = 4, they are
pr-1
A2 00 0 0 00 0
01000000 o010 0 0 00 O
-10 000000 0o oar! o 0 00 0
000120000 pol
Ar=| 00-100000| gp—| 0 00 22 0 00 0
1=l oooo0oo0100(|>P~ p-l
0000-1000 0 0 0 A7 00 0
00000001 000 0 0 arlo 0
000000-20 000 0 0 01
r-1
000 0 0 0 04z
We have
03000000)/10000000
00100000 [[01000000
00020000 [[00100000
Ay =nn3| 00001000 88862888 =mnm3H().
00000700 01000001200
00000010 ]\00000020
00000004/'000000021

In P(CO3(q)°) = GoH, we obtain the elements
Ay = mnsh(é1) € GoH , B h(é) € H,
where ¢ is the F,-character of Q
a) /lfl,afz - A,a3 > /1*1,04 — 1.

In particular, c3 = 1, c4 = A so that nyn3h(£1) induces 6 in Out G, while ¢ is the F,-character of Q

p-l 1- p-t p-t
A7 ,ap— A p,a’3i—>/12 ,ag > A7

In particular, c3 — 1, ¢4 — 1, so & can be extended to a character of P; hence, h(¢) € H. From
B‘lAE'?]B = /l%(p‘l)Al, we get [ph(&),ninsh(£1)] = 1. Moreover, h(£)P = h(£); hence,

T = (ph(£), pninzh(&)))

is a T-abelian supplement in Aut(Gy).
We have proved the following.

Theorem 26. Let G be an almost simple group with socle Gy = D,,(q), n even. If G /G is abelian, then
there exists an abelian subgroup A such that G = AG.

This completes the proof of Theorem 1.

12. Proof of Corollary 2

In the following, we will denote by F(G) and F*(G), respectively, the Fitting subgroup and the
generalized Fitting subgroup of G.

Proof of Corollary 2. Notice that F(G) = 1 implies N = soc(G) = F*(G). Let H = {a,b,N). If
M is a minimal normal subgroup of H, then either M < N or M N N = 1. However, in the second
case, we would have M < Cg(N) = Cg(F*(G)) = Z(F*(G)) = 1, a contradiction. This implies
N =soc(H) = F*(H), and therefore, it is not restrictive to assume G = {(a, b, N).
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We decompose N = Ny X --- X N, as a product of minimal normal subgroups of G. For 1 <i < ¢,
we denote by & : G — Aut(N;) the map induced by the conjugation action of G on N;. The map

£ 1 G — [lici<s Aut(N;) which sends g to (g%',...,g%), is an injective homomorphism since
keré = Nici<t Co(N;) = Cg(N) = 1. If t # 1, then by induction, there exist n;,m; € N; such
that [(an;)%, (bm;)%] = 1. But then, setting n = (ny,...,n;) and m = (my,...,m;), we have that

[(an)¢, (bm)¢] = 1, and consequently, since & is injective, [an, bm] = 1.

Hence, it is not restrictive to assume that N is a minimal normal subgroup of G = {(a, b, N). Write N =
S1x---xS,, where Sy, ..., S, are isomorphic non-abelian simple groups, and let X = NG (S1)/Cs(S1).
We may identify G with a subgroup of X ¢ Sym(u), so a = xo, b = y7, with x,y € X* and (o, 7) is an
abelian regular subgroup of Sym(u). Notice that

X _ Ng(851)/Cs(S1) _ Ng(S)
S1 - $1C6($1)/Ca(S1) ~ $1C(S1)”

Since S;C(S1) = N, it follows that X /S is isomorphic to a section of G/N. Since G /N is an abelian
group, X /S is abelian, and therefore by Theorem 1, there exists an abelian subgroup Y of X such that
X =YS§;. Then it is not restrictive to assume {(a,b) < Y (o, 7). Let K = {(a,b) and Z =Y N §;. The
group KZ" /Z* is abelian, and we have reduced our problem to finding n, m € Z" such that (xno, ymt)
is abelian. We have

[xno, ymt] = [xno, 7] [xno, ym]T = [xn, 7] [0, ] [xn, ym] 7" [0, ym] T

= [xn,7]7 [0, ym] " = [x,7]7 [0, y]" [n, 7] 7 [0, m] .
Since [n,7]7 [o,m]™ = [n7,7][0o,m"], we are looking for n, m € Z" such that
[x,7]17 [0, ¥]" = [xor, y7] = [T, n7 ][m", o]
Notice that [xo, y7] = (z1,...,24) € Z%, with 2122+ - -2, = 1. Let
AN={(z1,....20) €Z" | z1z2 - - - 70 = 1}.

In order to conclude our proof, it suffices to prove that for every (z, ..., z,) € A, there exist 71, m € Z*
such that (z1,...,2,) = [7,7][m, o].

Since (o, 7) is a regular subgroup of Sym(u), o = o7 - - - 0 is the product of r disjoint cycles of
the same length s, with rs = u. First, assume r = 1. In that case, for every 4 € A, there exists m € Z*
such that [, o] = 4, and our conclusion follows by taking 77 = 1. Finally, assume r # 1. In this case,
T =171 ---Ty is the product of w disjoint cycles of the same length, and 7 must permute cyclically the
orbits X, ..., %, of 0. It is not restrictive to assume that i € ¥; for 1 < i < r and that 7;(j) = j + 1 for
1 < j < r—1.Notice that [Z*, o] consists of the elements (k, . .., k,) € Z" with the property that, for
any 1 <i <71, [[yes, ko = 1. Given A € A, we may choose i so that A[m, o] = (vq,...,v,) € Z%
with vi---v, = 1 and v; = 1if j > r. But then we may find i = (wy,...,w,,1,...,1) so that
[7,7] = [11,7] = (vi,...,Vv,), and therefore, A = [1, 7] [, o7]. O
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