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Abstract
The article considers systems of interacting particles on networks with adaptively coupled dynamics. Such processes
appear frequently in natural processes and applications. Relying on the notion of graph convergence, we prove that
for large systems the dynamics can be approximated by the corresponding continuum limit. Well-posedness of the
latter is also established.

1. Introduction

Models of collectively interacting particles play a crucial role in many branches of the natural sci-
ences including biological systems, industrial processes and social activities [8, 9, 20, 33, 35]. Many of
these real-world examples exhibit an underlying network structure, and consequently, there has been an
increasing interest during the last years in corresponding mathematical models both for deterministic
and stochastic situations [2–4, 7, 11, 13–15, 23, 28, 30–32, 35]. In the case of finite systems, i.e. where
finitely many particles interact, this typically leads to a large system of coupled ordinary differential
equations (ODEs):

φ̇k = 1

N

N∑
�=1

κk�g(φk, φ�) with k = 1, . . . , N. (1)

Here φk(t) describes the state of the k’s particle at time t, the function g models the interaction between
two particles and κk� corresponds to the adjacency matrix of the underlying network. More precisely,
each particle is assumed to be located at the node of a graph consisting of N nodes which are labeled
by 1, . . . , N. The quantity κk� denotes the weight of the edge between the nodes k and �. One of
the most prominent examples is the classical Kuramoto model where g(φk, φ�) = sin (φ� − φk) and
κk� ≡ κ [25].

In many applications, the number N of involved particles is so large that the evolution of the whole
system is not tractable. Instead, one is interested in continuous limiting descriptions when N → ∞
and, for systems without a network structure, i.e. κk� ≡ const, there is a well established theory avail-
able [18]. Moreover, in recent years, based on the notion of graph convergence, it has been possible to
extend these methods to situations with an underlying network [21, 22, 24, 29]. More precisely, assum-
ing that the (stationary) graph structure has for N → ∞ a suitable limiting graphon, corresponding
continuum and mean-field models have been derived. One advantage of this approach is that these
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2 S. Throm

continuous limit models are often easier to analyse analytically than their discrete counterparts and
thus simplifies the study of, e.g. synchronisation phenomena, phase transitions and pattern formation
[1, 10, 16, 24, 29, 34].

1.1 Coupled oscillators on adaptive networks

However, for many systems, the network structure is not fixed, but instead, it evolves in time while
this evolution is often also coupled to the particle dynamics. A special case is given by the following
adaptively coupled Kuramoto model considered in [5]:

φ̇k =ω− 1

N

N∑
�=1

κk� sin (φ� − φk + α) , t> 0

κ̇k� = −ε (sin (φk − φ� + β) + κk�)

(2)

with k, �= 1, . . . , N and phase parameters α ∈ [0, π/2) and β ∈ [−π , π ). Moreover, in [19], the
synchronisation of oscillators following the slightly generalised model

φ̇k = 1

N

N∑
�=1

κk� sin (φ� − φk)+ωk, t> 0 (3)

κ̇k� = 
(φ� − φk) − γ κk�.

with suitable initial data φk(0) and κk�(0) has been considered where 1 ≤ k, �≤ N, ωk is the natural
frequency of the k’s oscillator, γ is a non-negative constant and 
 is a 2π periodic function satisfying

(−φ) = 
(φ) for φ ∈R. By means of Duhamel’s formula, one can solve the second equation explicitly
which yields κk�(t) = κk�(0)e−γ t + ∫ t

0

(φ�(s) − φk(s))e−γ (t−s)ds. Plugging this expression back into the

first equation reduces the problem again to an equation with a stationary network up to an additional
time integration. In [17], the continuum limit has been derived for this kind of graph dynamics.

1.2 A generalised model

In this work, we will consider the following generalised model where the evolution of κk� does not only
depend on its current state and the dynamics of φk and φ�, but instead, it might be influenced by the
whole system. Moreover, we allow each edge/weight of the network to follow its own dynamics. In fact,
we will study the model

φ̇k = 1

N

N∑
�=1

κk�g (t, φk, φ�)+ fk(t, φ), t> 0 (4)

κ̇k� =�k�(t, κ , φ).

with 1 ≤ k, �≤ N and continuous functions fk : [0, ∞) × (Rd)N →R
d, g : [0, ∞) × (Rd)2 →R

d and
�k� : [0, ∞) ×R

N×N × (Rd)N →R whose properties will be specified more closely later and φ =
(φ1, . . . , φN) as well as κ = (κk�)N

k,�=1.

1.3 Assumptions and main result

In order to derive the continuum limit, we rely on the notion of graphons and corresponding graph
convergence ([6, 26, 27]) following the same approach developed, e.g. in [29] which has also been
exploited in [2]. For this aim, we parametrise the discrete system and the underlying graph over the sets
I = [0, 1) and I × I = [0, 1) × [0, 1) respectively. Precisely, denoting Ik = [(k − 1)/N, k/N) we set
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uN(t, x) :=
N∑

k=1

φk(t)χIk (x) (5)

KN(t, x, y) :=
N∑

k,�=1

κk�(t)χIk (x)χI� (y)

where χIk is the characteristic function of Ik. We note that throughout this work, a graphon is a measur-
able, bounded and symmetric function W : I2 →R (see also [12]) and (5) thus provides a representation
of the family of graphs κk� (indexed by the time t) by means of a corresponding family of graphons.
Moreover, given � : [0, ∞) × I × I × L∞(I × I, R) × L∞(I, Rd) →R and f : [0, ∞) × I × L∞(I, Rd) →
R

d satisfying the properties (8) and (9) below, we can reconstruct a corresponding discrete system via

�k�(t, κ , φ) := N2

∫
Ik×I�

�(t, x, y, KN(t, ·, ·), uN(t, ·))dxdy

fk(t, φ) := N
∫

Ik

f (t, x, uN(t, ·))dx.

(6)

With this notation, (4) can be rewritten as the following integral equation

∂tu
N(t, x) =

∫
I

KN(t, x, y)g(t, uN(t, x), uN(t, y))dy + N
∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , uN(t, ·))dξ

∂tK
N(t, x, y) = N2

∫ (�Nx	+1)/N

�Nx	/N

∫ (�Ny	+1)/N

�Ny	/N
�(t, ξ , η, KN(t, ·, ·), uN(t, ·))dξdη. (7)

We assume that � : [0, ∞) × I × I × L∞(I × I, R) × L∞(I, Rd) →R is continuous and satisfies

‖�(t, ·, ·, K1, u1) −�(t, ·, ·, K2, u2)‖L2(I2) ≤ L�
(‖K1 − K2‖L2(I2) + ‖u1 − u2‖L2(I)

)
|�(t, x, y, K, u)| ≤ B�(1 + ‖K‖L∞(I2)).

(8)

Moreover, we assume that g : [0, T] × (Rd)2 →R
d and f : [0, T] × I × L∞(I, Rd) →R

d are continuous
and satisfy the following estimates for all ξ , ξ1, ξ2, η, η1, η2 ∈R

d and u, u1, u2 ∈ L∞(I, Rd) uniformly in t:

|f (t, ·, u)| ≤ Bf (1 + ‖u‖L∞ ) and ‖f (t, ·, u1) − f (t, ·, u2)‖L2(I) ≤ Lf ‖u1 − u2‖L2(I)

|g(t, ξ , η| ≤ Bg and |g(t, ξ1, η1) − g(t, ξ2, η2)| ≤ Lg(|ξ1 − ξ2| + |η1 − η2|).
(9)

Our main result in this work is the following theorem which states that in the limit of infinitely many
particles, the discrete system (4) can be approximated by the integro-differential equation (10).

Theorem 1.1. Let f , g : [0, T] ×R
d →R

d satisfy (9) and let � : [0, ∞) × I × I × L∞(I × I, R) ×
L∞(I, Rd) →R satisfy (8). Assume that KN(0, ·, ·) has a limiting graphon W with respect to ‖·‖L2 which is
uniformly bounded, i.e. limN→∞ ‖KN(0, ·, ·) − W‖L2(I×I) = 0 and ‖W‖L∞(I×I) <∞. Then, as N → ∞, the
parametrisation (uN , KN) given in (7) which corresponds to the discrete system (4) with (6) converges to
its continuum limit (u, K), i.e. the unique solution of

∂tu(t, x) =
∫

I

K(t, x, y)g(t, u(t, x), u(t, y))dy + f (t, x, u(t, ·))

∂tK(t, x, y) =�(t, x, y, K(t, ·, ·), u(t, ·))
(10)

with K(0, ·, ·) = W provided that the initial value uN(0, ·) converges to u0 = u(0, ·) with respect to ‖·‖L2 ,
i.e. limN→∞ ‖uN(0, ·) − u(0, ·)‖L2(I) = 0. More precisely, we have

lim
N→∞

sup
t∈[0,T]

(
‖uN − u‖2

L2(I) + ‖KN(t, ·, ·) − K(t, ·, ·)‖2
L2

)
= 0.
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We note that Theorem 1.1 is restricted to the case of a dense initial graph and assumes L2 convergence
of the latter towards a limiting graphon W which is a stronger notion than the one given via the cut-
norm ‖W‖� := maxA,B⊂I|

∫
A×B

W(x, y)dxdy| and the corresponding cut-distance (we refer to, e.g. [26]
for details). Similar restrictions are present in related works [17, 29] while we also note that for a con-
tinuous graphon W, if we construct a corresponding sequence of discrete graphs κN

k� in analogy to (6), i.e.
κk� = W(k/N, �/N), then actually KN(0, ·, ·) → W in L2(I2) (e.g. [24, 29]).

1.4 Relation to previous results

Theorem 1.1 provides the continuum limit for a rather general class of adaptively coupled network
dynamics. In particular, it contains as a special case the following system modelling opinion dynamics
with time varying weights which has been considered in [2]:

φ̇k = 1

N

N∑
�=1

m�(t)ψ(φ� − φk)

ṁk =�k(φ, m)

k = 1, . . . , N. (11)

Here the opinions are described by φ = (φk)N
k=1 : [0, T] → (Rd)N while the weights are given by

m = (mk)N
k=1 : [0, T] →R

N . In fact, for κk� = m� for all k = 1, . . . , N, g(t, φk, φ�) =ψ(φ� − φk) and
�k�(t, κ , φ) =�k(φ, κ1·) this model is a special case of (4). Moreover, Theorem 1.1 generalises the class
of graph dynamics considered in [17].

1.5 Outline

The remainder of the article is structured as follows. In the next section, we will provide the well-
posedness of the continuous system (10). The proof relies essentially on an application of the contraction
mapping theorem but due to the relatively weak Lipschitz continuity of f and � some special care
is needed. The proof of well-posedness for (4) follows in the same way and will thus be omitted. In
Section 3, we will then provide the proof of Theorem 1.1.

2. Well-posedness

We have the following result on the well-posedness of the discrete system (4).

Proposition 2.1. Let N ∈N, T > 0 and let g : [0, T] × (Rd)2 →R
d satisfy (9). Assume that fk : [0, T] ×

(Rd)N →R
d satisfies

|fk(t, φ)| ≤ Bf (1 + |φ|) and |fk(t, φ) − fk(t,ψ)| ≤ Lf |φ −ψ |
for all φ,ψ ∈ (Rd)N . Moreover, assume that �k� : [0, ∞) ×R

N×N × (Rd)N →R is uniformly Lipschitz
continuous with respect to the second and third component, i.e. |�k�(t, κ , φ) −�k�(t, λ,ψ)| ≤
L�(|κ − λ| + |φ −ψ |) and satisfies the bound |�k�(t, κ , φ)| ≤ B�(1 + |κ|) for all k, � ∈ {1, . . . , N} uni-
formly with respect to t. Then for each initial condition (φ0, κ0) ∈ (Rd)N ×R

N×N the system (4) has a
unique solution (φ, κ) on [0, T].

We note that Rd, (Rd)N and R
N×N are equipped with the usual Euclidean norm which, by abuse of

notation, will be denoted in all cases by |·|.
Proposition 2.1 can be proved similarly as Proposition 2.3 dealing with the continuous system (10).

We thus omit the proof of Proposition 2.1. However, we state the following lemma which guarantees
that the functions defined in (6) satisfy the assumptions in Proposition 2.1.

Lemma 2.2. Let N ∈N fixed and let f be as in (9) and � as in (8). Then �k� and fk as defined in (6)
satisfy the assumptions of Proposition 2.1.
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Proof. According to (6) and (9), we have together with Ik ∩ I� = ∅ for k �= � that

N∑
k=1

|fk(t, φ)|2 = N2

N∑
k=1

∣∣∣∣
∫

Ik

f
(
t, x,

∑N
�=1φ�χI� (·)

)
dx

∣∣∣∣
2

≤ B2
f N
(

1 +
∣∣∣ N∑
�=1

φ�χI� (·)
∣∣∣

L∞

)2

= B2
f N
(
1 + max

�∈{1...N}
|φ�|

)2 ≤ B2
f N
(

1 +
( N∑
�=1

|φ�|2
)1/2)2 ≤ B2

f N
(

1 + |φ|
)2

.

Similarly, using additionally Cauchy’s inequality we find

N∑
k=1

|fk(t, φ) − fk(t,ψ)|2 = N2

N∑
k=1

∣∣∫
Ik

f
(
t, x,

∑N
�=1φ�χI� (·)

)− f
(
t, x,

∑N
�=1ψ�χI� (·)

)
dx
∣∣2

≤ N
N∑

k=1

∫
Ik

∣∣f (t, x,
∑N

�=1φ�χI�(·)
)− f

(
t, x,

∑N
�=1ψ�χI� (·)

)∣∣2dx

= N
∣∣∣f (t, ·,∑N

�=1φ�χI� (·)
)− f

(
t, ·,∑N

�=1ψ�χI� (·)
)∣∣∣2

L2(I)
≤ NL2

f ‖
∑N

�=1(φ� −ψ�)χI� (·))
2

L2(I)

= L2
f |φ −ψ |2.

In the same way, we get

N∑
k,�=1

|�k�(t, κ , φ)|2 = N4

N∑
k,�=1

∣∣∫
Ik×I�

�
(
t, x, y,

∑N
m,n=1κmnχIm×In (·),∑N

m=1φmχIm (·))∣∣2

≤ B2
�

N2
(

1 +
∣∣∣ N∑

m,n=1

κmnχIm×In (·)
∣∣∣

L∞(I2)

)2 ≤ B2
�

N2
(

1 + |κ|
)2

.

Finally,
∑N

k,�=1
|�k�(t, κ , φ) −�k�(t, λ,ψ)|2

= N4
∑N

k,�=1

∣∣∣∣
∫

Ik×I�

�
(
t, x, y,

∑N

m,n=1
κmnχIm×In (·),

∑N

m=1
φmχIm (·))

−�(t, x, y,
∑N

m,n=1
λmnχIm×In (·),

∑N

m=1
ψmχIm (·))dxdy

∣∣∣∣
2

≤ N2
∑N

k,�=1

∫
Ik×I�

∣∣�(t, x, y,
∑N

m,n=1
κmnχIm×In (·),

∑N

m=1
φmχIm (·))

−�(t, x, y,
∑N

m,n=1
λmnχIm×In (·),

∑N

m=1
ψmχIm (·))∣∣2dxdy

= N2
∥∥�(t, x, y,

∑N

m,n=1
κmnχIm×In (·),

∑N

m=1
φmχIm (·))

−�(t, x, y,
∑N

m,n=1
λmnχIm×In (·),

∑N

m=1
ψmχIm (·))∥∥2

L2(I2)

≤ N2L2
�

(∣∣∑N

m,n=1
(κmn − λmn)χIm×In (·))∣∣

L2(I2)
+ ∣∣∑N

m=1
(φm −ψm)χIm (·))∣∣

L2(I)

)2

= L2
�

(
|κ − λ| + N1/2|φ −ψ |

)2

.
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The following proposition guarantees the existence of a unique solution to the continuum limit
equation (10).

Proposition 2.3. Let T > 0 and assume that f : [0, T] × I × L∞(I, Rd) →R
d and g : [0, T] × (Rd)2 →

R
d satisfy (9). Moreover, assume that � : [0, ∞) × I × I × L2(I × I, R) × L2(I, Rd) →R satisfies (8).

Then for each initial condition (u0, K0) ∈ L∞(I, Rd) × L∞(I2, R) the system (10) has a unique solution
(u, K) ∈ C1([0, T], L∞(I, Rd)) × C1([0, T], L∞(I2, R)).

The claim will follow from the contraction mapping theorem. Due to the properties in (8), we
can only obtain a contractive operator with respect to ‖·‖L2 . However, by following the proof of the
contraction mapping theorem and tracking the iterating sequence, we obtain in fact the existence
of a unique solution in L∞. A similar argument has been used in [2] relying on a two-step proce-
dure, while here, we proceed in one step. For (ut0 , Kt0 ) ∈ L∞(I, Rd) × L∞(I2, R) we define the operator
A := (A1, A2) : C([t0, T], L∞(I)) × C([t0, T], L∞(I2)) → C([t0, T], L∞(I)) × C([t0, T], L∞(I2)) related to
the system (10) via:

A1[u, K](t, x) := ut0 (x) +
∫ t

t0

∫
I

K(s, x, y)g(s, u(s, x), u(s, y))dyds +
∫ t

t0

f (s, x, u(s, ·))ds

A2[u, K](t, x, y) := Kt0 (x, y) +
∫ t

t0

�(s, x, y, K(s, ·, ·), u(s, ·))ds.

(12)

Lemma 2.4. The operator

A : C([t0, T], L∞(I)) × C([t0, T], L∞(I2)) −→ C([t0, T], L∞(I)) × C([t0, T], L∞(I2))

is well defined.

Proof. By definition A[u, K] is continuous in time. Thus, to show that A is well defined, it suffices to
show the boundedness. For (u, K) ∈ C([t0, T], L∞(I)) × C([t0, T], L∞(I2)), we can estimate A1 as

‖A1[u, K](t, ·)‖L∞(I) ≤ ‖ut0‖L∞(I) + Bg

∫ t

t0

‖K(s, ·, ·)‖L∞(I2)ds + Bf

∫ t

t0

(1 + ‖u(s, ·)‖L∞(I))ds

≤ ‖ut0‖L∞(I) +
(

Bg‖K‖C([t0,T],L∞) + Bf (1 + ‖u‖C([t0,T],L∞))
)

(t − t0). (13)

Thus,

‖A1[u, K]‖C([t0,T],L∞(I)) ≤ ‖ut0‖L∞(I) +
(

Bg‖K‖C([t0,T],L∞) + Bf (1 + ‖u‖C([t0,T],L∞))
)

(T − t0).

Moreover, for A2 we have

‖A2[u, K](t, ·)‖L∞(I2) ≤ ‖Kt0‖L∞(I2) + B�

∫ t

t0

(1 + ‖K(s, ·, ·)‖L∞ )ds

≤ ‖Kt0‖L∞(I2) + B�

(
1 + ‖K‖C([t0,T],L∞)

)
(t − t0).

Thus,

‖A2[u, K]‖C([t0,T],L∞(I2)) ≤ ‖Kt0‖L∞(I2) + B�

(
1 + ‖K‖C([t0,T],L∞)

)
(T − t0).

Lemma 2.4 allows to define the sequence (vn, Jn)n∈N ⊂ C([t0, T], L∞(I)) × C([t0, T], L∞(I2)) via

(vn, Jn) := An[ut0 , Kt0 ] (14)
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where An denotes the n-th iterate of the operator A. We have the following uniform bounds on
(vn, Jn)n∈N.

Lemma 2.5. Let � satisfy (8) and let ut0 ∈ L∞(I, Rd) and Kt0 ∈ L∞(I2) such that 1 + ‖Kt0‖L∞ ≤ (1 +
‖K0‖L∞ )eB� t0 . Then the sequence (vn, Jn)n∈N defined in (14) satisfies

‖Jn(t, ·, ·)‖L∞(I2) ≤ (1 + ‖Kt0‖L∞ )eB�(t−t0) − 1 ≤ (1 + ‖K0L∞ )eB� t − 1

‖vn(t, ·)‖L∞(I) ≤ (1 + ‖ut0‖L∞ )eBf (t−t0) + Bg

B� − Bf

(1 + ‖Kt0‖L∞ )
(
eB�(t−t0) − eBf (t−t0)

)− 1

for all n ∈N0. In particular, we have

‖Jn‖C([t0,T],L∞(I2)) ≤ (1 + ‖K0‖L∞ )eB�T

‖vn(t, ·)‖C([t0,T],L∞(I)) ≤ (1 + ‖ut0‖L∞ )eBf (T−t0) + Bg(1 + ‖Kt0‖L∞ )

B� − Bf

(
eB�(T−t0) − eBf (T−t0)

)− 1.

Remark 2.6. Note that the estimate on vn makes sense and is also valid in the limiting case B� − Bf = 0
when it reduces to

‖vn(t, ·)‖L∞(I) ≤ (1 + ‖ut0‖L∞ )eBf (t−t0) + Bg(1 + ‖Kt0‖L∞ )(t − t0) − 1.

Proof of Lemma 2.5. The bound on Jn is a direct consequence of the following estimate which we obtain
by induction:

1 + ‖(An[ut0 , Kt0 ])2(t, ·, ·)‖L∞ ≤
( n∑
�=0

B�
�

�! (t − t0)
�

)(
1 + ‖Kt0‖L∞

)
. (15)

Similarly, it follows by induction that

1 + ‖(An[ut0 , Kt0 ])1(t, ·)‖L∞ ≤ (1 + ‖ut0‖L∞ )
n∑
�=0

B�
f

�! (t − t0)
�

+ Bg

B�

(1 + ‖Kt0‖L∞ )
n−1∑
k=0

( Bf

B�

)k
n∑

�=1+k

B�
�

�! (t − t0)� − Bg

Bf

n∑
�=1

B�
f

�! (t − t0)
� (16)

with
∑−1

k=0 ( · · · ) := 0 = :
∑0

�=1 ( · · · ). Moreover, we note that

n−1∑
k=0

( Bf

B�

)k
n∑

�=1+k

B�
�

�! (t − t0)
� =

n∑
�=1

�−1∑
k=0

( Bf

B�

)k B�
�

�! (t − t0)
� = B�

B� − Bf

n∑
�=1

B�
�

− B�
f

�! (t − t0)
�.

Together with (16) we thus get

1 + ‖vn(t, ·)‖L∞

≤ (1 + ‖ut0‖L∞ )
n∑
�=0

B�
f

�! (t − t0)
� + Bg

B� − Bf

(1 + ‖Kt0‖L∞ )
n∑
�=1

B�
�

− B�
f

�! (t − t0)� − Bg

Bf

n∑
�=1

B�
f

�! (t − t0)
�

which finishes the proof �
The next lemma shows that the operator is contractive with respect to the L2 norm.

Lemma 2.7. Let K0 ∈ L∞(I2) and t0 ∈ [0, T) and assume (8) and (9). For

0< T∗ ≤ 1

2(25/2Lg(1 + ‖K0‖L∞(I2))eB�T + Lf + √
2Bg + L�)
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the operator A is contractive on the set SK0 := {(u, K) ∈ C([t0, t0 + T∗], L∞(I) × L∞(I2)) | 1 +
‖K(t, ·, ·)‖C([t0,t0+T∗],L∞(I2)) ≤ (1 + ‖K0‖L∞(I2))eB�T} with respect to ‖·‖C([t0,t0+T∗],L2(I)×L2(I2)) for each t0 < T as
long as t0 + T∗ ≤ T . More precisely, under these conditions we have

‖A[u1, K1] −A[u2, K2]‖C([t0,t0+T∗],L2(I)×L2(I2))

≤ 1

2

(
‖u1 − u2‖C([t0,t0+T∗],L2(I)) + ‖K1 − K2‖C([t0,t0+T∗],L2(I2))

)
.

Proof. Let (u1, K1), (u2, K2) ∈ SK0 . For A2, we get together with Cauchy’s inequality and Fubini’s
Theorem that

‖A2[u1, K1](t, ·, ·) −A2[u2, K2](t, ·, ·)‖L2(I2)

=
(∫

I2

(∫ t

t0

�(s, x, y, K1(s, ·, ·), u1(s, ·)) −�(s, x, y, K2(s, ·, ·), u2(s, ·))ds

)2

dxdy

)1/2

≤
(∫

I2

(t − t0)
∫ t

t0

∣∣�(s, x, y, K1(s, ·, ·), u1(s, ·)) −�(s, x, y, K2(s, ·, ·), u2(s, ·))∣∣2dsdxdy

)1/2

= (t − t0)
1/2

(∫ t

t0

‖[
]
�(s, x, y, K1(s, ·, ·), u1(s, ·)) −�(s, x, y, K2(s, ·, ·), u2(s, ·))2

L2(I2)ds

)1/2

.

By means of (8), we deduce

‖A2[u1, K1](t, ·, ·) −A2[u2, K2](t, ·, ·)‖L2(I2)

≤ L�(t − t0)
1/2

(∫ t

t0

(∣∣∣K1(s, ·, ·) − K2(s, ·, ·)
∣∣∣

L2(I2)
+
∣∣∣u1(s, ·) − u2(s, ·)

∣∣∣
L2(I)

)2

ds

)1/2

.

This finally yields

‖A2[u1, K1] −A2[u2, K2]‖C([t0,t0+T∗],L2(I2)) (17)

≤ L�T∗
(∣∣∣K1(s, ·, ·) − K2(s, ·, ·)

∣∣∣
C([t0,t0+T∗],L2(I2))

+
∣∣∣u1(s, ·) − u2(s, ·)

∣∣∣
C([t0,t0+T∗],L2(I))

)
.

For A1, we find similarly by means of Cauchy’s inequality and Fubini’s Theorem together with (9) that

‖A1[u1, K1](t, ·) −A1[u2, K2](t, ·)‖L2(I)

≤
(∫

I

∣∣∣∣
∫ t

t0

∫
I

K1(s, x, y)g(s, u1(s, x), u1(s, y)) − K2(s, x, y)g(s, u2(s, x), u2(s, y))dyds

∣∣∣∣
2

dx

)1/2

+
(∫

I

∣∣∣∣
∫ t

t0

f (s, x, u1(s, ·)) − f (s, x, u2(s, ·))ds

∣∣∣∣
2

dx

)1/2

≤ (t − t0)
1/2

(∫
I

∫ t

t0

∫
I

(
‖K1‖C([t0,t0+T∗],L∞)

∣∣g(s, u1(s, x), u1(s, y)) − g(s, u2(s, x), u2(s, y))
∣∣

+Bg|K1(s, x, y) − K2(s, x, y)|
)2

dydsdx

)1/2

+ Lf (t − t0)
1/2

(∫ t

t0

‖u1(s, ·) − u2(s, ·)‖2
L2(I)ds

)1/2

.
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Using (9) together with Young’s inequality and the properties of SK0 , we further deduce

‖A1[u1, K1](t, ·) −A1[u2, K2](t, ·)‖L2(I)

≤ √
2(t − t0)

1/2

[
Lg(1 + ‖K0‖L∞(I2))e

B�T

(∫
I

∫ t

t0

∫
I

(
|u1(s, y) − u2(s, y)| + |u1(s, x) − u2(s, x)|

)2
)1/2

+Bg

(∫
I

∫ t

t0

∫
I

|K1(s, x, y) − K2(s, x, y)|2dydsdx

)1/2
]

+ Lf (t − t0)
1/2

(∫ t

t0

‖u1(s, ·) − u2(s, ·)‖2
L2(I)ds

)1/2

.

Cauchy’s inequality together with Fubini’s Theorem then implies

‖A1[u1, K1](t, ·) −A1[u2, K2](t, ·)‖L2(I)

≤ √
2(t − t0)

1/2

[
4Lg(1 + ‖K0‖L∞(I2))e

B�T

(∫ t

t0

‖u1(s, ·) − u2(s, ·)‖2
L2(I)ds

)1/2

+Bg

(∫ t

t0

‖K1(s, ·, ·) − K2(s, ·, ·)‖2
L2(I2)ds

)1/2
]

+ Lf (t − t0)
1/2

(∫ t

t0

‖u1(s, ·) − u2(s, ·)‖2
L2(I)ds

)1/2

.

This yields

‖A1[u1, K1] −A1[u2, K2]‖C([t0,t0+T∗],L2(I))

≤ T∗
(

25/2Lg(1 + ‖K0‖L∞(I2))e
B�T + Lf

)
‖u1 − u2‖C([t0,t0+T∗],L2(I))

+ √
2T∗Bg‖K1 − K2‖C([t0,t0+T∗],L2(I2)).

Together with (17) we deduce

‖A[u1, K1] −A[u2, K2]‖C([t0,t0+T∗],L2(I)×L2(I2))

:= ‖A1[u1, K1] −A1[u2, K2]‖C([t0,t0+T∗],L2(I)) + ‖A2[u1, K1] −A2[u2, K2]‖C([t0,t0+T∗],L2(I2))

≤ T∗
(
25/2Lg(1 + ‖K0‖L∞(I2))e

B�T + Lf + √
2Bg + L�

)×
×
(
‖u1 − u2‖C([t0,t0+T∗],L2(I)) + ‖K1 − K2‖C([t0,t0+T∗],L2(I2))

)
.

Thus, for

T∗ ≤ 1

2(25/2Lg(1 + ‖K0‖L∞(I2))eB�T + Lf + √
2Bg + L�)

the claim follows.

Moreover, we have the following a priori estimate on solutions of the system (10).

Lemma 2.8. Assume that f : [0, T] × I × L∞(I, Rd) →R
d and g : [0, T] × (Rd)2 →R

d satisfy (9).
Moreover, assume that � : [0, ∞) × I × I × L∞(I × I, R) × L∞(I, Rd) →R satisfies (8). Let (ut0 , Kt0 )
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∈ L∞(I, Rd) × L∞(I2, R). Let (u, K) solve (10) on [t0, T1] with 0 ≤ t0 < T1 ≤ T and initial condition
(u(t0, ·), K(t0, ·, ·)) = (ut0 , Kt0 ). Then, we have the estimates

‖u(t, ·)‖L∞(I) ≤
(
1 + ‖ut0‖L∞

)
eBf (t−t0) + Bg

B� − Bf

(
1 + ‖K0‖L∞

)(
eB�(t−t0) − eBf (t−t0)

)− 1

‖K(t, ·, ·)‖L∞(I2) ≤ (1 + ‖Kt0‖L∞(I2))e
B�(t−t0) − 1.

In particular, we have the bounds

sup
t∈[t0,T1]

‖u(t, ·)‖L∞(I) ≤
(
1 + ‖ut0‖L∞

)
eBf T1 + Bg

B� − Bf

(
1 + ‖K0‖L∞

)(
eB�T1 − eBf T1

)− 1

sup
t∈[t0,T1]

‖K(t, ·, ·)‖L∞(I2) ≤ (1 + ‖Kt0‖L∞(I2))e
B�T1 − 1.

Proof. We start with the estimate on K. Since (u, K) solves (10), we have

K(t, x, y) = Kt0 (x, y) +
∫ t

0

�(s, x, y, K(s, ·, ·), u(s, ·))ds.

By means of (8), we get

‖K(t, ·, ·)L∞(I2) ≤ ‖Kt0‖L∞(I2) + B�

∫ t

t0

(1 + ‖K(s, ·, ·)‖L∞(I2))ds.

Gronwall’s inequality then implies

1 + ‖K(t, ·, ·)‖L∞(I2) ≤ (1 + ‖Kt0‖L∞(I2))e
B�(t−t0). (18)

With this, the estimate on u follows similarly noting first that

u(t, x) = ut0 +
∫ t

t0

∫
I

K(s, x, y)g(t, u(s, x), u(s, y))dyds +
∫ t

t0

f (s, x, u(s, ·))ds.

Thus, using again (8), we get together with (18) that

‖u(t, ·)‖L∞ ≤ ‖ut0‖L∞ + Bg

∫ t

t0

(
(1 + ‖Kt0‖L∞(I2))e

B�(s−t0) − 1
)

ds + Bf

∫ t

t0

(1 + ‖u(s, ·)‖L∞ )ds.

By means of Gronwall’s inequality one deduces that

1 + ‖u(t, ·)‖L∞

≤ (1 + ‖ut0‖L∞
)
eBf (t−t0) + Bg

B� − Bf

(
1 + ‖Kt0‖L∞

)(
eB�(t−t0) − eBf (t−t0)

)− Bg

Bf

(eBf (t−t0) − 1) (19)

from which the claim follows.

We can now give the proof of Proposition 2.3.

Proof of Proposition 2.3. As announced earlier, we argue along the lines of the proof of the classical
contraction mapping theorem. However, since the operator A is only contractive with respect to the L2

topology, some adjustments are needed. First, we fix T∗ ≤ T according to Lemma 2.7. Next, we set t0 = 0
and define the corresponding sequence (vn, Jn) as in (14) which is well defined according to Lemma 2.4.
Moreover, due to Lemma 2.5, the sequence (Jn)n∈N is uniformly bounded in C([0, T∗], L∞(I2)) with

1 + ‖Jn(t, ·, ·)‖C([0,T∗],L∞(I2)) ≤ (1 + ‖K0‖L∞ )eB�T∗ ≤ (1 + ‖K0‖L∞ )eB�T for all n ∈N0.

Consequently, (vn, Jn) ∈ SK0 for all n ∈N0 with SK0 defined in Lemma 2.7. Thus, according to this result,
we have

‖vn+1 − vn‖C([0,T∗],L2(I)) + ‖Jn+1 − Jn‖C([0,T∗],L2(I2))

≤ 1

2

(
‖vn − vn−1‖C([0,T∗],L2(I)) + ‖Jn − Jn−1‖C([0,T∗],L2(I2))

)
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which yields by iteration that (vn, Jn)n∈N is a Cauchy sequence in C([0, T∗], L2(I) × L2(I2)). Consequently,
there exists (u, K) ∈ C([0, T∗], L2(I) × L2(I2)) such that

‖vn − u‖C([0,T∗],L2(I)) + ‖Jn − K‖C([0,T∗],L2(I2)) −→ 0 as n → ∞. (20)

For each t ∈ [0, T∗], we then have

vn(t, ·) → u(t, ·) and Jn(t, ·, ·) → K(t, ·, ·) pointwise almost everywhere as n → ∞.

Thus, by means of Lemma 2.5, we have

‖u(t, ·)‖L∞(I) ≤ (1 + ‖u0‖L∞ )eBf t + Bg

B� − Bf

(1 + ‖K0‖L∞ )
(
eB� t − eBf t

)− 1

‖K(t, ·, ·)‖L∞(I2) ≤ (1 + ‖K0‖L∞ )eB� t − 1.

(21)

Moreover, as a consequence of (20) ,we have (u, K) =A[u, K] and the structure of A thus immediately
implies (u, K) ∈ C1([0, T∗], L∞(I) × L∞(I2)) and (u, K) is a solution of (10) on [0, T∗]. Due to (21) we
have in particular (u, K) ∈ SK0 and according to Lemma 2.8 any solution (û, K̂) to (10) satisfies (û, K̂) ∈
SK0 . Thus, uniqueness follows again from the contractivity in Lemma 2.7 analogously to the classical
contraction mapping theorem. To finish the proof, it remains to extend the solution to [0, T], which can be
done, as usual, by iterating the above procedure while we note that Lemma 2.5 ensures that the condition
in the definition of SK0 is preserved. �

3. The continuum limit

In this section, we will give the proof of Theorem 1.1 using similar arguments as [2, 29].

Proof of Theorem 1.1. By means of (7) and (10), we have

1

2
∂t‖uN − u‖2

L2(I) =
∫

I

∂t

(
uN(t, x) − u(t, x)

)(
uN(t, x) − u(t, x)

)
dx

=
∫

I2

[
KN(t, x, y)g(t, uN(t, x), uN(t, y)) − K(t, x, y)g(t, u(t, x), u(t, y))

](
uN(t, x) − u(t, x)

)
dydx

+
∫

I

[
N
∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , uN(t, ·)) − f (t, x, u(t, ·))dξ

](
uN(t, x) − u(t, x)

)
dx.

Rewriting, we get

1

2
∂t‖uN − u‖2

L2(I) =
∫

I2

[(
KN(t, x, y) − K(t, x, y)

)
g(t, uN(t, x), uN(t, y))

+ K(t, x, y)
(
g(t, uN(t, x), uN(t, y)) − g(t, u(t, x), u(t, y))

)](
uN(t, x) − u(t, x)

)
dydx

+
∫

I

[
N
∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , uN(t, ·)) − f (t, ξ , u(t, ·))

+ f (t, ξ , u(t, ·)) − f (t, x, u(t, ·))dξ
](

uN(t, x) − u(t, x)
)
dx.
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Using the bounds on f and g from (9) together with Cauchy’s inequality, we can estimate the right-hand
side to get

1

2
∂t‖uN − u‖2

L2(I) ≤ Bg

∫
I

(∫
I

(KN(t, x, y) − K(t, x, y))2dy

)1/2

|uN(t, x) − u(t, x)|dx

+ Lg‖K(t, ·, ·)‖L∞(I2)

∫
I2

(|uN(y) − u(y)| + |u(x) − uN(x)|)|uN(t, x) − u(t, x)|dydx

+
((∫

I

∣∣∣N ∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , uN(t, ·)) − f (t, ξ , u(t, ·))dξ

∣∣∣2dx

)1/2

+
∫

I

∣∣∣N ∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , u(t, ·)) − f (t, x, u(t, ·))dξ

∣∣∣2dx

)1/2
)

‖uN(t, ·) − u(t, ·)‖L2(I).

Applying Cauchy’s inequality again, we further deduce together with Fubini’s Theorem that

1

2
∂t‖uN − u‖2

L2(I) ≤ Bg‖KN(t, ·, ·) − K(t, ·, ·)‖L2(I2)‖uN(t, ·) − u(t, ·)‖L2(I)

+ 2Lg‖K(t, ·, ·)‖L∞(I2)‖uN(t, ·) − u(t, ·)‖2
L2(I)

+
((∫

I

N
∫ (�Nξ	+1)/N

�Nξ	/N

∣∣f (t, ξ , uN(t, ·)) − f (t, ξ , u(t, ·))∣∣2dxdξ

)1/2

+
∫

I

∣∣∣N ∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , u(t, ·)) − f (t, x, u(t, ·))dξ

∣∣∣2dx

)1/2
)

‖uN(t, ·) − u(t, ·)‖L2(I).

We set

rN := N
∫ (�Nx	+1)/N

�Nx	/N
f (t, ξ , u(t, ·)) − f (t, x, u(t, ·))dξ

such that Young’s inequality together with (9) then implies

1

2
∂t‖uN − u‖2

L2(I) ≤
Bg

2
‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2(I2)

+
(

2Lg‖K(t, ·, ·)‖L∞(I2) + Bg

2

)
‖uN(t, ·) − u(t, ·)‖2

L2(I)

+
(
‖f (t, ·, uN(t, ·)) − f (t, ·, u(t, ·))‖L2(I) + ‖rN‖L2(I)

)
‖uN(t, ·) − u(t, ·)‖L2(I) (22)

≤ Bg

2
‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2(I2)

+
(

2Lg‖K(t, ·, ·)‖L∞(I2) + Lf + Bg + 1

2

)
‖uN(t, ·) − u(t, ·)‖2

L2(I) +
1

2
‖rN‖2

L2(I).

Similarly, we deduce from (7) and (10) that

1

2
∂t‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2 =
∫

I2

∂t

(
KN(t, x, y) − K(t, x, y)

)(
KN(t, x, y) − K(t, x, y)

)
dydx

=
∫

I2

[
N2

∫ �Nx	+1
N

�Nx	
N

∫ �Ny	+1
N

�Ny	
N

�(t, ξ , η, KN(t, ·, ·), uN(t, ·)) −�(t, x, y, K(t, ·, ·), u(t, ·))dξdη

]
×

× (
KN(t, x, y) − K(t, x, y)

)
dydx.
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Together with Cauchy’s inequality we can estimate the right-hand side as

1

2
∂t‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2

≤
[(∫

I2

(
N2

∫ �Nx	+1
N

�Nx	
N

∫ �Ny	+1
N

�Ny	
N

�(t, ξ , η, KN(t, ·, ·), uN(t, ·))

−�(t, ξ , η, K(t, ·, ·), u(t, ·))dξdη

)2

dxdy

)1/2

(23)

+
(∫

I2

(
N2

∫ �Nx	+1
N

�Nx	
N

∫ �Ny	+1
N

�Ny	
N

�(t, ξ , η, K(t, ·, ·), u(t, ·))dξdη

−�(t, x, y, K(t, ·, ·), u(t, ·))
)2

dxdy

)1/2
]
×

×‖(KN)(t, ·, ·) − K(t, ·, ·)L2‖
= :
[‖QN‖L2 + ‖RN‖L2

]‖(KN)(t, ·, ·) − K(t, ·, ·)‖L2 .

To estimate the integral given by QN further, we apply once more Cauchy’s inequality and use Fubini’s
Theorem to deduce together with (8) that

‖QN‖L2

≤
(∫

I2

N2

∫ (�Nx	+1)/N

�Nx	/N

∫ (�Ny	+1)/N

�Ny	/N

(
�(t, ξ , η, KN(t, ·, ·), uN(t, ·))

−�(t, ξ , η, K(t, ·, ·), u(t, ·))
)2

dξdηdxdy

)1/2

=
(∫

I2

N2

∫ (�Nξ	+1)/N

�Nξ	/N

∫ (�Nη	+1)/N

�Nη	/N

(
�(t, ξ , η, KN(t, ·, ·), uN(t, ·)) (24)

−�(t, ξ , η, K(t, ·, ·), u(t, ·))
)2

dxdydξdη

)1/2

=
(∫

I2

(
�(t, ξ , η, KN(t, ·, ·), uN(t, ·)) −�(t, ξ , η, K(t, ·, ·), u(t, ·))

)2

dξdη

)1/2

=
∣∣∣�(t, ·, ·, KN(t, ·, ·), uN(t, ·)) −�(t, ·, ·, K(t, ·, ·), u(t, ·))

∣∣∣
L2

≤ L�
(‖KN(t, ·, ·) − K(t, ·, ·)‖L2 + ‖uN(t, ·) − u(t, ·)‖L2

)
.

Summarising (23) and (24), we obtain together with Young’s inequality that

1

2
∂t‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2

≤ [L�(‖KN(t, ·, ·) − K(t, ·, ·)‖L2 + ‖uN(t, ·) − u(t, ·)‖L2

)+ ‖RN‖L2

]‖(KN(t, ·, ·) − K(t, ·, ·)‖L2

≤ 3L� + 1

2
‖(KN(t, ·, ·) − K(t, ·, ·)‖2

L2 + L�
2

‖uN(t, ·) − u(t, ·)‖2
L2 + 1

2
‖RN‖2

L2 .
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Together with (22) this yields
1

2
∂t

(
‖uN − u‖2

L2(I) + ‖KN(t, ·, ·) − K(t, ·, ·)‖2
L2

)

≤
(

2Lg‖K(t, ·, ·)‖L∞(I2) + Lf + Bg + L� + 1

2

)
‖uN(t, ·) − u(t, ·)‖2

L2(I)

+ 3L� + Bg + 1

2
‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2(I2) +
1

2

(‖rN‖2
L2 + ‖RN‖2

L2

)
≤
(

2Lg‖K(t, ·, ·)‖L∞(I2) + Lf + 3L� + Bg + 1

2

)(
‖uN(t, ·) − u(t, ·)‖2

L2(I) + ‖KN(t, ·, ·) − K(t, ·, ·)‖2
L2

)

+ 1

2

(‖rN‖2
L2 + ‖RN‖2

L2

)
.

Integrating this inequality, we find

‖uN − u‖2

L2(I) + ‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2

≤
(
‖uN(0, ·) − u(0, ·)‖2

L2(I) + ‖KN(0, ·, ·) − W(·, ·)‖2

L2

)
e4Lg

∫ t
0 ‖K(s,·,·)‖L∞(I2)ds+(2Lf +3L�+Bg+1)t

+
∫ t

0

(‖rN(s)‖2
L2 + ‖RN(s)‖2

L2

)
e4Lg

∫
d st‖K(τ ,·,·)‖L∞(I2)dτ+(2Lf +3L�+Bg+1)(t−s)ds.

On a fixed time interval [0, T], we can estimate the right-hand side uniformly as

‖uN − u‖2
L2(I) + ‖KN(t, ·, ·) − K(t, ·, ·)‖2

L2

≤
(
‖uN(0, ·) − u(0, ·)‖2

L2(I) + ‖KN(0, ·, ·) − W(·, ·)‖2
L2 +

∫ T

0

(‖rN(s)‖2
L2 + ‖RN(s)‖2

L2

)
ds
)
×

× e4Lg
∫ T

0 ‖K(s,·,·)‖L∞(I2)ds+(2Lf +3L�+Bg+1)T . (25)

From Lebesgue’s differentiation theorem together with dominated convergence, we deduce

‖rN‖L2(I) → 0 and ‖RN‖L2 → 0 as N → ∞.

Thus, by dominated convergence, for N → ∞ the term in parenthesis in (25) converges to zero which
finishes the proof. �
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