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Twists of Shimura Curves

James Stankewicz

Abstract. Consider a Shimura curve XD
0 (N) over the rational numbers. We determine criteria for the

twist by an Atkin–Lenher involution to have points over a local field. As a corollary we give a new

proof of the theorem of Jordan and Livné on Qp points when p ∣D and for the first time give criteria

for Qp points when p ∣N. We also give congruence conditions for roots modulo p of Hilbert class

polynomials.

Let D be the squarefree product of an even number of primes and let N be a

squarefree integer coprime to D. The Shimura curves XD
0 (N)/Q are natural gener-

alizations of the classical modular curves X0(N), which we realize here as X1
0(N)/Q.

Shimura first defined these curves over Q [Shi71] and also showed that XD
0 (N)(R)

is nonempty if and only if D = 1. Later, conditions for XD
0 (N)(Qp) to be nonempty

were determined when p ∣D first by Jordan and Livné [JL85, Theorem 5.6] in the case

N = 1 and in the general case by Ogg [Ogg85, Théorème].

In this paper, we give comprehensive criteria for the presence of Qp-rational points

on all Atkin–Lehner twists of XD
0 (N) including the trivial twist, XD

0 (N). Therefore

as a consequence, we recover the theorem of Jordan and Livné and for the first time

give criteria for Qp-points when p ∣N and D > 1. We note that conjecturally, these

twists and their combinations form all twists of XD
0 (N) for all but finitely many pairs

of D and N [KR08]. Let CD(N,d,m) denote the twist of XD
0 (N) by Q(√d) and the

Atkin–Lehner involution wm as in Definition 2.2. Particular cases of interest are the

twists by the full Atkin–Lehner involution wDN . In that case we have the following.

Corollary (3.17) If p∤DN is inert in Q(√d), CD(N,d,DN)(Qp) is nonempty.

Theorem (4.1, partial) Suppose that p∤ 2DN is a prime which is ramified in Q(√d).
Then CD(N,d,DN)(Qp) ≠ ∅ if and only if one of the following occurs:

● (−DN
p
) = 1 and a certain Hilbert Class Polynomial has a root modulo p.

● (−DN
p
) = −1, 2∤D, (−p

q
) = −1 for all primes q ∣D, and (−p

q
) = 1 for all primes q ∣N

such that q ≠ 2.
● 2 ∣D, (−DN

p
) = −1, p ≡ ±3 mod 8, (−p

q
) = −1 for all primes q ∣ (D/2), and (−p

q
) = 1

for all primes q ∣N.

Corollary (5.2) Let p ∣D be a prime which is unramified in Q(√d). Let pi , q j be

primes such that D/p = ∏i pi and N = ∏ j q j .
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● If p is split in Q(√d), then CD(N,d,DN) ≅ XD
0 (N) over Qp and XD

0 (N)(Qp) is

nonempty if and only if one of the following two cases occurs:

(1) p = 2, pi ≡ 3 mod 4 for all i, and q j ≡ 1 mod 4 for all j.

(2) p ≡ 1 mod 4, D = 2p, and N = 1.

● If p is inert in Q(√d) then CD(N,d,DN)(Qp) is nonempty.

Corollary (6.2) Let p be a prime dividing N such that p is unramified in Q(√d).
Then CD(N,d,DN)(Qp) is nonempty if and only if

● p is split in Q(√d) and either D = 1 or

– p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏ j q j with each q j ≡
1 mod 4, or

– p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏ j q j with each q j ≡
1 mod 3, or

– TF′(D,N, 1, p) > 0 where TF′ is as in Definition 6.13.

● p is inert in Q(√d) with Dp = ∏i pi , N/p = ∏ j q j such that one of the following

holds:

– p = 2, for all i, pi ≡ 3 mod 4 and for all j, q j ≡ 1 mod 4;

– p ≡ 3 mod 4, D = 1 and N = p or 2p.

We also give infinite families of examples of twists that have Qv-rational points for

all places v of Q.

Example (5.13) Suppose that q is an odd prime and consider X
2q
0 (1)/Q, a curve of

genus g. Note that this curve is hyperelliptic over Q if and only if q ∈ {13, 19, 29, 31,

37, 43, 47, 67, 73, 97, 103} [Ogg83, Theorem 7]. Let p ≡ 3 mod 8 be a prime such that

(−p

q
) = −1 and such that for all odd primes ℓ less than 4g2, (−p

ℓ
) = −1. Let the twist

of X
2q
0 (1) by Q(√−p) and w2q be denoted by C2q(1,−p, 2q)/Q. Then C2q(1,−p, 2q)

has Qv-rational points for all places v of Q.

If q = 13, then the genus of X26
0 (1) is two. Therefore X26

0 (1) is hyperelliptic and has

the following explicit model, where w2q is identified with the hyperelliptic involution

[GR04]:

y2 = −2x6 + 19x4 − 24x2 − 169.

Hence, an explicit model for C26(1,−p, 2q) is given by the affine equation

y2 = 2px6 − 19px4 + 24px2 + 169p.

The primes less than 2000 satisfying the congruence conditions in the above example

are p = 67, 163, and 1747. It can be checked that the explicit model of C26(1,−67, 26)
has at least the rational points (±9

5
, ±10988

125
), and that C26(1,−163, 26) has at least the

rational points (±67
35
, ±5270116

42875
). If p = 1747, a point search in sage [S+] failed to

produce any rational points and the TwoCoverDescent command in MAGMA did not

determine if C26(1,−1747, 26) has no rational points.
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Example (6.16) Let q ≡ 3 mod 4 be a prime and consider the curve X0(q)/Q. Let

p ≡ 1 mod 4 be a prime such that ( p

q
) = −1 and let C1(q, p, q)/Q denote the twist

of X0(q) by Q(√p) and wq. Then C1(q, p, q) has Qv-rational points for all places v

of Q.

If q = 23, the least two primes satisfying the above are p = 5 and p = 13. Using a

hyperelliptic model of the genus 2 curve X0(23) [GR91] as above, it can be verified

that C1(23, 5, 23)(Q) is nonempty. Meanwhile, the TwoCoverDescent command

in MAGMA determined that C1(23, 13, 23)(Q) is empty.

Finally if ∆ < 0 we recall the Hilbert Class Polynomial [Cox89, p. 285], which de-

scribes the unramified abelian extensions of Q(√∆). Only for finitely many ∆ is the

splitting of H∆(X)modulo primes completely determined by congruence conditions

[Cox89, Theorem 3.22]. The results of this paper allow us to find examples of primes

p in which congruence conditions determine the splitting of H∆(X)modulo p.

Corollary (4.3) Let p ≠ 2 be a prime and let N be a squarefree integer such that

(−N
p
) = −1. Let H∆(X) ∈ Z[X] denote the Hilbert Class Polynomial of discriminant ∆,

supposing additionally that p∤ disc(H∆). It follows that H−4N(X) has a root modulo p

if and only if for all odd primes q ∣N, (−p

q
) = 1.

We proceed as follows. Always assuming a very solid background in quaternion

algebras, Eichler’s Embedding Theorem, Optimal Embeddings and others, we will

give some theorems on embeddings of quadratic orders which may be of indepen-

dent interest. Then after properly defining these Shimura curves and their Atkin–

Lehner involutions, we will show how these embedding theorems can be applied to

the problem of controlling superspecial points on Shimura curves over finite fields.

The remaining sections deal with determination of Qp-rational points.

1 Simultaneous Embeddings into Eichler Orders

Let BD be the quaternion Q-algebra of discriminant D and let B′ be a definite quater-

nion Q-algebra. Suppose that there exist ω1, ω2 ∈ B′ such that ω2
1 = −q and ω2

2 = −d

for q,d ∈ Z. Thus ω1ω2 ∈ B′ is of norm qd. Although ω1 and ω2 are integral, it may

be the case that ω1ω2 is not integral. We only know that tr(ω1ω2) < 4qd. In order for

ω1ω2 to be integral it is necessary and sufficient that tr(ω1ω2) = ω1ω2 +ω2ω1 = s ∈ Z.

Now let us grant that tr(ω1ω2) ∈ Z. Since ω1, ω2, and ω1ω2 are integral, any orderO′ that contains ω1 and ω2 contains ω1ω2. Note that the Z-module generated by

1, ω1, ω2 and ω1ω2 is an order of B′ if and only if ⟨1, ω1, ω2, ω1ω2⟩ is a basis for B′

over Q. In the latter case, we can compute that the reduced discriminant of Z⊕Zω1⊕
Zω2⊕Zω1ω2 is 4qd− s2. If q ≡ 3 mod 4, 1+ω1

2
is integral and the reduced discriminant

of Z⊕ Z 1+ω1

2
⊕ Zω2 ⊕ Z 1+ω1

2
ω2 is dq − ( s

2
)2.

Theorem 1.1 Fix square-free positive integers D′,N′ such that (D′,N′) = 1 and D′

is the product of an odd number of primes. Fix also m > 1 such that m ∣D′N′. The

following are equivalent.
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(1) There is a definite quaternion algebra B′ over Q of discriminant D′, an Eichler orderO′ of level N′ in B′ and elements ω1 and ω2 contained inO′ such that ω2
1 = −1 and

ω2
2 = −m.

(2) There are factorizations D′ = ∏i pi and N′ = ∏ j q j into distinct primes such that

● m = D′N′ or 2 ∣D′N′ and m = D′N′/2;
● for all i either pi = 2 or pi ≡ 3 mod 4;
● for all j either q j = 2 or q j ≡ 1 mod 4.

Proof If Z[ζ4] ↪ O′, then pi = 2 or pi ≡ 3 mod 4 and q j = 2 or q j ≡ 1 mod 4 by

Eichler’s Embedding Theorem.

Since m > 1, Z[ζ4] /↪ Z[√−m] and vice versa. Therefore O′ ⊃ Z ⊕ Zω1 ⊕ Zω2 ⊕
Zω1ω2 and so m ∣D′N′ ∣ 4m − s2. If s = 0, we have m ∣D′N′ ∣ 2m since D′N′ is square-

free.

If s ≠ 0, m ∣ 4m−s2 implies that m ∣ s and m ≤ ∣s∣. Since m2 ≤ s2 < 4m, we have m < 4.

If m = 2 and 0 < s2 < 4m = 8 then m ∣ s implies that ∣s∣ = 2 and thus 2 ∣D′N′ ∣ 4. Then

since D′N′ square-free and D′ > 1, m = D′ = D′N′ = 2. If m = 3 and 0 < s2 < 4m = 12

then m ∣ s implies that ∣s∣ = 3 and thus 3 ∣D′N′ ∣ 3 so m = D′ = D′N′ = 3. We have thus

shown (1) ⇒ (2).
For (2) ⇒ (1), it suffices to consider the quaternion algebra A = (−1,−D′N′

Q
) with

ω1 = i and ω2 = j. It can be calculated that A ≅ BD′ .

If 2 ∣D′N′, ( 1+ω1

2
)ω2 squares to −D′N′/2. Set ω′2 = ( 1+ω1

2
)ω2 so that the reduced

discriminant of Z ⊕ Zω1 ⊕ Zω′2 ⊕ Zω1ω
′
2 is 4D′N′/2 = 2D′N′. An explicit order

containing ω1 and ω2 is the “Hurwitz quaternions”

Z⊕ Zω1 ⊕ Zω′2 ⊕ Z
1 + ω1 + ω′2 + ω1ω

′
2

2

which have reduced discriminant D′N′.
If 2∤D′N′ then D′N′ ≡ 3 mod 4 and so 1+ω2

2
is integral. Therefore Z ⊕ Zω1 ⊕

Z( 1+ω2

2
)⊕ Zω1( 1+ω2

2
) is an order and has reduced discriminant D′N′.

Corollary 1.2 Let B′ be a definite quaternion algebra of discriminant D′, and let O′
be an Eichler order of B′ of squarefree level N′ such that Z[ζ4] ↪ O′. If m ∣D′N′ and

m ≠ 1, then Z[√−m] ↪ O′ if and only if m = D′N′ or 2 ∣D′N′ and m = D′N′/2.

We now turn our attention to simultaneous embeddings of Z[ζ6] and Z[√−m].
Theorem 1.3 Fix squarefree positive integers D′,N′ such that (D′,N′) = 1 and D′ is

the product of an odd number of primes. Fix also m ∣D′N′ such that m > 1, m ≠ 3. The

following are equivalent.

(1) There is a definite quaternion algebra B′ of discriminant D′, an Eichler order O′ of

level N′ in B′ and 1+ω1

2
, ω2 ∈ O′ such that ω2

1 = −3 and ω2
2 = −m.

(2) There are factorizations D′ = ∏i pi , N′ = ∏ j q j into distinct primes such that

● m = D′N′, or 3 ∣D′N′ and m = D′N′/3;
● for all i either pi = 3 or pi ≡ 2 mod 3;
● for all j either q j = 3 or q j ≡ 1 mod 3.
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Proof This is proved with the same ideas as Theorem 1.1.

Corollary 1.4 Let B′ be a definite quaternion algebra of discriminant D′ and let O′
be an Eichler order of B′ of squarefree level N′ such that Z[ζ6] ↪ O′. If m ∣D′N′ and

m ≠ 1, 3, then Z[√−m] ↪ O′ if and only if m = D′N′ or D′N′/3.

We state one final theorem on simultaneous embeddings without proof.

Theorem 1.5 Recall that D is the squarefree product of an even number of primes, N

a squarefree integer coprime to D, and p a prime not dividing DN. Let B′ = BDp and let

m ∣DN be an integer greater than one. We have the following equivalences.

(1) Suppose that 2∤DN p. There is an Eichler orderO′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[√−m] ↪ O′ if and only if m = DN, (−p

q
) = −1 for

all primes q ∣D, (−p

q
) = 1 for all primes q ∣N, and (−DN

p
) = −1.

(2) Suppose that 2 ∣N. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[√−m] ↪ O′ if and only if one of the following two

cases occurs:

● m = DN, (−p

q
) = −1 for all primes q ∣D, (−p

q
) = 1 for all primes q ∣ (N/2), and

(−DN
p
) = −1.

● m = DN/2, (−p

q
) = −1 for all primes q ∣D, (−p

q
) = 1 for all primes q ∣ (N/2),

and (−DN/2
p
) = −1.

(3) Suppose 2 ∣D and (−DN
p
) = −1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[√−m] ↪ O′ if and only if m = DN,(−p

q
) = −1 for all primes q ∣ (D/2), p /≡ 7 mod 8, and (−p

q
) = 1 for all primes q ∣N.

(4) Suppose 2 ∣D and (−DN
p
) = 1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[√−m] ↪ O′ if and only if m = DN/2,

DN ≡ 2, 6, or 10 mod 16, (−p

q
) = −1 for all primes q ∣ (D/2), p /≡ 7 mod 8, and

(−p

q
) = 1 for all primes q ∣N.

(5) Suppose that p = 2. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[√−m] ↪ O′ if and only if m = DN ≡ ±3 mod 8,(−2
q
) = −1 for all primes q ∣D, and (−2

q
) = 1 for all primes q ∣N.

Finally for convenience we record the following. Here { ⋅
p
} is the Eichler Symbol

[Cla03, p. 25], while h(∆), f (∆), and w(∆) are respectively the class number, the

conductor and the number of units of the quadratic ring over Z of discriminant ∆.

Definition 1.6 For square-free coprime integers D and N and some integer ∆ ≡
0, 1 mod 4, we define the quantity

eD,N(∆) ∶= h(∆)∏
p ∣D(1 − {∆

p
})∏

q∣N
(1 + {∆

p
}) .
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2 Shimura Curves

We begin with the definition of a Shimura curve as a coarse moduli scheme, pre-

suming some familiarity with abelian schemes and moduli spaces. As always, we will

assume that D is the squarefree product of an even number of primes and that N is

squarefree and coprime to D.

Definition 2.1 Fix a scheme S and an Eichler orderO of level N in BD. By XD
0 (N)S

we will denote the coarse moduli scheme parametrizing pairs (A, ι) over S-schemes

T, where A/T is an abelian scheme and ι ∶ O ↪ EndT(A) is an optimal embedding

such that the pair (A, ι) is mixed in the sense of Ribet [Rib89].

It is well-known that this scheme is smooth if p∤DN and S is an Fp-scheme.

Definition 2.2 Let βm denote a generator of the unique two-sided integral ideal

of O of norm m ∣DN. There is an automorphism wm of XD
0 (N)S induced by the

bijection [(A, ι)] ↦ [(A, (ι(βm))−1ι(⋅)ι(βm))] .
Note that the above makes sense because any generator of the unique two-sided

integral ideal of O of norm m is of the form βmu where u is a unit of O. Note that

the group of all such wm is abelian because the group of two-sided integral ideals is

abelian. We call the group of all such wm the Atkin–Lehner group W and note there is

an isomorphism (Z/2Z){p∣DN prime} ≅W by m ∣DN ↔ {p ∣m} ↦ wm.

Definition 2.3 We say that (A, ι) is fixed by wm if

[(A, ι)] = [(A, (ι(βm))−1ι(⋅)ι(βm))] ,
where βm is a generator of the unique integral two-sided ideal ofO of norm m.

Definition 2.4 Let D,N be positive square-free integers and let O be an Eichler

order of level N in BD. Define Pic(D,N) to be the set of isomorphism classes of rightO-ideals.

There exist formulas for the size of Pic(D,N) depending only on D and N [Vig80,

Corollaire III.5.7(1)], [Piz76, Theorem 16]. Hence this definition makes sense even

if BD is definite.

Definition 2.5 The length of an element [I] of Pic(D,N) is

ℓ([I]) ∶= #(Ol(I)×/ ± 1) ,
whereOl(I) denotes the left order of the right ideal I.

We shall use this to make sense of the reduction XD
0 (N)Fp

when p ∣D. We say

a normal, proper, flat relative curve M/Zp
is a Mumford curve if each component

of the special fiber is isomorphic over Fp to P1
Fp

and the intersection points are all

Fp-rational double points.
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Definition 2.6 Let Zp2 denote the unique irreducible unramified degree two ring

extension of Zp.

Theorem 2.7 ([Cla03, Corollary 78]) Let p ∣D. There is a Mumford curve M(D,N)/Zp

whose components over Fp are in bijection with two copies of Pic(D/p,N) inter-

changed by an involution ap of M(D,N), whose intersection points are in bijection with

Pic(D/p,N p), and whose dual graph is bipartite. Moreover let x be an intersection

point between two components of (M(D,N))Fp
corresponding to [I] ∈ Pic(D/p,N p).

Then the following holds:

ÔM(D,N),x ≅ Zp[[X,Y ]]/(XY − pℓ([I])).
There is an isomorphism φ ∶ XD

0 (N)Zp2

∼Ð→ (M(D,N))Zp2 such that φwp = apφ.

If ⟨σ⟩ = AutZp
(Zp2), this isomorphism realizes XD

0 (N)Zp
as the étale quotient of(M(D,N))Zp2 by the action of σap.

Theorem 2.8 If p ∣N and T is an Fp-scheme, then there exists a closed embedding

c ∶ XD
0 (N/p)T → XD

0 (N)T satisfying the following.

Let S = Spec(R) be a flat Z(p)-scheme. If T is an S-scheme and if Φ ∶ XD
0 (N)T →

XD
0 (N/p)T is the forgetful map XD

0 (N/p) ×XD
0 (1) XD

0 (p) → XD
0 (N/p), then Φc is

the identity and Φwpc is the Frobenius map (A, ι) ↦ (A(p),Frobp,∗ ι) (see Defini-

tion 3.2). Moreover, XD
0 (N)T fits into the diagram

XD
0 (N/p)T

c

id

XD
0 (N/p)T

wpc

idXD
0 (N)T

Φ Φwp

XD
0 (N/p)T XD

0 (N/p)T .
If t is a closed point of T such that k(t) = k(t), the intersection of c(XD

0 (N/p)(k(t)))
and wpc(XD

0 (N/p)(k(t))) is precisely the set of superspecial points (in the sense of Def-

inition 2.12), which are in bijection with Pic(Dp,N/p). For each superspecial point x

over t corresponding to [I] ∈ Pic(Dp,N/p), the completion of the strict henselization of

the local ring of XD
0 (N) at x is isomorphic to R⊗W (Fp)[[X,Y ]]/(XY − pℓ([I])).

Proof The bijection between superspecial points and Pic(Dp,N/p) is from Theo-

rem 2.16 below. The remainder of the result in the case of Z(p) was first written down

by Helm [Hel07, Theorem 10.3].

Lemma 2.9 ([Mol12, Theorem 1.1]) The components and singular points of the Fp

special fiber can be put into the following W -equivariant bijections.
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Components Intersection Points

p ∣D Pic(D/p,N)∐Pic(D/p,N) Pic(D/p,N p)
p ∣N Pic(D,N/p)∐Pic(D,N/p) Pic(Dp,N/p)

If p ∣D, the bijection of a set of components with Pic(D/p,N) is W /⟨wp⟩-equivariant

with wp interchanging each. If p∤DN, the superspecial points of XD
0 (N)Fp

can be

put into W -equivariant bijection with Pic(Dp,N) via the embedding c ∶ XD
0 (N)Fp

→

XD
0 (N p)

Fp
.

2.1 Superspecial Surfaces

Fix a prime number p and a maximal order S in the quaternion algebra Bp over Q

ramified precisely at p and ∞. By a theorem of Deuring, there is a supersingular

elliptic curve E over the algebraic closure F of Fp such that EndF(E) ≅ S [Rib89,

p. 23].

Definition 2.10 Fix E/F, a supersingular elliptic curve with EndF(E) ≅ S . We say

that an abelian variety A/F is supersingular when there is an isogeny A→ Edim(A).

Lemma 2.11 ([Cla03, Theorem 68], [Rib89, Lemma 4.1]) If A/Fq
is an abelian sur-

face over a finite field and BD ↪ End0
Fq
(A), A is isogenous over Fq to the square of an

elliptic curve (E0)Fq
. Moreover if p ∣D, this elliptic curve must be supersingular.

Definition 2.12 We say that an abelian surface A/F is superspecial if A ≅ Ei ×E j with

Ei ,E j supersingular elliptic curves over F.

Lemma 2.13 ([Rib89, p. 21–22]) Suppose that A is a supersingular abelianO-surface

over F with p∤D. Then A is superspecial.

Theorem 2.14 If (A/k, ι) is an ordinary QM-abelian surface over a finite field k,

then there exist ordinary elliptic curves E0,E
′
0 over k such that A ≅ E0 × E′0. If m > 1,

then (A, ι) is wm-fixed (see Definition 2.3) if and only if Endk(E0) ≅k Endk(E′0) and

Endk(E0) is isomorphic to one of Z[√−m] or Z[ 1+√−m
2
].

Proof The first part of the statement is part of a more general theorem of Kani

[Kan11, Theorem 2], who calls ordinary elliptic curves CM. For the second part,

note that (A/S, ι) is wm-fixed if and only if R = Z[√−m] (or Z[ζ4] if m = 2) embeds

into the commutant of ι(O) in EndS(A).
Let k be a finite field, A/k be ordinary, and (A, ι) be wm-fixed. Also let W (k) denote

the Witt vectors of k [Neu99, Section II.4], which in this case are just a finite étale

extension of Zp. Then there is a canonical choice of an abelian scheme AW(k) with

an isomorphism f ∶ Endk(A) ∼Ð→ EndW(k)(A) [Mes72, Theorem V.3.3]. Therefore

the Serre–Tate canonical lift (A, f ○ ι) is a QM-abelian surface. Therefore so is AC

(the choice of embedding W (k) ↪ C does not change the isomorphism class of AC

[Del69, 7. Théorème]), and there is an embedding of R into End f (ι(O))(AC). Then

we can find both an optimal embedding ϕ ∶ R′ ↪ O for some imaginary quadratic
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order R′ ⊃ R and an isomorphism AC ≅ E1 × E2 where the Ei ’s have CM by R′ and

f ○ ι is given by ϕ [Mol12, Section 2.2].

Now let K ∶= W (k) ⊗ Q, which must therefore be a finite unramified extension

of Qp. We can then show that AK ≅ E′1 × E′2 where E′i ⊗ C ≅ Ei [Kan11, Lemma 60].

Moreover, each E′i has CM by R′ since O ↪ EndK(AK) and we have ϕ ∶ R′ ↪ O.

Now, if V is an abelian variety over K, let N(V ) denote its Néron model over W (k)
[BLR90, Definition I.2.1]. It follows that sinceA is an abelian scheme, it is the Néron

model of its generic fiber [BLR90, Proposition I.2.8], and thus

A ≅ N(AK) ≅ N(E′1 × E′2) ≅ N(E′1) ×N(E′2).
Theorem 2.15 ([Shi79, Theorem 3.5]) Let E/F be as in Definition 2.10 and let A/F
be an abelian surface isomorphic to the product of any two supersingular elliptic curves.

Then A ≅ E × E.

Recall that S is a maximal order in Bp and p ∣D. Recall also that an (O,S)-
bimodule is a left O-module M which is also a right S-module such that if x ∈ O,

y ∈ S , and m ∈M, then (xm)y = x(my). This implies that we have homomorphisms

O → EndS(M) and Sop
→ EndO(M). If both of these homomorphisms are optimal

embeddings we say that M is an optimal (O,S) bimodule.

Theorem 2.16 ([Rib89, p. 38]) Suppose thatO is an Eichler order of square-free level

N in an indefinite quaternion algebra B of discriminant D with (D,N) = 1. There is a

bijection between the following sets:

● superspecialO-abelian surfaces (A, ι)/F up to isomorphism;
● Z-rank 8 optimal (O,S) bimodules up to isomorphism.

Lemma 2.17 Let q ∣DN and let Q denote the unique two-sided integral ideal of norm

q inO. Under the bijection in Theorem 2.16, the action of wq described in Definition 2.2

corresponds to the action M ↦ Q⊗O M.

Proof The bimodule Q ⊗O M is isomorphic to βqM as an (O,S)-bimodule, since

Q = βqO = Oβq. Therefore to get an action of O on βqM, we must pre-compose by

β−1
q and post-compose by βq.

Definition 2.18 Let O,S be Eichler orders in a quaternion algebra over a number

field K. We say that two (O,S)-bimodules M,N are locally isomorphic if for all places

v of K, Mv ≅ Nv as (Ov,Sv)-bimodules.

Theorem 2.19 LetO,S be as in Theorem 2.16 and fix an (O,S)-bimodule M. Then

Λ ∶= EndO,S(M) is an Eichler order in either BDp if p∤D or BD/p if p ∣D. Moreover, if

we fix a bimodule M, there is a bijection between the following two sets

● (O,S)-bimodules N locally isomorphic to M up to isomorphism, and
● rank one projective right Λ modules up to isomorphism.

Let q ≠ p be prime. This bijection sends the action described in Lemma 2.17 to the

action [I]↦ [IQΛ], where QΛ is the unique two-sided ideal of norm q of Λ.
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Proof The bijection in the case where O is a maximal order is a theorem of Ribet

[Rib89, Theorem 2.3]. The extension to Eichler orders is due to Molina [Mol12,

Remark 4.11]. His proof depends on showing that HomO,S(N,QO ⊗N) is QΛ.

This allows us to compute dual graphs of special fibers using MAGMA code that

can be found at http://stankewicz.net/SpecialFiber.html.

Definition 2.20 Retaining the notation of Theorem 2.19, the action [I] ↦ [IQΛ]
will be referred to as wq.

Corollary 2.21 Let m > 1. A superspecial O-abelian surface (A, ι) with correspond-

ing bimodule M is fixed under the action of wm if and only if there is an embedding of

Z[√−m] (or Z[ζ4] if m = 2) into Λ = EndO,S(M).
Proof By Theorem 2.19, (A, ι) is fixed by the action of wm if and only if

[∏
q ∣mQΛ] = [1],

which is to say if and only if the unique two-sided ideal of norm m is principal.

Therefore, there is a fixed point if and only if there is an element γ of EndO,S(M) that

can serve as the principal generator. That is, γ2
Λ = mΛ so there is a unit u of Λ such

that γ2 = um. This now follows from work of Kurihara [Kur79, Proposition 4-4].

Lemma 2.22 If (A, ι) is a superspecial abelianO-surface over F, then wp(A, ι) (in the

sense of Theorem 2.19) is its Fp2/Fp-Galois conjugate. Equivalently, if P ∶ Spec(F) →
XD

0 (N) corresponds to a superspecial abelian O-surface (A, ι) over F and φ1 ∶ F → F is

the p-th power map, the following diagram commutes.

Spec(F) P

φ∗1

XD
0 (N)

wp

Spec(F) P

XD
0 (N).

Proof If p ∣D, then for all points P ∶ Spec(F) → XD
0 (N), the square of this

lemma commutes, by Theorem 2.7. If p ∣N and P ∶ Spec(F) → XD
0 (N) corre-

sponds to an abelian O-surface (AF, ι), then by Theorem 2.8, wpP corresponds to(A(p),Frobp,∗ ι). By Lemma 3.3, this corresponds to the point Pφ∗1 . If p∤DN, we

can reduce to the case p ∣N via the embedding c ∶ XD
0 (N)F → XD

0 (N p)F.

Definition 2.23 Let (A, ι) be a superspecial O-abelian surface over F with corre-

sponding bimodule M. The length of (A, ι) is #(End(O,S)(M)×/ ± 1) .

Note that End(O,S)(M) ≅ EndF(A, ι) [Mol12, equation 3.5]. Therefore if (A, ι)
corresponds to a point of XD

0 (N)(F) then this definition agrees with Definition 2.5.
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Corollary 2.24 Let (A, ι) be a mixed superspecial O-abelian surface with corre-

sponding bimodule M and whose length is divisible by three. Let N′ be the level of

O′ = End(O,S)(M) and D′ the discriminant of O′ ⊗ Q. Then for all p ∣D′, p = 3 or

p ≡ 2 mod 3, and for all q ∣N′, q = 3 or q ≡ 1 mod 3. Moreover, (A, ι) is fixed by wm if

and only if m = 1, 3,D′N′, or D′N′/3 (if 3 ∣D′N′).

Proof Unless D′ = 2, 3 and N′ = 1, the only possible such length is three [Vig80,

Proposition V.3.1]. In each of those cases, if p ∣D′ then p = 2 or p = 3. If (D′,N′) ≠(2, 1), (3, 1), the length of (A, ι) is three if and only if Z[ζ6] ↪ O′, and the first part

of our statement holds by Eichler’s Embedding Theorem.

Recall now that any (A, ι) is fixed by w1. If Z[ζ6] embeds into O′, note that

Z[√−3] ⊂ Z[ζ6] ↪ O′, so (A, ι) is fixed by w3 if 3 ∣D′N′. Now suppose that m ≠ 3,

so Z[ζ6] does not contain Z[√−m] and vice versa. In that case we have simultane-

ous embeddings if and only if m = D′N′ or if 3 ∣D′N′ and m = D′N′/3, by Theo-

rem 1.3.

The proofs of the following are similar.

Corollary 2.25 Let (A, ι) be a mixed superspecialO-abelian surface with correspond-

ing bimodule M and whose length is even. Let N′ be the level of O′ = End(O,S)(M)
and D′ the discriminant of O′ ⊗ Q. Then for all p ∣D′, p = 2 or p ≡ 3 mod 4, and

for all q ∣N′, q = 2 or q ≡ 1 mod 4. Moreover, (A′, ι′) is fixed by wm if and only if

m = 1, 2,D′N′, or D′N′/2 (if 2 ∣D′N′).

Corollary 2.26 Let O be an Eichler order of square-free level N in BD where D is the

square-free product of an even number of primes and N is coprime to D. Let m ∣DN

and let p be a prime not dividing DN. If p = 2 there is a mixed superspecial abelian O

surface (AFp
, ι) fixed by wm if and only if one of the following occurs:

(1) m = DN, q ≡ 3 mod 4 for all q ∣D, and q ≡ 1 mod 4 for all q ∣N.

(2) m = DN ≡ ±3 mod 8, (−2
q
) = −1 for all primes q ∣D, and (−2

q
) = 1 for all primes

q ∣N.

If p ≠ 2, there is a mixed superspecial abelian O surface (AFp
, ι) fixed by wm if and

only if one of the following occurs:

(3) 2∤D, m = DN, (−DN
p
) = −1, (−p

q
) = −1 for all q ∣D, and (−p

q
) = 1 for all q ∣N

such that q ≠ 2.

(4) 2 ∣N, m = DN/2, (−DN/2
p
) = −1, (−p

q
) = −1 for all q ∣D, and (−p

q
) = 1 for all q ∣N

such that q ≠ 2.

(5) 2 ∣D, m = DN, p ≡ ±3 mod 8, (−DN
p
) = −1, (−p

q
) = −1 for all q ∣ (D/2), and

(−p

q
) = 1 for all q ∣N.

(6) 2 ∣D, m = DN/2, DN ≡ 2, 6, 10 mod 16, p ≡ ±3 mod 8, (−DN/2
p
) = −1, (−p

q
) = −1

for all q ∣D, and (−p

q
) = 1 for all q ∣N.

3 Local Points at Good Primes

Throughout this section we will fix D the discriminant of an indefinite quaternion Q-

algebra, N a square-free integer coprime to D, an integer m ∣DN and a prime p∤DN.
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Recall that XD
0 (N)/Zp

has a smooth special fiber by Theorem 2.8. Let wm be as in

Definition 2.2. Let ⟨σ⟩ = AutZp
(Zp2) and let Z/Zp

denote the quotient of XD
0 (N)Zp2

by the action of wmσ.

If p is split in Q(√d), then XD
0 (N) is isomorphic to CD(N,d,m) over Qp. We can

then obtain results on local points without appealing to Z .

If p is inert in Q(√d) and CD(N,d,m)/Q is the twist of XD
0 (N)/Q by wm and

Q(√d) thenZ is a Zp-model for CD(N,d,m)Qp
. By étale base change [Liu02, Propo-

sition 10.1.21(c)], ZFp
is also smooth.

Theorem 3.1 Suppose that p is unramified in Q(√d) and p > 4g2. It follows that

CD(N,d,m)(Qp) ≠ ∅.

Proof This is an easy application of Weil’s Bounds and Hensel’s Lemma.

For p < 4g2, we must use another technique. In the split case we use Shimura’s

construction of the zeta function of XD
0 (N)Fp

using Hecke operators to give an exact

formula for the size of XD
0 (N)(Fp). In the inert case, we give a partial answer in terms

of superspecial points. In the following we assume familiarity with the Frobenius and

Verschiebung isogenies.

Definition 3.2 Let S be an Fp-scheme and let (A, ι) be an abelian O-surface. By

Frobpr ,∗ ι we denote the unique optimal embedding O ↪ EndS(A(pr)) such that for

all α ∈ O the following commutes.

A
ι(α)

Frobpr

A

Frobpr

A(pr)
Frobpr ,∗ ι(α)

A(pr).

Lemma 3.3 Let S = Spec(Fp) and φr ∶ S → S be the morphism given by the pr-th

power map. Let (A/S, ι) be a QM-abelian surface corresponding to a point P ∶ S →

XD
0 (N)S. Let P ○ φr ∶ S → S → XD

0 (N)S denote the Galois conjugate point. Then the

QM-abelian surface corresponding to P ○ φr is (A(pr),Frobpr ,∗ ι).
Proof Since Verpr itself is the pullback of φr along A → S [Liu02, p. 94], we have(A(pr),Frobpr ,∗ ι) = (A(pr),Ver∗pr ι), where Ver∗pr ι is defined in the obvious way.
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3.1 Split Primes and the Eichler–Selberg Trace Formula

Definition 3.4 Let S be a Zp-scheme with p∤DN. Let XD
0 (N) be defined over S. If(n,DN) = 1, then Tn is the correspondence

XD
0 (Nn)S

Φ1 Φ2

XD
0 (N)S XD

0 (N)S,
where Φ1 is the modular forgetful map and Φ2 = Φ1 ○wn.

The correspondences Tn are commonly known as Hecke correspondences. Let s be

a closed point of S with k(s) = k(s) so that XD
0 (N)s has a k(s)-rational point and

thus correspondences on XD
0 (N) are in bijection with endomorphisms of JD

0 (N)s
[Mil86, Corollary 6.3]. We may also use Tn to denote the endomorphism of JD

0 (N)s ≅
J(XD

0 (N)s) induced by the map of sets XD
0 (N)s → Div(XD

0 (N)s) P ↦ (Φ2,∗Φ∗1 )P.

This operator on JD
0 (N)s is commonly referred to as a Hecke operator. We will explore

the case (n,DN) > 1 in Section 3.2.

Theorem 3.5 (Eichler–Shimura) There is an equality of endomorphisms of JD
0 (N)s

between Tp and Frobp +Verp.

Proof The particularly simple proof given below was sketched by Stein in the case of

the elliptic modular curve X1
0(N) [RS11, Theorem 12.6.4], and the same proof also

works for Shimura Curves.

Definition 3.6 If CFp
is a smooth, projective curve, we can define the zeta function

of C as

Z(C, x) ∶= exp( ∞∑
r=1

#C(Fpr)xr

r
) .

Shimura [Shi67] proved the following explicit formula for the zeta function.

Theorem 3.7 If Ω denotes the canonical sheaf on XD
0 (N), then

Z(XD
0 (N)Fp

, x) = detH0(XD
0 (N),Ω)(Ig − Tpx + px2Ig)
(1 − x)(1 − px) .

Corollary 3.8 ([JL85, Proposition 2.1]) If r > 1 then

#XD
0 (N)(Fpr) = pr + 1 − tr(Tpr) + p tr(Tpr−2)

and if r = 1,

#XD
0 (N)(Fp) = p + 1 − tr(Tp).
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Theorem 3.9 (Eichler’s Trace Formula, [Eic56, Section 4]) Let D be the discriminant

of an indefinite rational quaternion algebra, N a square-free integer coprime to D and

ℓ a prime not dividing DN. Let tr(Tn) denote the trace of Tn on H0(XD
0 (N)C,Ω) and

let σ1 as the usual divisor sum function.

If n is not a square and (n,DN) = 1, then

tr(Tn) = σ1(n) − ⌊2√n⌋
∑

s=−⌊2√n⌋
∑

f ∣ f (s2−4n)

eD,N( s2−4n
f 2 )

w( s2−4n
f 2 ) .

Corollary 3.10

#XD
0 (N)(Fp) = ⌊2√p⌋

∑
s=−⌊2√p⌋

∑
f ∣ f (s2−4p)

eD,N( s2−4p

f 2 )
w( s2−4p

f 2 ) .

3.2 Inert Primes and the Eichler–Selberg Trace Formula

We begin by extending the definition of the Hecke operators Tn.

Suppose that (DN, n
(n,DN)) = 1, m = (n,DN) ∣DN and n′ = n

(n,DN) . Let S be a Zp-

scheme and Φ1 ∶ X
D
0 (Nn′)S → XD

0 (N)S be the forgetful map. By abuse of notation,

let wm denote the Atkin–Lehner involution on either XD
0 (Nn′)S or XD

0 (N)S. Note

that Φ1wm = wmΦ1, so if s is a closed point of S with k(s) = k(s), then Tn′wm =
wmTn′ ∶ X

D
0 (N)s → Div(XD

0 (N)s) .

Definition 3.11 If (DN, n
(n,DN)) = 1, m = (n,DN) ∣DN and n′ = n

(n,DN) , then

Tn = wmTn′ .

Let m ∣DN and consider the quotient (XD
0 (N)/wm) s

. Let Ω denote the canonical

sheaf of XD
0 (N)s. Since wm is an involution, H0(XD

0 (N)s,Ω) decomposes into the

direct sum of the +1 and −1 eigenspaces under its action. Note that the +1 eigenspace

is H0((XD
0 (N)/wm)s,Ω) .

Suppose that v ∈ H0(XD
0 (N)s,Ω) such that wmv = v. Then wmTpv = Tpwmv = Tpv

and therefore Tp acts on H0((XD
0 (N)/wm)s,Ω) .

Definition 3.12 If p∤DN and m ∣DN, then by T
(m)
p we denote the restriction of

Tp to H0((XD
0 (N)/wm)s,Ω) .

Since T
(m)
p is just Tp on a smaller vector space, we have T

(m)
p = Frobp +Verp on

Jac((XD
0 (N)/wm)s) by Theorem 3.5.

Corollary 3.13 Let g′ be the genus of (XD
0 (N)/wm)

Fp
. The zeta function of the quo-

tient curve is

Zp(XD
0 (N)/wm, x) = detH0(XD

0 (N)/wm,Ω)(Ig′ − T
(m)
p x + px2Ig′)

(1 − x)(1 − px) .
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Proof Since T
(m)
p = Frobp +Verp on Jac((XD

0 (N)/wm)s) , any modern proof of The-

orem 3.7 using smooth and proper base change would carry over exactly to prove this

theorem.

We may thus see that if r > 1, then

#(XD
0 (N)/wm)(Fpr) = pr + 1 − tr(T(m)pr ) + p tr(T(m)

pr−2 )
and

#(XD
0 (N)/wm)(Fp) = p + 1 − tr(T(m)p ).

Similarly to Rotger–Skorobogatov–Yafaev [RSY05], we can compute that tr(T(m)pr )
(on (XD

0 (N)/wm) ) is equal to 1
2
(tr(Tpr) + tr(Tprm)) and we obtain the following.

If r > 1, then

#(XD
0 (N)/wm)(Fpr) = pr + 1 −

tr(Tpr) + tr(Tprm)
2

+
p( tr(Tpr−2) + tr(Tpr−2m))

2

and if r = 1, then

#(XD
0 (N)/wm)(Fp) = p + 1 −

tr(Tp) + tr(Tpm)
2

.

If ( d
p
) = 1, then CD(N,d,m) ≅Qp

XD
0 (N). If ( d

p
) = −1, then we can show that

2#XD
0 (N)/wm(Fpr) = #XD

0 (N)(Fpr) + #CD(N,d,m)(Fpr).
Theorem 3.14 Let p be inert in Q(√d) and let m ∣DN. If r > 1, then

#CD(N,d,m)(Fpr) = pr + 1 − tr(Tprm) + p tr(Tpr−2m),
and if r = 1, then

#CD(N,d,m)(Fp) = p + 1 − tr(Tpm).
In light of Theorem 3.14, we make the following definition.

Definition 3.15 For squarefree coprime integers D and N, for m ∣DN and for

p∤DN, let TF(D,N,m, p) ∶= p + 1 − trH0(XD
0 (N),Ω)(Tpm).

3.3 Inert Primes and Superspecial Points

We now use the theory of superspecial points to gain explicit criteria for the presence

of rational points. Recall that the superspecial points of XD
0 (N)(Fp) are in bijection

with Pic(Dp,N) via the embedding c∶XD
0 (N)Fp

→ XD
0 (N p)Fp

by Lemma 2.9. Recall

also that the action of Frobp ∈ Gal(Fp/Fp) on the superspecial points in XD
0 (N)(Fp)

is given by wp by Lemma 2.22.
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Theorem 3.16 If p∤DN is inert in Q(√d), then CD(N,d,m)(Qp) is nonempty if

one of the following holds:

● mp /≡ 3 mod 4 and eDp,N(−4mp) ≠ 0;
● mp ≡ 3 mod 4 and one of eDp,N(−4mp) and eDp,N(−mp) is nonzero;
● p = 2, m = 1, and one of eDp,N(−4) and eDp,N(−8) is nonzero.

Proof We wish to determine if Z(Fp) contains a superspecial point. This occurs if

and only if there is a superspecial point P ∈ XD
0 (N)(Fp) such that P = wmpP. By

Corollary 2.21, there is a superspecial wmp-fixed point P if and only if there is an

embedding of Z[√−mp] into Endι(O)(A) where (A, ι) corresponds to P, or possibly

Z[ζ4] if mp = 2.

If mp = 2, then both Z[ζ4] and Z[√−2] are maximal orders, of discriminants −4

and −8 respectively. If mp ≡ 1 mod 4, then Z[√−mp] is maximal and of discrimi-

nant −4mp. If mp ≡ 3 mod 4, then Z[√−mp] again has discriminant −4mp but is

no longer maximal. It is contained in Z[ 1+√−mp

2
], which is maximal and has discrim-

inant −mp. Since there are no intermediate orders, this completes the proof.

Corollary 3.17 If p∤DN is inert in Q(√d), CD(N,d,m)(Qp) is nonempty when

m = DN. Moreover, Z(Fp) contains a point corresponding to a superspecial surface.

4 Local Points at Ramified Primes

Throughout this section we will fix D the discriminant of an indefinite quaternion Q-

algebra, N a squarefree integer coprime to D, a squarefree integer d, an integer m ∣DN

and a prime p∤DN ramified in Q(√d). Let XD
0 (N)/Q be given by Corollary 2.1. Let

wm be as in Definition 2.2. Let CD(N,d,m)/Q be the twist of XD
0 (N) by Q(√d) and

wm. If ∆ < 0, let H∆(X) ∈ Z[X] [Cox89, p. 285] denote the Hilbert Class Polynomial

of discriminant ∆, and recall that this is simply the polynomial whose roots are the

j-invariants of elliptic curves with complex multiplication by R∆.

Theorem 4.1 Suppose that p∤ 2DN is a prime which is ramified in Q(√d) and

m ∣DN. Then CD(N,d,m)(Qp) ≠ ∅ if and only if one of the following occurs:

(1) (−m
p
) = 1, eD,N(−4m) ≠ 0, and H−4m(X) = 0 has a root modulo p.

(2) (−m
p
) = 1, m ≡ 3 mod 4, eD,N(−m) ≠ 0, and H−m(X) = 0 has a root modulo p.

(3) (−DN
p
) = −1, m = DN, 2∤D, (−p

q
) = −1 for all primes q ∣D, and (−p

q
) = 1 for all

primes q ∣N such that q ≠ 2.

(4) 2 ∣N, (−DN/2
p
) = −1, m = DN/2, (−p

q
) = −1 for all primes q ∣D, and (−p

q
) = 1 for

all primes q ∣N such that q ≠ 2.

(5) 2 ∣D, (−DN
p
) = −1, m = DN, p ≡ ±3 mod 8, (−p

q
) = −1 for all primes q ∣ (D/2),

and (−p

q
) = 1 for all primes q ∣N.

(6) 2 ∣D, (−DN/2
p
) = −1, m = DN/2, DN ≡ 2, 6, or 10 mod 16, p ≡ ±3 mod 8, (−p

q
) =

−1 for all primes q ∣D, and (−p

q
) = 1 for all primes q ∣N.

Compare this to the following theorem.
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Theorem 4.2 Let p be a prime, (p, 2N) = 1, D = 1, and m = N. If CD(N,d,m)(Qp)
is nonempty, then H−4m(X) = 0 has a root modulo p. If H−4m(X) has a root modulo p

and additionally p∤ disc(H−4m(X)) , then CD(N,d,m)(Qp) is nonempty.

Proof Suppose that p > 2, D = 1 and m = N. By [Ozm12, Proposi-

tion 4.6], CD(N,d,m)(Qp) is nonempty if and only if there is a prime ν of B =
Q[X]/(H−4m(X)) such that f (ν ∣ p) = 1. In fact, if CD(N,d,m)(Qp) is nonempty,

then Ozman shows how to produce an elliptic curve over Qp with good reduction

and CM by Z[√−m]. Therefore the j-invariant of its modulo p reduction is a root

modulo p of H−4m(X) = 0.

Conversely if p∤ disc(H−4m(X)) , then p does not divide the conductor of

Z[X]/H−4m(X), and so if there is a linear factor modulo p of H−4m(X), then there is

a Z/pZ factor of ZB/pZB [Neu99, I.8.3]. Therefore there is a prime ν of ZB such that

ν ∣ pZB and f (ν ∣ p) = 1.

We note here that there are numerous counterexamples if p ∣ disc(H−4m(X)), as

pointed out to the author by Patrick Morton. Perhaps the easiest one is the case of p =
13, where (−20

13
) = (−13

5
) = −1 but H−20(X) factors as (X +8)2 modulo 13. Moreover,

if p ∣ disc(H−4m(X)) there is no guarantee of a root modulo p, as demonstrated by

m = 57 and p = 43. In any case, we have unearthed a powerful tool for finding

roots of Hilbert Class Polynomials modulo p that may have useful applications in

cryptography.

We can combine the results of Theorem 4.1(3) with those of Theorem 4.2 to yield

the following.

Corollary 4.3 Let p ≠ 2 be a prime and let N be a squarefree integer such that

p∤ disc(H∆) and (−N
p
) = −1. It follows that H−4N(X) has a root modulo p if and

only if, for all odd primes q ∣N, (−p

q
) = 1.

To establish Theorem 4.1 and Corollary 4.3, we determine a regular model over

Zp of CD(N,d,m)Qp
. We shall indeed show the following.

Theorem 4.4 There is a regular model X/Zp
of CD(N,d,m)Qp

with the following

properties. There is an equality of divisors on X ,

XFp
=

b

∑
i=0

diΓi ,

such that each Γi is defined over Fp and is prime, Γ0 ≅ (XD
0 (N)/wm)Fp

, each di ≤ 2,

d0 = 2, and for all i > 0, pa(Γi) = 0.

Suppose additionally that p ≠ 2. Then for all i > 0, di = 1 and Γ0 intersects with

Γi in a unique point Qi . These points Qi are such that ∑b
i=1 Qi is the branch divisor of

XD
0 (N)Fp

→ (XD
0 (N)/wm)Fp

.

In fact, we shall show that if p ≠ 2, thenX is the blowup of a schemeZ/Zp
such that

there is an equality of divisors ZFp
= 2Γ where Γ ≅ (XD

0 (N)/wm)Fp
. Therefore there

are smooth points of X(Fp) if and only if Fp = Fp(Pi) = Fp(Γi), since Γi ≅ P1
Fp(Qi).

After constructing Z and X , we will describe Fp(Qi), i.e., the Fp-rationality of wm-

fixed points.
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4.1 The First Steps towards Forming a Model

Let us begin with a few foundational facts.

Lemma 4.5 Let X/K be a curve with potentially semistable reduction realized by a

cyclic totally ramified extension L/K of local fields. Let k be their common residue field

and let S/R be the corresponding extension of discrete valuation rings. Let Y → Spec(S)
be a regular model of XL, Gal(L/K) = ⟨σ⟩, and assume that there exists some automor-

phism α of Y above σ ∶ Spec(S)→ Spec(S) extending the Galois action on XL.

(1) The quotient Z = Y/⟨α⟩ is a scheme of relative dimension one over Spec(R) with

generic fiber X.

(2) Let ξ1, . . . , ξn be the generic points of the irreducible components C1, . . . ,Cn ofYk lying above a component C of Zk with generic point ξ. Let Di = D(ξi ∣ ξ),
Ii = I(ξi ∣ξ) denote the decomposition and inertia groups, respectively. Then the

multiplicity of ξ in Zk is ∣Di ∣n/∣Ii ∣.
Proof That Z is a Spec(R)-scheme follows from the universal properties of the

quotient as outlined in [Vie77, 3.6]. To obtain the multiplicities, we recall [Liu02,

VIII.3.9] that the multiplicity of ξi is vi(s), where vi is the discrete valuation ofOY ,ξi

and s is a uniformizer of S. As Y has semistable reduction, vi(s) = 1 for all i. Likewise

the multiplicity of ξ is v(r), where v is the discrete valuation of OZ,ξ and r is a uni-

formizer of R. As Y → Z is Galois, there are positive integers e, q such that vi ∣ R = ev

and q = ∣Di/Ii ∣ for all i and [L ∶ K] = eqn. As L/K is totally ramified, rS = seqnS. It

then follows that

ev(r) = vi(r) = vi(seqn) = eqnvi(s)
and thus v(r) = qnvi(s) = qn = ∣Di/Ii ∣n = ∣Di ∣n/∣Ii ∣.
Lemma 4.6 ([Lor11, 5.2]) Under the hypotheses of Lemma 4.5, the non-regular

points of Z are precisely the branch points Q1, . . . ,Qb of Yk → Zk.

If K = Qp and L = Qp(√d) then R = Zp, S = Zp[√d], k = Fp, and σ(√d) =
−
√

d. If additionally X = XD
0 (N)Qp

, then YFp
is smooth and we can realize Y ≅

XD
0 (N)/Zp[

√
d] from Corollary 2.1. If we take α = wm ○ σ and take Z = Y/⟨α⟩, then

the following holds.

Theorem 4.7 The scheme Z/Zp
= Y/⟨α⟩ has generic fiber CD(N,d,m)Qp

, and there

is an equality of divisors ZFp
= 2Γ where Γ ≅ (XD

0 (N)/wm)
Fp

.

Proof Since there is a unique component of YFp
, n = 1. Let ξ′, ξ be the generic

points of the components of YFp
and ZFp

respectively. Then D(ξ′ ∣ ξ) = ⟨α⟩ since α

preserves YFp
. Since wm acts non-trivially on YFp

, I(ξ′ ∣ ξ) = {id}. The multiplicity

of the component corresponding to ξ is thus 2.

To determine the Γ such that 2Γ = ZFp
, recall that the pushforward under f ∶ Y →Z of YFp

forms a prime divisor of Z in ZFp
and must therefore be Γ. To determine

this pushforward, note that the induced action of σ on Spec(Fp) is trivial and con-
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sider the commutative square

Y α Y

Spec(Zp[√d]) σ

Spec(Zp[√d]).
The fiber product of this square with Spec(Fp) → Spec(Zp[√d]) is simply the

Spec(Fp)-involution wm on YFp
= XD

0 (N)Fp
. It follows that f , when restricted to

YFp
, becomes simply the quotient map XD

0 (N)Fp
→ (XD

0 (N)/wm)
Fp

, and therefore

Γ ≅ (XD
0 (N)/wm)

Fp
.

We note by Lemma 4.6 that Z is not generally a regular scheme. To make the

resolution of its singularities easier, we fix the following.

Definition 4.8 Fix an ordering {Qi} of the branch points of the quotient map

f ∶ XD
0 (N)Fp

→ (XD
0 (N)/wm)

Fp
. Let Pi denote the unique preimage of Qi under f .

Note that by definition, the Pi are exactly the points of XD
0 (N)Fp

fixed by wm.

When p ≠ 2, we will explicitly describe a desingularization of Z in the strong sense

[Liu02, Definition 8.3.39]. This will be a regular model of CD(N,d,m)Qp
. We will

first describe the branch points {Qi} and their Fp-rationality.

4.2 Atkin–Lehner Fixed Points over Finite Fields

Throughout this section, we will keep the notation of Definition 4.8. Note that since

Qp[√d] is totally ramified over Qp, Fp(Qi) ≅ Fp(Pi).
Lemma 4.9 Let Z be non-regular and π ∶ X → Z a desingularization in the strong

sense and assume that for all i, π−1(Qi) is a chain of rational curves such that at least

one has multiplicity one. Then CD(N,d,m)(Qp) is nonempty if and only if either

(1) (−m
p
) = 1 and one of the following holds:

● m = 2,
● H−4m(X) has a root modulo p,
● m ≡ 3 mod 4 and H−m(X) has a root modulo p,

(2) (−m
p
) = −1 and one of the conditions of Corollary 2.26 is satisfied.

Proof Note first that each component in π−1(Qi) must be isomorphic to P1
Fp(Qi).

Therefore by our assumption on π, Fp = Fp(Qi) if and only if there is a reduced copy

of P1
Fp

in π−1(Qi).
By Lemma 2.11, any QM-abelian surface over a finite field must be either ordi-

nary or supersingular. Suppose first that (A, ι) is supersingular and fixed by wm.

By Lemma 2.13, if (A, ι) is a supersingular QM-abelian surface over a finite field
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of characteristic p, then (A, ι) is superspecial. Therefore, one of the conditions of

Corollary 2.26 holds if and only if there is a QM-abelian surface (A, ι) fixed by wm

whose corresponding point Pi is Fp-rational.

Now suppose that (A, ι) is an ordinary QM-abelian surface over a finite field k

fixed by wm. By Theorem 2.14, there are elliptic curves E and E′ such that Endk(E) ≅
Endk(E′) ≅ R′ = Z[√−m] or Z[ 1+√−m

2
] (or Z[ζ4] if m = 2) and A ≅ E × E′. Now

note that the j-invariants of E and E′ are roots of H−4m(X)mod p, H−m(X)mod p

if m ≡ 3 mod 4, or H−4(X) if m = 2. If m = 2, then H−4(X) and H−8(X) have degree

one so for all p, H∆(X) has a root modulo p. Since the j-invariants of E and E′ are

defined over Fp, (A, ι) is defined over Fp. Therefore if Pi corresponds to the surface(A, ι) then Fp(Pi) = Fp.

Recall now the classical theorem of Deuring that if K is a number field, p ∣ p is a

prime, and E/K is an elliptic curve with CM by R∆, then E mod p is ordinary if and

only if (∆
p
) = 1 [Lan87, Theorem 13.12]. Therefore (A, ι) is ordinary if and only if

(−m
p
) = 1.

We have thus shown that either (1) or (2) holds if and only if there is a reduced

copy of P1
Fp

in some π−1(Qi). Since the strict transform of Γ in X has multiplicity

two, the presence of a reduced copy of P1
Fp

in some π−1(Qi) is equivalent to the pres-

ence of a smooth point of X(Fp). By Hensel’s Lemma [JL85, Lemma 1.1], the pres-

ence of a smooth point inX(Fp) is equivalent to CD(N,d,m)(Qp) being nonempty.

4.3 Tame Potential Good Reduction

In this section we construct a regular model of CD(N,d,m)Qp
. LetXZp

∶= Bl{Qi}(Z),
the blowup of Z along the branch divisor of YFp

→ ZFp
[Liu02, Definition 8.1.1].

Since the blowup construction gives a map X → Z which is an isomorphism away

from {Qi}, X is a regular model if and only if X → Z is a desingularization in the

strong sense if and only if X is a regular scheme.

To see that this is a regular scheme, let R = Znr
p , a strict henselization of Zp. We will

construct in this section an auxiliary schemeX ′/R. If we can show thatXR ≅ X ′, it will

follow that X is regular [CES03, Lemma 2.1.1]. Thus, the hypotheses of Lemma 4.9

would be satisfied and thus Theorem 4.1 would be proved.

Also fix S = R[√d], k′ the residue field of S, k the residue field of R, and note that

both k and k′ must be isomorphic to Fp. We note the following.

Lemma 4.10 Suppose that p ≠ 2 and let Q be a point of Qi ×Zp
R. Then Q is a tame

cyclic quotient singularity [CES03, Definition 2.3.6] with n = 2 and r = 1.

Proof Let α denote the extension of α from Y to YS. We wish to show that Ôsh
Z,Q

is the ring of invariants of a µ2 (or since p ≠ 2, Z/2Z) action. Fix an isomorphism

S[[X]] ≅ ÔY
S
,P where P is the unique preimage of Q under f ∶ YS → ZR. Since

wm is always Galois-equivariant, α(√d) = −√d. Since α induces an isomorphism

S[[T]] ≅ S[[α(T)]], α(T) = Pα(T) = ∑ j≥1 α jT
j . Since α is an involution, α1 = −1.

Then α(T) − T = −2T(1 +O(T)) , i.e., α(T) − T ≡ −2T mod (T2). Since −2 ∉ mS,
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S[[T]] ≅ S[[T′]] where T′ ∶= α(T) − T. Note also that α(T′) = α(α(T) − T) =
T − α(T) = −(T′). Therefore

√
d and T′ form a basis of uniformizers for the two-

dimensional local ring ÔY
S
,P and α acts as −1 on both

√
d and T′.

Note now that ÔZR,Q
is the ring of invariants of the µ2-action given by α on

S[[T′]]. Recall that since p ≠ 2 is a uniformizer for R and p is ramified in Q(√d)
where d is square-free, d is also a uniformizer. Therefore

S[[T′]] ≅ R[[t1, t2]]/(tm1

1 tm2

2 − d)
where m1 = 2, t2 = T′, and m2 = 0 in the notation of [CES03]. It follows that Q is a

tame cyclic quotient singularity with n = 2 and r = 1.

From here on, let b′ be such that∑b
i=1 Qi ×Zp

R = ∑b′

i=1 Q′i .

Definition 4.11 Let R be a discrete valuation ring with algebraically closed residue

field, X/R be a scheme, and P a tame cyclic quotient singularity of X of type n, r. Then

[CES03, Theorem 2.4.1] we can inductively produce a chain of divisors E1, . . . ,Eλ
and a set of integers b1, . . . , bλ such that

● There is a resolution X̃P → X of the singularity at P whose fiber over P is the chain

made up of the Eis.
● Ei ⋅ E j = δi, j±1 if i ≠ j, E2

j = −b j < −1.

● n
r
= b1 −

1
b2− 1

⋅⋅⋅− 1
bλ

.

This X̃P is called the Hirzebruch–Jung desingularization at P.

Theorem 4.12 If p ≠ 2 there is a desingularization of R-schemes X ′ → ZR such thatX ′k has the form

Γ
′

1

. . . . . . . . . . . . . . . . .

Γ
′

b′

2Γ′0

where Γ′0 is the strict transform of ΓR and for all i > 0, Γ′i ≅ P1
k. This is to say that there is

an equality of divisors onX ′ betweenX ′k and 2Γ′0+∑b′

i=1 Γ
′
i , Γ
′
0∩Γ

′
i = Q′i ∈ Qi×Zp

R, and

all intersections are transverse. Moreover XR ≅ X ′, and since X ′ is a regular scheme, so

is X . It follows that X is a regular Zp model for CD(N,d,m)Qp
.

Proof We construct X ′ by performing the Hirzebruch–Jung desingularization at Q

for all Q in all Qi × R. By Lemma 4.10, n = 2, r = 1 and thus λ = 1 and b1 = 2
1

in

Definition 4.11. Therefore X ′k has the form above [CES03, Theorem 2.4.1].

Recall now that X ′ → ZR, XR → ZR are birational morphisms and so there is a

birational map f ∶ XR ⇢ X ′ commuting with the maps down to ZR.
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Since R is Dedekind, f −1 ∣
Γ′0

is the identity and f can be extended so that the

preimage of each divisor on either XR or X ′ is again a divisor. We thus find that f is

a morphism and thus an isomorphism [Liu02, Theorem 8.3.20]. It follows that XR is

regular and therefore X is regular [CES03, Lemma 2.1.1].

Proof of Theorem 4.1 By Theorem 4.12, the conditions of Lemma 4.9 hold.

Remark 4.13 In the case that XD
0 (N)/wm ≅ P1

Fp
we can deduce this theorem from

work of Sadek [Sad10].

Remark 4.14 Retaining the notation of Lemma 4.6, if p = 2, we still have thatZ/Z2
is a normal scheme, non-regular precisely at the fixed points on the special fiber

of wm. Moreover, these singularities are still Z/2Z-quotient singularities. Once more,

we can resolve these singularities to give a regular model of CD(N,d,m). Unfortu-

nately Lemma 4.10 no longer holds, as these singularities are wild, and it is not known

under what circumstances a resolution will have non-reduced components.

5 Local Points when p ∣D

Fix a squarefree integer d, an integer m ∣DN, and a prime p ∣D unramified in Q(√d).
Let CD(N,d,m)/Q be the twist of XD

0 (N)/Q by Q(√d) and wm.

Theorem 5.1 Suppose that p ∣D is unramified in Q(√d) and m ∣DN. Let pi , q j be

primes such that D/p = ∏i pi and N = ∏ j q j .

● Suppose p is split in Q(√d). Then CD(N,d,m)(Qp) is nonempty if and only if one

of the following two cases occurs [Theorem 5.11]:

(1) p = 2, pi ≡ 3 mod 4 for all i, and q j ≡ 1 mod 4 for all j.

(2) p ≡ 1 mod 4, D = 2p, and N = 1.

● Suppose that p is inert in Q(√d).
– If p ∣m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs:

(1) m = p, pi /≡ 1 mod 3 for all i, and q j /≡ 2 mod 3 for all j [Lemma 5.7].

(2) m = 2p and one of eD/p,N(−4) or eD/p,N(−8) is nonzero [Lemma 5.8].

(3) m/p /≡ 3 mod 4 and eD/p,N(−4m/p) is nonzero [Lemma 5.8].

(4) m/p ≡ 3 mod 4 and one of eD/p,N(−4m/p) or eD/p,N(−m/p) is nonzero

[Lemma 5.8].

– If p∤m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs [Theorem 5.11]:

(1) p = 2, m = 1, pi ≡ 3 mod 4 for all i, and q j ≡ 1 mod 4 for all j.

(2) p ≡ 1 mod 4, m = DN/(2p), for all i, pi /≡ 1 mod 4, and for all j, q j /≡
3 mod 4.

(3) p = 2, m = DN/2, pi ≡ 3 mod 4 for all i, and q j ≡ 1 mod 4 for all i.

(4) p ≡ 1 mod 4, m = DN/p, for all i, pi /≡ 1 mod 4, and for all j, q j /≡ 3 mod 4.
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As opposed to the case where p ∣N, all conditions here are determined by congru-

ences. For completeness, we record the following.

Corollary 5.2 Let pi , q j be primes such that D/p = ∏i pi and N = ∏ j q j .

● If p is split in Q(√d), then CD(N,d,DN) ≅ XD
0 (N) over Qp and XD

0 (N)(Qp) is

nonempty if and only if one of the following two cases occurs:

(1) p = 2, pi ≡ 3 mod 4 for all i, and q j ≡ 1 mod 4 for all j.

(2) p ≡ 1 mod 4, D = 2p, and N = 1.

● If p is inert in Q(√d) then CD(N,d,DN)(Qp) is nonempty.

Proof Note that eD/p,N(−4DN/p) is always nonzero by Eichler’s Embedding Theo-

rem.

To prove Theorem 5.1, we shall need to work with regular models for XD
0 (N)Qp

and CD(N,d,m)Qp
.

Definition 5.3 Let π ∶ X → XD
0 (N)/Zp

denote a minimal desingularization. If x

is a superspecial point on XD
0 (N)Fp

let ℓ = ℓ(x) be as in Definition 2.5. If ℓ > 1,

π∗(x(Spec(Fp))) = ⋃ℓ−1
i=1 Ci where for all i, Ci ≅ P1

Fp
and exactly two points of Ci are

singular in X
Fp

.

For n ∣DN, let wn denote the automorphism of Definition 2.2. Note that extending

the automorphism wn from Definition 2.2 to X makes sense because wn ∶ X
D
0 (N) →

XD
0 (N) induces a birational morphism X ⇢ X permuting the components of XFp

.

Therefore wn on XD
0 (N) induces an isomorphism X → X [Liu02, Remark 8.3.25].

We note also that the components of XD
0 (N)Fp

are in W -equivariant bijection

with Pic(D/p,N)∐Pic(D/p,N) by Theorem 2.7. The intersection points, which

can only link a component in one copy of Pic(D/p,N) to a component in the other

copy of Pic(D/p,N), are in W -equivariant bijection with Pic(D/p,N p) as in Theo-

rem 2.7. The bijection of the components with two copies of Pic(D/p,N) is W /⟨wp⟩-
equivariant. As in Lemma 2.9, wp interchanges the two copies of Pic(D/p,N). We

define the length of a component of XD
0 (N)Fp

by the length of the associated element

of Pic(D/p,N) as in Definition 2.5.

Definition 5.4 Let σ be such that ⟨σ⟩ = AutZp
(Zp2). We denote byZ/Zp

the regular

model of CD(N,d,m)Qp
obtained as the étale quotient Z of XZp2 by the action of

wm ○ σ.

Note that if p is inert in Q(√d) then Zp[√d] ≅ Zp2 and thus the generic fiber ofZ is CD(N,d,m)Qp
. Therefore Z is a regular model of CD(N,d,m)Qp

if p is inert in

Q(√d).
We also note that if p is split in Q(√d), or if p is inert and m = 1, then we have

CD(N,d,m)Qp
≅ XD

0 (N)Qp
. If p is split in Q(√d), we can consider d′ to be any

square-free integer such that p is inert in Q(√d′) and Z ′ to be the regular model of
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CD(N,d′, 1)Qp
≅ XD

0 (N)Qp
. Therefore, we shall obtain our results when p is split as

a corollary to our results when p∤m.

5.1 The Proof when p ∣m
Lemma 5.5 Let p ∣D be unramified in Q(√d) and p ∣m. Then CD(N,d,m)(Qp) is

nonempty if and only if one of the following occurs:

(1) p = m and there is some component of XD
0 (N)Fp

with length greater than one.

(2) p ≠ m and there is a component of XD
0 (N)Fp

fixed by wm/p.

Proof If p = m, this is an extension of a result of Rotger–Skorobogatov–Yafaev,

[RSY05, Proposition 3.4].

Now suppose that p ∣m but p ≠ m and recall the curve M/Zp
of Theorem 2.7. Let

π′ ∶ N →M be a minimal desingularization, so that NFp
is the twist of ZFp

by Fp2 and

wm/p. Since m ≠ p, wm/p is not the identity. Recall that a non-identity involution of

P1 fixes exactly two points of P1(Fp). Suppose that a component of N
Fp

is fixed by

wm/p (under the isomorphism N
Fp
≅ Z

Fp
≅ X

Fp
). Therefore there is a component

y ≅ P1
Fp

of ZFp
. Since all intersection points are rational and at most two singular

intersection points stayed Fp-rational, y contains the image of a smooth Fp rational

point. Since there is a smooth point of Z(Fp), CD(N,d,m)(Qp) is nonempty by

Hensel’s Lemma.

Finally we note that if a component C of X
Fp

is fixed by wm/p, then so is its image

π(C). If π(C) is a component of XD
0 (N)Fp

, we are done. If π(C) is not a com-

ponent, then it is an intersection point of two components C1,C2 of XD
0 (N)Fp

. It

follows that wm/p either fixes both of them or interchanges them. However, The-

orem 2.7 tells us that under the bijection between components of XD
0 (N)Fp

and

Pic(D/p,N)∐Pic(D/p,N), C1 must lie in one copy and C2 in the other. Since these

bijections are W /⟨wp⟩-equivariant, wm/p cannot interchange C1 and C2 and must

therefore fix them.

Example 5.6 Let X = X26
0 (1)/Z2

, which is regular over Z2. Depicted below is the

dual graph of X
F2

. This tells us that X
F2

is simply two copies of P1
F2

glued along the

F2-rational points of each.

x1● ●x′1

Since the action of w2 Frob2 fixes each component and intersection point, the

only fixed points are non-smooth, and thus C26(1,d, 2)(Q2) is empty for all

d ≡ ±3 mod 8. On the other hand, since the action of w26 Frob2 cannot interchange

x1 and x′1, it must act non-trivially on each component, and thus there must be a

smooth fixed point of w26 Frob2. It follows that C26(1,d, 26)(Q2) is nonempty for all

d ≡ ±3 mod 8.
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Lemma 5.7 If p = m and p is inert in Q(√d), then CD(N,d,m)(Qp) ≠ ∅ if and

only if one of the following occurs:

(1) For all primes q ∣ (D/p), q /≡ 1 mod 4, and for all primes q ∣N, q /≡ 3 mod 4.

(2) For all primes q ∣ (D/p), q /≡ 1 mod 3, and for all primes q ∣N, q /≡ 2 mod 3.

Proof Eichler’s Embedding Theorem shows that condition (1) is equivalent to

eD/p,N(−4) ≠ 0 and condition (2) is equivalent to eD/p,N(−3) ≠ 0. We know that

eD/p,N(−4) ≠ 0 if and only if there is a component of XD
0 (N)Fp

with length divisi-

ble by two and eD/p,N(−3) ≠ 0 if and only if there is a component of XD
0 (N)Fp

with

length divisible by three. This is to say that one of the two conditions of the lemma

occurs if and only if there is a component y of XD
0 (N)Fp

such that ℓ(y) > 1. But

then by Lemma 5.5 there is such a component if and only if CD(N,d,m)(Qp) is

nonempty.

Lemma 5.8 If p ∣m and p ≠ m, then CD(N,d,m)(Qp) is nonempty if and only if

one of the following occurs:

● m = 2p and one of eD/p,N(−4), eD/p,N(−8) is nonzero.
● m/p /≡ 3 mod 4 and eD/p,N(−4m/p) is nonzero.
● m/p ≡ 3 mod 4 and one of eD/p,N(−4m/p) or eD/p,N(−m/p) is nonzero.

Proof Suppose that p ∣m and p ≠ m. In view of Lemma 5.5, CD(N,d,m)(Qp) is

nonempty if and only if a component of XD
0 (N)Fp

is fixed by wm/p. After Lemma 2.9,

such a component corresponds to an element of Pic(D/p,N). After Lemma 2.21,

such a component is fixed by wm/p if and only if there is an embedding of Z[√−m/p]
(or Z[ζ4] if m/p = 2) into the QM endomorphisms of (A, ι). Such an embedding

of an order R exists if and only if there is an optimal embedding of an order R′ ⊃ R.

In this case, the only orders which contain Z[√−m/p] are itself or Z[ 1+
√
−m/p
2
] if

m/p ≡ 3 mod 4. Respectively, their discriminants are −4m/p and −m/p, so the result

follows from Eichler’s Embedding Theorem.

5.2 The Proof when p∤m

If p∤m then the action of Frobp on the components and intersection points ofZ
Fp
≅X

Fp
coincides with the action of wmp. However, by Lemma 2.9, the action of wmp on

XD
0 (N)Fp

fixes no component. In fact, we conclude the following.

Lemma 5.9 Suppose that p∤m is unramified in Q(√d). Then CD(N,d,m)(Qp)
is nonempty if and only if there is a superspecial wmp-fixed intersection point x of even

length in XD
0 (N)Fp

.

Proof If CD(N,d,m)(Qp) is nonempty, then by Hensel’s Lemma there is a smooth

point of Z(Fp). Therefore, there is a smooth point P of X(Fp) fixed by P ↦

wmP Frobp = wmpP. By Lemma 2.9, the action of wmp on XD
0 (N)Fp

fixes no com-

ponent. Therefore, π(P) = x is the intersection point of two components. Since

P is smooth, π∗(x(Spec(Fp))) ≠ P(Spec(Fp)). Therefore ℓ = ℓ(x) > 1 and thus
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● ● x1● ● ●x′1

a● ● ●a′

● ● x2● ● ●x′2

Figure 1: The dual graphs of X
F13

and Y
F2

.

π∗(x(Spec(Fp))) = ⋃ℓ−1
i=1 Ci with Ci ≅ P1

Fp
as in Definition 5.3. Since wmp(x) = x,

wmpCi = Cℓ−i . Therefore, the only component that could be fixed by wmp is Cℓ/2. If

such a component exists, then ℓ must be even.

Conversely, if there is a superspecial wmp-fixed intersection point x of even length

then wmpCℓ/2 = Cℓ/2. There is thus a component of ZFp
which is defined over Fp.

It follows that there is a smooth point in Z(Fp) and therefore CD(N,d,m)(Qp) is

nonempty.

Example 5.10 Let X denote the regular Z13 model of X26
0 (1) and let Y denote the

regular Z2 model of X6
0(5). Depicted in Figure 1 are the dual graphs of X

F13
(on the

left) and Y
F2

(on the right). Respectively the arrows denote the action of w2 Frob13

and Frob2.

Even though the intersection points of length 3 on X26
0 (1)F13

are fixed by the action

of w2 Frob13, they can not yield smooth rational points, as the action exchanges a

with a′. The rational points here can only come from a fixed intersection point of

length 2. Since there is such an intersection point on X26
0 (1)F2

, there is a component

of X
F2

fixed by the action of w2 Frob13. Thus C26(1,d, 2)(Q13) is nonempty for all

d such that ( d
13
) = −1. Similarly, because the two intersection points of length 2 on

X6
0(5)F2

are not interchanged by the action of Frob2, there are components of Y
F2

fixed by the action of Frob2. Therefore X6
0(5)(Q2) is nonempty.

Theorem 5.11 If p∤m, CD(N,d,m)(Qp) is nonempty if and only if one of the fol-

lowing occurs:

(1) p = 2, m = 1, q ≡ 3 mod 4 for all q ∣ (D/2), and q ≡ 1 mod 4 for all q ∣N.

(2) p ≡ 1 mod 4, m = DN/(2p), q /≡ 1 mod 4 for all q ∣ (D/p), and q /≡ 3 mod 4 for

all q ∣N.

(3) p = 2, m = DN/2, q ≡ 3 mod 4 for all q ∣ (D/2) and q ≡ 1 mod 4 for all q ∣N.

(4) p ≡ 1 mod 4, m = DN/p, q /≡ 1 mod 4 for all q ∣ (D/p), and q /≡ 3 mod 4 for all

q ∣N.

Proof By Lemma 5.9, CD(N,d,m)(Qp) is nonempty if and only if there is a su-

perspecial wmp-fixed intersection point of even length. By Corollary 2.25, this can

occur if and only if mp ∈ {1, 2,DN/2,DN}, and for all q ∣ (D/p), either q = 2 or
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q ≡ 3 mod 4, and for all q ∣N p, either q = 2 or q ≡ 1 mod 4.

We show how this gives a new proof of the Theorem of Jordan, Livné, and Ogg.

Corollary 5.12 Let D be the discriminant of an indefinite Q-quaternion algebra, N a

square-free integer coprime to D and p ∣D. Then XD
0 (N)(Qp) is nonempty if and only

if one of the following occurs:

● p = 2, q ≡ 3 mod 4 for all q ∣ (D/2) and q ≡ 1 mod 4 for all q ∣N.
● p ≡ 1 mod 4, D = 2p and N = 1.

Proof If p = 2, we are in case (1) of Theorem 5.11. We cannot have p = DN for any p

since p ∣D and thus D is divisible by at least two primes, so Theorem 5.11 (3) or (4)

cannot occur. If DN = 2p with p ≡ 1 mod 4 then we must at least have (2p) ∣D, but

then D = 2p and N = 1.

Finally we give a family of examples of twists of XD
0 (N) which have points every-

where locally.

Example 5.13 Let q be an odd prime and g the genus of X
2q
0 (1). Let p ≡ 3 mod 8

such that (−p

q
) = −1 and for all odd primes ℓ less than 4g2, (−p

ℓ
) = −1. Consider the

twist C2q(1,−p.2q) of X
2q
0 (1).

Note that since p ≡ 3 mod 8 and (−p

q
) = −1, both 2 and q are inert in Q(√−p).

Therefore C2q(1,−p, 2q)(Q2) and C2q(1,−p, 2q)(Qq) are both nonempty by Corol-

lary 5.2.

Since (−p

q
) = −1 and p ≡ 3 mod 4, ( q

p
) = −1. Since p ≡ 3 mod 8, (−1

p
) = −1

and ( 2
p
) = −1. Therefore (−2q

p
) = −1 and (−p

2
) = ( p

2
) = −1. Since we already had

(−p

q
) = −1, we can apply Theorem 4.1 to say C2q(1,−p, 2q)(Qp) ≠ ∅.

Let ℓ∤ 2pq be a prime. If ℓ > 4g2 then we can apply Theorem 3.1 to see that

C2q(1,−p.2q)(Qℓ) is nonempty. If ℓ < 4g2 then we can apply Corollary 3.17 to see

that C2q(1,−p, 2q)(Qℓ) is nonempty.

Finally, since −p < 0, C2q(1,−p, 2q) /≅R X
2q
0 (1), the latter of which does not have

real points [Cla03, Theorem 55]. Therefore (X
2q
0 (1)/w2q)(R) ≠ ∅ if and only if

C2q(1,−p, 2q)(R) is nonempty. By Eichler’s Embedding Theorem, there is an em-

bedding of Z[√−2q] into any maximal order in B2q and thus X
2q
0 (1)/w2q has real

points [Ogg83, Theorem 3].

6 Local Points when p ∣N

Fix a square-free integer d, an integer m ∣DN, and a prime p ∣N unramified in

Q(√d). Let CD(N,d,m)/Q be the twist of XD
0 (N)/Q by Q(√d) and wm.

Theorem 6.1 Let p ∣N be unramified in Q(√d) and m ∣DN. Then CD(N,d,m)(Qp)
is nonempty if and only if (1) or (2) holds.

(1) p is split in Q(√d) and one of the following conditions holds:

● D = 1 [Lemma 6.8].
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● p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏ j q j with each q j ≡
1 mod 4 [Lemma 6.11].

● p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏ j q j with each q j ≡
1 mod 3 [Lemma 6.12].

● TF′(D,N, 1, p) > 0 [Definition 6.13, Lemma 6.14].

(2) p is inert in Q(√d), and there are prime factorizations Dp = ∏i pi , N/p = ∏ j q j

such that one of the following two conditions holds:

(i) p ∣m and one of the following two conditions holds [Theorem 6.7].

● p = 2, m = p or DN, for all i, pi ≡ 3 mod 4, and for all j, q j ≡ 1 mod 4.
● p ≡ 3 mod 4, m = p or 2p, for all i, pi /≡ 1 mod 4, and for all j, q j /≡

3 mod 4.

(ii) p∤m and one of the following nine conditions holds:

● m = D = 1 [Lemma 6.8].
● p = 2, m = 1, for all i, pi ≡ 3 mod 4, and for all j, q j ≡ 1 mod 4

[Lemma 6.11].
● p = 3, m = 1, for all i, pi ≡ 2 mod 3, and for all j, q j ≡ 1 mod 3

[Lemma 6.12].
● p ≡ 3 mod 4, m = DN/2p, pi /≡ 1 mod 4 for all i, and q j /≡ 3 mod 4 for all

j [Lemma 6.11].
● p ≡ 2 mod 3, m = DN/3p, pi /≡ 1 mod 3 for all i, and q j /≡ 2 mod 3 for all

j [Lemma 6.12].
● m = DN/p, pi /≡ 1 mod 4 for all i, and q j /≡ 3 mod 4 for all j

[Lemma 6.11].
● m = DN/p, pi /≡ 1 mod 3 for all i, and q j /≡ 2 mod 3 for all j

[Lemma 6.12].
● TF′(D,N,m, p) > 0 [Definition 6.13, Lemma 6.14].

Corollary 6.2 Let p be a prime dividing N such that p is unramified in Q(√d). Then

CD(N,d,DN)(Qp) is nonempty if and only if either

● p is split in Q(√d) and one of the following conditions holds:

– D = 1.

– p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏ j q j with each q j ≡
1 mod 4.

– p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏ j q j with each q j ≡
1 mod 3.

– TF′(D,N, 1, p) > 0.

or
● p is inert in Q(√d) with Dp = ∏i pi , N/p = ∏ j q j such that one of the following

holds:

– p = 2, for all i, pi ≡ 3 mod 4 and for all j, q j ≡ 1 mod 4.

– p ≡ 3 mod 4, D = 1 and N = p or 2p.

Definition 6.3 Assume that p ∣N. Let XD
0 (N)/Zp

be as in Theorem 2.8 and let

π ∶ X → XD
0 (N) be a minimal desingularization, so that XZp

is a regular model for
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XD
0 (N)Qp

.

The modelX is equipped with a closed embedding c′ ∶ XD
0 (N/p)/Fp

→ X such that

πc′ = c, the embedding defined in Theorem 2.8. Let σ be such that ⟨σ⟩ = AutZp
(Zp2).

Definition 6.4 Let Z be the étale quotient of XZp2 by the action of wm ○ σ.

Note that if p is inert in Q(√d) then Zp[√d] ≅ Zp2 and thus the generic fiber ofZ is CD(N,d,m)Qp
. Therefore Z is a regular model of CD(N,d,m)Qp

if p is inert in

Q(√d).
We also note that if p is split in Q(√d), or if p is inert and m = 1, then

CD(N,d,m)Qp
≅ XD

0 (N)Qp
.

Therefore, if p is split in Q(√d), we can consider d′ to be any square-free integer

such that p is inert in Q(√d′) and Z ′ to be the regular model of CD(N,d′, 1)Qp
≅

XD
0 (N)Qp

. Therefore, we shall obtain our results when p is split as a corollary to our

results when p∤m.

We shall organize our results into two sections. In the first, we will consider the

case when p ∣m. In that case, wm and thus the twisted action of Galois will permute

c′(XD
0 (N/p)Fp

) and wpc′(XD
0 (N/p)Fp

) on the special fiber. In the second, we will

consider the case when p∤m, and we may have to additionally allow for points on

c′(XD
0 (N/p)Fp

) . Note also that if Xo denotes the complement of the superspecial

points in X, XD
0 (N)oFp

= c′(XD
0 (N/p)oFp

) ∐wpc′(XD
0 (N/p)oFp

) .

6.1 The Proof when p ∣m is Inert

Suppose that D is the discriminant of an indefinite quaternion Q-algebra, N,d are

square-free integers with (D,N) = 1, m ∣DN, and p ∣m is inert in Q(√d). Fix X andZ as in Definition 6.3. If p ∣m, the action of wm on the regular modelX interchanges

c′(XD
0 (N/p)Fp

) and wpc′(XD
0 (N)Fp

). Therefore if P denotes an element of Z(Fp),
then π(P(Spec(Fp))) must lie on both copies of XD

0 (N/p)Fp
. This is to say that the

base change to Fp of πP is a superspecial point, say x.

Lemma 6.5 If D,N,d,m, p are as described in the beginning of this chapter and p ∣m
is inert in Q(√d), then CD(N,d,m)(Qp) ≠ ∅ if and only if there is a superspecial

wm/p-fixed point x ∈ XD
0 (N)(Fp) of even length.

Proof By abuse of notation, let Frobp = φ∗1 ∶ Spec(Fp) → Spec(Fp) where φ1 ∶ Fp →

Fp. Note that under the bijection from Z(Fp) to X(Fp), the Galois action P ↦

P Frobp on Z(Fp) translates to the action of P ↦ wmP Frobp on X(Fp).
Suppose that CD(N,d,m)(Qp) is nonempty. Then by Hensel’s Lemma [JL85,

Lemma 1.1] there must be an element of Z sm(Fp), or rather a smooth point, such

that P = wmP Frobp in X(Fp). Since p ∣m, wm interchanges c(XD
0 (N/p)Fp

) with

wpc(XD
0 (N/p)Fp

) . A smooth fixed point P of wm ○ Frobp must therefore map to a

superspecial point under π.
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P1
F3

P1
F3

P1
F3

P1
F3

X0(13)
F3

X0(13)
F3

Figure 2: The F3 special fiber of X .

Suppose that there is such a smooth fixed point P. Let ℓ = ℓ(x), so that smoothness

implies ℓ > 1. We have π∗x(Spec(Fp)) = ⋃ℓ−1
i=1 Ci with Ci ≅ P1

Fp
and if i < j,

Ci ⋅C j =
⎧⎪⎪⎨⎪⎪⎩

1 if j = i + 1, 1 ≤ i < ℓ,
0 otherwise.

By Lemma 2.22 x Frobp = wp(x), so we have wm ○ Frobp(x) = wmwp(x) = wm/p(x).
Therefore by continuity, wm/p fixes each Ci and for each i, wpCi = Cℓ−i . Therefore,

unless ℓ is even we arrive at a contradiction.

Conversely suppose that there is a superspecial point x such that ℓ = ℓ(x) is even

and wm/p(x) = x. Then we have C1, . . . ,Cℓ−1 fixed by wm/p by assumption. Since

wp fixes Cℓ/2, it follows that Cℓ/2 is defined over Fp. Therefore by Hensel’s Lemma,

CD(N,d,m)(Qp) ≠ ∅.

Example 6.6 The diagram in Figure 2 depicts the special fiber ofX over F3 whereX
denotes the regular Z3-model of X1

0(39) = X0(39) with the action w39 Frob3 given by

the arrows.

Note the resolutions of the four superspecial points of X0(39)
F3

: 1 of length 1,

2 of length 2 and 1 of length 3. Note also that while there are superspecial points of

length 2 and there are some superspecial points fixed by the action of w39 Frob3, there

are no superspecial points of length 2 fixed by the action of w13. As a consequence,

if 3 is inert in Q(√d) then C1(39,d, 39)(Q3) is empty, because there are no smooth

fixed points of w39 Frob3 on X
F3

.

This example illustrates an error in the criterion of Theorem 1.1(3) in the re-

cent paper of Ozman [Ozm12]. The correct numerical criterion is properly given by

Corollary 6.2, via the following theorem.
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Theorem 6.7 Suppose that D,N,d,m and p are as in Theorem 6.1 and p ∣m is inert

in Q(√d). Then CD(N,d,m)(Qp) ≠ ∅ if and only if

● p = 2, m = p or DN, for all q ∣D, q ≡ 3 mod 4, and for all q ∣ (N/2), q ≡ 1 mod 4, or
● p ≡ 3 mod 4, m = p or 2p, for all q ∣D q /≡ 1 mod 4, and for all q ∣ (N/p), q /≡

3 mod 4.

Proof By Lemma 6.5, CD(N,d,m)(Qp) is nonempty if and only if there is a super-

special wm/p-fixed point of even length in XD
0 (N)(Fp). By Lemma 2.9, the QM en-

domorphism ring of a superspecial point on XD
0 (N)(Fp) has discriminant D′ = Dp

and level N′ = N/p. Note that D′N′ = DN. By Lemma 2.25, there is a superspecial

wm/p-fixed point of even length if and only if m/p ∈ {1, 2,DN/2,DN}, and for all

q ∣Dp, q = 2 or q ≡ 3 mod 4, and for all q ∣ (N/p), q = 2 or q ≡ 1 mod 4.

6.2 The Proof When p∤m is Split or Inert

We begin with the following observation regarding cusps, which are points that can

only exist if D = 1.

Lemma 6.8 ([Ogg74, Proposition 3]) If N is square-free and m ∣N, then wm fixes a

cusp of X1
0(N) if and only if m = 1.

Therefore in our setting, C1(N,d,m)(Qp) contains a cusp if and only if either p is

split in Q(√d) or m = 1. We now illustrate the three ways in which CD(N,d,m)(Qp)
could be nonempty.

Example 6.9 Let D = 6,N = p = 11, m = 1 and d any integer such that 11 is inert in

Q(√d), say −1 for instance. Note that C6(11,−1, 1) ≅Q11
X6

0(11). Let X denote the

regular Z11-model of X6
0(11). Then the diagram in Figure 3 depicts X

F11
where the

arrows describe the action of w1 Frob11 = Frob11.

We check to see if X6
0(11)(Q11) is nonempty as follows. Although there are inter-

section points of length 2 and 3 on X6
0(11)

F11
, none are fixed by the action of Frob11.

Therefore the only way that X6
0(11)(Q11) could be nonempty would be if there were

a nonsuperspecial point in X6
0(1)(F11). Using the trace formula, or the fact that there

are only four superspecial points on X6
0(1)F11

≅ P1
F11

, we conclude that X6
0(11)(Q11)

is nonempty.

Lemma 6.10 Let D,N,d,m, p be as in Theorem 6.1 and suppose p∤m is un-

ramified in Q(√d). Suppose that CD(N,d,m)(Qp) does not contain a cusp. Then

CD(N,d,m)(Qp) ≠ ∅ if and only if one of the following occurs:

● There is a superspecial wmp-fixed point of even length on XD
0 (N)(Fp).

● There is a superspecial wmp-fixed point of length divisible by three on XD
0 (N)(Fp).

● There is a non-superspecial point of CD(N/p,d,m)(Fp).
Proof Recall that there is a bijection from Z(Fp) to X(Fp), under which the Galois

action P ↦ P Frobp on Z(Fp) translates to the action P ↦ wmP Frobp on X(Fp).
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P1

F11
P1

F11

P1

F11
P1

F11

P1

F11

P1

F11

X6
0(1)F11

X6
0(1)F11

Figure 3: The F11 special fiber of X .

By Lemma 2.22, the action of Frobp on the superspecial points of XD
0 (N)Fp

is

the action of wp. Therefore a superspecial Fp-rational point of Z corresponds to a

superspecial wmp-fixed point of XD
0 (N)Fp

.

Suppose now that CD(N,d,m)(Qp) is nonempty, or equivalently, by Hensel’s

Lemma, that Z sm(Fp) is nonempty. Suppose further that there are no superspecial

wmp-fixed points of length divisible by 2 or 3, that is, all superspecial points fixed by

wmp have length 1. It follows that if P is a smooth fixed point of wmp in X(Fp), then

π(P) = x is not superspecial.

Conversely, suppose first that there is an Fp-rational point of Z which is not su-

perspecial. By the embedding c ∶ XD
0 (N/p)Fp

→ XD
0 (N)Fp

, there is a non-superspecial

Fp-rational point of Z . Since XD
0 (N)Fp

is smooth away from superspecial points,

CD(N,d,m)(Qp) is nonempty by Hensel’s lemma.

Let x be a superspecial wmp-fixed point with ℓ = ℓ(x) > 1. Then

π∗(x(Spec(Fp))) = ℓ−1

⋃
i=1

Ci ,

with Ci ≅ P1
Fp

and at most two singular points in X
Fp

on each Ci . Since wmx Frobp =
wmp(x) = x, for all i, wm Frobp Ci = wmpCi = Ci by continuity of π. Therefore Ci

defines an Fp-rational component ofZ
Fp

with at most two singular points. ThereforeZ sm(Fp) is nonempty, and by Hensel’s Lemma, Z(Qp) is nonempty.

Lemma 6.11 There is a superspecial wmp-fixed point of even length on XD
0 (N)Fp

if

and only if one of the following occurs:
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(1) p = 2, m = 1, q ≡ 3 mod 4 for all primes q ∣D, and q ≡ 1 mod 4 for all primes

q ∣ (N/2).
(2) p ≡ 3 mod 4, 2 ∣DN/p, m = DN/2p, q /≡ 1 mod 4 for all primes q ∣D, and q /≡

3 mod 4 for all primes q ∣ (N/p).
(3) m = DN/p, p /≡ 1 mod 4, q /≡ 1 mod 4 for all primes q ∣D, and q /≡ 3 mod 4 for all

primes q ∣ (N/p).
Proof By Lemma 2.25, there is a superspecial wmp-fixed point of even length if and

only if mp ∈ {1, 2,DN/2,DN}, and for all primes q ∣Dp, q = 2 or q ≡ 3 mod 4, and

for all primes q ∣ (N/p), q = 2 or q ≡ 1 mod 4.

Lemma 6.12 There is a superspecial point of length divisible by three in XD
0 (N)(Fp)

fixed by wmp if and only if one of the following occurs:

(1) p = 3, m = 1, q ≡ 2 mod 3 for all primes q ∣D, and q ≡ 1 mod 3 for all primes

q ∣ (N/3).
(2) p ≡ 2 mod 3, 3 ∣DN/p, m = DN/3p, q /≡ 1 mod 3 for all primes q ∣D, and q /≡

2 mod 3 for all primes q ∣ (N/p).
(3) m = DN/p, p /≡ 1 mod 3, q /≡ 1 mod 3 for all primes q ∣D, and q /≡ 2 mod 3 for all

primes q ∣ (N/p).
Proof The proof is similar to that of Lemma 6.11.

We note that since p∤ (DN/p) and m ∣ (DN/p), we may recall that

TF(D,N/p,m, p) = (p + 1) − tr(Tpm),
as in Definition 3.15. With this in mind we make the following definition.

Definition 6.13 If p ∣N and m ∣ (DN/p), we let

TF′(D,N,m, p)

∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

TF(D,N/p,m, p) − ( eDp,N/p(−4)
w(−4) +

eDp,N/p(−8)
w(−8) ) mp = 2,

TF(D,N/p,m, p) − ( eDp,N/p(−4mp)
w(−4mp) +

eDp,N/p(−mp)
w(−mp) ) mp ≠ 2,mp /≡ 3 mod 4,

TF(D,N/p,m, p) − eDp,N/p(−4mp)
w(−4mp) mp ≡ 3 mod 4.

Lemma 6.14 There is a non-superspecial Fp-rational point of Z if and only if

TF′(D,N,m, p) > 0.

Proof Let Y/Zp
denote the smooth model of CD(N/p,d,m). By Theorem 3.14,

#Y(Fp) = (p + 1) − tr(Tpm) = TF(D,N/p,m, p). By Lemma 2.22, there is a su-

perspecial point in Y(Fp) if and only if there is a superspecial point fixed by wmp in

XD
0 (N)(Fp). By Corollary 2.21, there is a superspecial point x in XD

0 (N/p)(Fp) fixed

by wmp if and only if Z[√−mp] (or Z[ζ4] if mp = 2) embeds into Endι(O)(A) where(A, ι) corresponds to x.

We now count the number nmp of wmp-fixed superspecial points, so that we can

subtract them off. Suppose that O′ is an Eichler order O′ of level N/p in BDp, ℘m is
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the unique two-sided ideal of norm mp inO′, and M1, . . . ,Mh are right ideals ofO′
which form a complete set of representatives of Pic(D/p,N p). Under Lemma 2.9,

nmp is the number of indices i such that Mi ≅ Mi ⊗ ℘m. Thus [Vig80, p. 152], the

number of such superspecial fixed points is the number of embeddings of Z[√−mp]
(or Z[ζ4] if mp = 2) into any left order of an Mi . If mp = 2, then the number of these

is
eDp,N/p(−4)

w(−4) +
eDp,N/p(−8)

w(−8) .

If mp ≠ 2 and mp /≡ 3 mod 4, then the number of these is

eDp,N/p(−4mp)
w(−4mp) .

If mp ≡ 3 mod 4, then the number of these is

eDp,N/p(−mp)
w(−mp) +

eDp,N/p(−4mp)
w(−4mp) .

Unlike the case p ∣D, the conditions under which XD
0 (N)(Qp) is nonempty were

not previously known when p ∣N and D > 1. In the following, we eschew the TF′

notation to show how it is possible to directly compute on the special fiber of this

Shimura curve. Note that condition (4) is simply the inequality TF′(D,N, 1, p) > 0.

Theorem 6.15 Let D be the discriminant of an indefinite Q-quaternion algebra, N a

square-free integer coprime to D, and p ∣N. Then XD
0 (N)(Qp) is nonempty if and only

if one of the following occurs:

(1) D = 1.

(2) p = 2, for all q ∣D, q ≡ 3 mod 4, and for all q ∣ (N/2), q ≡ 1 mod 4.

(3) p = 3, m = 1, for all q ∣D, q ≡ 2 mod 3, and for all q ∣ (N/3), q ≡ 1 mod 3.

(4) The following inequality holds:

⌊2√p⌋
∑

s=−⌊2√p⌋
s≠0

( ∑
f ∣ f (s2−4p)

eD,N/p( s2−4p

f 2 )
w( s2−4p

f 2 ) ) > 0.

Proof First we note that if D = 1, then there is a Q-rational cusp by Lemma 6.8. Set

m = 1 and assume D ≠ 1. By Lemma 6.10, XD
0 (N)(Qp) is non-empty if and only if

one of the following occurs:

● There is a superspecial wp-fixed point of even length in XD
0 (N)(Fp).

● There is a superspecial wp-fixed point of length divisible by three in XD
0 (N)(Fp).

● There is a non-superspecial Fp-rational point.

By Lemma 6.11, there is a wp fixed point of even length if and only if one of the

following occurs:

● p = 2, for all q ∣D, q ≡ 3 mod 4 and for all q ∣ (N/2), q ≡ 1 mod 4.
● p ≡ 3 mod 4 and DN = 2p.
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● DN = p and p = 2 or p ≡ 3 mod 4.

However, if either of the latter two occurs, then D = 1, in contradiction to our

assumption.

By Lemma 6.12, there is a wp fixed point whose length is divisible by three if and

only if one of the following occurs:

● p = 3, for all q ∣D, q ≡ 2 mod 3 and for all q ∣ (N/3), q ≡ 1 mod 3.
● p ≡ 2 mod 3 and DN = 3p.
● DN = p and p = 3 or p ≡ 2 mod 3.

Once again, if either of the latter two occurs, D = 1. Suppose now that in addition

to D ≠ 1, all superspecial points have length 1, so the number of non-superspecial

Fp-rational points on XD
0 (N/p) can be written as

(p + 1) − tr(Tp) − ∑
f ∣ f (−4p)

eDp,N/p(−4p

f 2 )
w(−4p

f 2 ) .

Recall now Theorem 3.9, the Eichler–Selberg trace formula on H0(XD
0 (N/p)Fp

,Ω) :

tr(Tp) = (p + 1) − ⌊2√p⌋
∑

s=−⌊2√p⌋
( ∑

f ∣ f (s2−4p)

eD,N/p( s2−4p

f 2 )
w( s2−4p

f 2 ) ) .
Therefore, if p ≠ 2 there is a non-superspecial Fp-rational point of XD

0 (N/p) if

and only if the following quantity is nonzero:

(p + 1) − ((p + 1) − ⌊2√p⌋
∑

s=−⌊2√p⌋
( ∑

f ∣ f (s2−4p)

eD,N/p( s2−4p

f 2 )
w( s2−4p

f 2 ) )) − ∑
f ∣ f (−4p)

eDp,N/p(−4p

f 2 )
w(−4p

f 2 )

= ( ⌊2
√

p⌋
∑

s=−⌊2√p⌋
s≠0

( ∑
f ∣ f (s2−4p)

eD,N/p( s2−4p

f 2 )
w( s2−4p

f 2 ) )) + ∑
f ∣ f (−4p)

eD,N/p(−4p

f 2 ) − eDp,N/p(−4p

f 2 )
w(−4p

f 2 ) .

Now recall that

eD,N(∆) = h(∆) ∏
p ∣D(1 − {

∆

p
}) ∏

q ∣N(1 + {
∆

p
})

and f (∆) is the conductor of R∆. Therefore eDp,N/p(∆) = (1−{∆p })eD,N/p(∆), and

thus eD,N/p(∆) − eDp,N/p(∆) = {∆p }eD,N/p(∆). However, consider that f (−4p) = 1

or 2, depending on p mod 4. Moreover, if p = 2, then f (−8) = 1. Therefore, since

p ∣ −4p

f 2 for all f ∣ f (−4p), we have

{
−4p

f 2

p
} = 0.

Finally, if p = 2 and (2) does not hold, then eDp,N/p(−4) = 0, and the formula of (4)

still suffices.
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We now find, for infinitely many pairs of integers D and N, infinitely many non-

trivial twists of XD
0 (N) that have points everywhere locally.

Example 6.16 Let q be a prime that is 3 mod 4 and consider the curve X1
0(q). We

will show that if p ≡ 1 mod 4 is a prime such that ( q

p
) = −1 then C1(q, p, q)(Qv)

is nonempty for all places v of Q. Since p > 0, C1(q, p, q) ≅R X1
0(q) and thus

C1(q, p, q)(R) ≠ ∅. We note that since p ≡ 1 mod 4, Q(√p) is ramified precisely

at p. Therefore if ℓ∤ pq is a prime, then ℓ is unramified in Q(√p). If ℓ splits in

Q(√p), then C1(q, p, q) ≅Qℓ
X1

0(q) and thus C1(q, p, q)(Qℓ) ≠ ∅. If ℓ is inert in

Q(√p), then C1(q, p, q)(Qℓ) ≠ ∅ by Corollary 3.17.

Since p ≡ 1 mod 4, ( p

q
) = ( q

p
) = −1, and thus q is inert in Q(√p). Therefore by

Theorem 6.1(b), C1(q, p, q)(Qq) is nonempty. Moreover, (−q

p
) = ( q

p
) = −1 and so

by Theorem 4.1, C1(q, p, q)(Qp) ≠ ∅.
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