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NONLINEAR INTEGRAL OPERATORS

AND CHAOS IN BANACH SPACES

PuiL DiamonD

Sufficient conditions are given for chaotic behaviour of

continuous transformations on Banach spaces. The conditions

avoid the requirement that mappings be expanding on compact sets

and are probably easier to verify for many classes of operator
equations than existing criteria. Two classes of integral operators
on C[0,1] are considered in the light of these results: one

nonlinear but compact, the second noncompact.

1. Introduction

The study of chaotic dynamical behaviour on Banach spaces is
relatively recent. Only a few theoretical papers have appeared which
deal with the genuinely infinite dimensional case, although it is well~
known that the centre manifold theorem implies that many infinite
dimensional processes have finite dimensional invariant attractors [9].
The self-reproductive cell PDE generates a chaotic semiflow on C[0,1]
(C73, {13, [(2]) , but this analysis is for a specific model, albeit
surprisingly linear. 2Zaslavskii [17] has given general sufficient
conditions involving "strong recursion structures" which depend on the
character of the Frechet derivative of a Banach space mapping. Kloeden

[5] describes wide sufficient conditions which are formally alike the
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reasonably well-understood finite dimensional result [4].

Unfortunately, the criteria of these last two authors are hard to
check and examples are difficult to come by. Zaslavskii provides a model
with a strong recursion structure, but it is finite dimensional. On the
other hand, Kloeden requires that a map be expanding on a compact set. It
is not always easy to demonstrate expansivity of integral operators in, for
example, the sup norm on C([0,1] , while compact sets are not always
natural objects of study within the context of noncompact operators. Here
these conditions are weakened to a point where they can be more readily

verified. The theorems are applied to nonlinear compact operators of the

form T : = (Tx)(t) = ]g ;§%§; w(s) m(x(g))ds . A nonlinear and generally
1 t
noncompact class of the form ILxKx: = (Tx)(t) = (Lx)(t) 10 ;§%¥§-m(x((s))d3

where L is affine, is also discussed. Although the theorems appear to be
only mild generalisations of other results, their virtue lies in the fact

that they can actually be applied to mappings such as those above.

The following section 2 sets out definitions and states results.
Corollaries to theorems 2 and 3 provide classes of chaotic mappings. The
theorems are proved in section 3 and the examples discussed in sections

4 and 5.
2. Definitions, notations and results

Denote by (, the cone of non-negative functions in ([0,1] and
{x € c(0,1] : ||lx - a|| s e}. For a, BeC, and a<8B
(that is B - a € C+) , define the q, g-slice D{a.B} = {x ¢ Cy :

a <% < B} . Suppose T maps (, to itself. If for u ¢ D{a,B} there

write S(a;E)

exists v ¢ D{a,B} such that u =Ty , we say that u has a
P-representation in p{a,8} . If «,8 have T-representations , define
the slice

DT{a,B} = {x ¢ D{o,B) : 2 has a T-representation}
and when there is no ambiguity use the abbreviations D,DT .

If X = DT{G,B} , aeX and O <X <1 Qdefine

https://doi.org/10.1017/5000497270001323X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001323X

Chaotic integral operators 277

X(a,\) = {z e X : |x(t) - a(t)]| 2 A||z-al| , 0t <1,

and either £ -ae(C, or a-=xc¢ C+}
Clearly i is closed, but possibly empty.

DEFINITION 1. 1et T : cf0,1] + C[0,1] be a continuous map and 4
be a closed bounded set in C, . T is said to be partially expansive

on A if T has a fixed point a € A and there exists A ¢ (0,1)
and u > 1 such that A(a,\) is nonempty and |(Tx)(t) - a| 2 u||z-al|
for each z ¢ A(a,A) and all t ¢ [0,1] .

DEFINITION 2. Let X be a Banach space and A be a bounded subset
of X . Following Kuratowski (6] define vy(4) , the measure of non-
compactness of A , to be inf{§ > 0 : A can be covered by a finite
number of sets of diameter not greater than 6} . Suppose 7T maps X
continuously into itself and that T takes bounded sets to bounded sets.
If, for some k e [0,1) , y(T(A)) < k y(4) for every bounded subset A of
X , we say that T is a strict set contraction. BAnalogously, if
y(T(4)) 2 k y(4) for every bounded subset 4 of X and some fixed
k >1 we say that T is a striet set dilation. If T is a strict set

. ~1 . -1 . . .
dilation and T exists, then T is a strict set contraction.

The first result uses ideas of Leggett [§] and shows that the non-

compact maps LxKr are in some cases strict set dilations.

THEOREM 1. ILet A be a subset of the Banach algebra B and
suppose that T : A » B 18 of the form Tx = (Lx)(Kx) where

(t) L :A~B satisfies |(Lx)(t) - (Ly)(t)| > ul|z=y|| for some u>0,
each t ¢ [0,1) and all x, y ¢ A ; and
(ii1) K : A+ B <s compact

Suppose Vv = infl(Kzx)(t) : x € A, 0st<1}>0. Thenif w>1, T
18 a strict set dilation. If, additionally, T has a fized point a € A
ad w - |izall 1lxl| > 1 s then T <is partially expansive on A.

DEFINITION 3. Let T : X + X be a continuous mapping of the Banach
space X and suppose there exist nonempty closed bounded subsets 4, B
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of X and integers Ngs Ny 2 1 such that

(1) BcAcT(A) , and T is injective on 4 ;
n

@ TIBna=g;
nytny nong,
(3) T is injective on B and T (B) > 4 .

Then we say that T ¢ CH(X) . 1In the particular case X = R , replace
A and B by the compact intervals I, J respectively.

Kloeden [4], [5] has shown that if T € CH(X) , that if A and B
are compact and T expanding on A , and if A is convex, then T is
chaotic (see [4] for a definition of chaos). Theorem 1 will be applied
to show the following theorems and corollaries which generalise Kloeden's

result and demonstrate classes of chaotic operators.
THEOREM 2. Let X be a Banach space and T a continuous mapping
from X to itself. Suppose that

(1) T e CH(X) ;
(2) T 1is partially expansive on the set A of Definition 3;
(3) The sets A, B of Definition 3 are compact, and A is convez.

Then T 48 a chaotic mapping on X.
COROLLARY 2. et the mapping T : C(0,1]1 + (0,11 be defined by
(1) (Te) (t) = [1 T y(s) mlx(s)) ds ,

0 r+i+s

where r > 0, y is a positive continuous function and m : [0,1] » [0,1]
is continuous and such that m =2 0 and

(1) m ¢ CH[O,1] ;
(2) m 1is expanding on the interval I of Definition 3;

(3) m is strictly monotone on I .

Then there exist r and ¢ for which T is chaotic on C+ .
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THEOREM 3. Let X be a Banach space and T a mapping from X to
itself. Suppose that

(1) T e CH(X)

(2) T 4is a strict set dilation on, and partially expansive on, the set
A of Definition 3;

(3) A is convex.

Then T <is a chaotic mapping on X .

COROLLARY 3. Let the mapping T : CL[0,1] » CL0,1]1 be defined by

(2) O (Tm)(t) = u(1-w(t)) [L L y(eimlz(e))ds

where r > 0 , Y 1& a positive continuous function, L 1is a positive real
and m : [0,1] > [0,1] <8 continuous and such that m > 0 and

(1) M : = 2(1-t)m(t) € CH[O,1] ;
(2) M is expanding on the interval I of Definition 3 ;
(3) m s strictly monotonic on I ;
(4) inf m(t) > sup(1-t) .
tel tel

Then there exist %, r, ¢ for which T is chaotic on C+ .
3. Proofs of theorems

Proof of Theorem 1. Let C be a bounded subset of 4 , let e > 0

and set © = sup ||Iu|| . Since X(C) is relatively compact, there exist
ueC

finitely many sets E., EZ"'"’ Ek in B such that diam E’L < 3e/fiw ,

k
1<4=<k and K(C)=1:_2_E'. . Sets Cl’ Coseevns Cn may be so chosen that

177

diam Ci 2 y(C) + €/2uv  for at least one 7 = 1*, 1 < 2* < n, and

k . ,
C'=ig10i . Define SiJ':L(Ci) Ej’ 1=1,..., n, g =1,..., k and note
that T(C) is covered by the Sij . If w, 3¢ Si*j , then there exist

U, veCi* and a:,yeE’J. such that w = 2Lu and 2 = yLv . Then
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|w(t)-a(t) | = | (xLu) (t)-(yLu) (t)+(yLu) (£)-(yLv) (t) |
> | (yLu) (t)-(yLv) (£) |- | (xLu) (t)-(yLu) (t) |
=| ylt) ((Lu) (£)-(Lv) (£)) |- | (x(t)-y(t)) (Lu) (t) |
=| y(t)| |(Lw) (£)-(Lv) (£) |- | (Tu) (£) | |z (£) -y (t) |
2v | (L) (t)-(Dv) (t) |-| |Lul| ||z-y|]|
2 \) | (Lu) (£)-(Lv) (t) |-3e/2

Thus | |w-z|| + 3¢/2 2 v||Lu-Lv|| 2 uv||u~v|| and it follows that
diam Si*j 2 vy (C)-¢ . Thus y(T(C)) 2 pyvwy(C) and T is a strict

set dilation. Also, |(KxLx)(t) - a(t)| = |(KxLz)(t) - (KaLa)(t)|
> | (Kx) (t) || (L) (t) - (La)(t}]| ~ |(La) (t)||(Kx)(t) - (Ka)(t)| 2 wv]||z-al|
- |Ixll |iza]] ||jz-a|| , and T is partially expansive.

Proof of Theorem 2. The much weaker condition of partial expansivity
replaces the requirement that f be strictly expanding - otherwise the
conditions are those of [4], [5]. Consequently, all the chaotic properties
follow from the usual constructions, except that it remains to show the

existence of a scrambled subset So for which 1lim inf lli"k:z: - TkyH =0
k > o

for all =z, ¥ € So . This is a consequence of the following lemma.

LEMMA 2a. Under the conditions of Theorem 2, given € > 0 there
exists a positive integer T(€) and a nomempty closed subset E of B

such that T;X(E) c A n S(aje) forall k> () , uhere a c 4 isa

fixzed point of T.
n1+n2
Proof. since T (B) > A , by the continuity of T there exists

n.n
a nonempty compact subset E of B such that T 1 Z(E') =4 . From (1)

of Definition 3 there exists a continuous inverse T;'Z : A~>4A and so by

the Schauder fixed point theorem there is a ¢ 4 with T‘Zza = a, that is

Ta = a . From the definition of partial expansivity there exists
A€ (0,1) such that [(Tx)(t) - a| 2 ul|z-a|l| , W > 1, for all
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~ - . ==
x ¢ Ala,A\) . Now A is closed in A , hence compact. Denote by T

the restriction of the inverse to 4 , which is continuous on A . Then

for any z ¢ E(a,\) < A4 , ||§ikx-a|| < u-k [ z-al | for each integer
k 21 . Hence for any ¢ > 0 there exists an integer Jj = j(x,e) such
that

f;j(x) e A n Slaze) < A n Slaze) .

From continuity there exists § = &8(x,e) > 0 such that

(3) EZJ’ (A n int S(x,6)) < A n S(aze) .

The collection {int S(z;8) : = ¢ E} is an open cover of E . It is
easy to see that E is closed in A , so compact, and thus there is a

finite subcover {int S(x.;6.) : 1 <7 <n} . Let 1t(e) = max J(x.,€)
v 1sisn v

and note that fZT(x) € A n S(a;e) for all x € E . From relation (3)

5;k(é) c A n Sla;e) for all k 2 t(e) .

Proof of Theorem 3. As in Theorem 2, most of the construction of
[4] goes through. Only two things need to be checked vis-a-vis the
weakened conditions : first that strict set dilations on closed convex
sets provide the fixed points needed by the construction; secondly that

an analogue of Lemma 2a holds so that SO exists. These are the substance

of the following two lemmas.

n.,mm
LEMMA 3a. Let g be the continuous inverse of T 2 w4 and
let Zzl be the continuous inverse of T on A . Then for each integer
k=0, Iik °g:A>A has a fized point y, € A.

Proof. Since T is a strict set dilator, TZl is a strict set

contractor, and hence so are Tzk and g. A theorem of Darbo [3]
states : if a strict set contraction f leaves invariant a closed,

bounded convex subset ( of a Banach space, then f has a fixed point in

¢ . ‘Thus T-k

" o g has a fixed point in 4 .
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LEMMA 3b. Under the conditions of Theorem 3, given € > Q0 there
exists a positive integer 1t = t(c] and a nonempty closed bounded subset

E of B such that T;k(F:') < A n Sla;e)} for all k 2 t(e)

n,n
Proof. since T Z(B) 2 A , there exists a nonempty closed
n1tg
bounded subset E of B such that T (E) = A . By Darbo's theorem
there is a fixed point q ¢ A of the inverse 5,;1 of T on A . BAs in

Lemma 2a, it follows that i’;km >aq as k »>o for all x € i’(a,)\) cAd .
Hence for any e > 0 there exists an integer J = j(x,e) such that
5'2'7(17) € A nSla;e) < A n Slaze) - From continuity there exists

§ = 8(x,e) > 0 such that

5’;‘7(‘3 n int S(x;8)) < A n S(a;e)

The collection {int S(z;8) : x € E} is an open cover of i’ . Consequently
T;l'j(int S(z;8)) 1is an open cover of f‘; . E. So § may be chosen so
small that
giam 779 (int S(z;6)) s v(779 E) + /2
< p"j Y(E) + ¢/2
where p > 1 is the constant of strict set dilation. Let T = 1(e)

=min {j : 07 y(E) < e/2} . Then 5’;‘ (x) ¢ Sla;e) n A for all x € E .

That is, f’;k (E) < A n S(a;e) for all k 2 t(e)

4, Proof of Corollary 2
A general proof involves a daunting number of constants depending
on fé Y , distances between the end points of the intervals I and J ,
+ n,. However all the ideas

1 2
of the proof are clearly displayed in the following specific example.

distances between slices in ( , and on n
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COROLLARY 2'. et H(t) = { 2t , O0sts1/2, Then there
2-2t, 1/2 s t<1.

exist a pogitive constant constant r and a positive continuous function
v such that the mapping T : C[0,1] » C[0,1) defined by

(4) (12) (8) = [ } 22 y(s) H(z(s)) ds

is chaotic.

A series of Lemmas (Lemma 2+J, 1 € J < §) will show that the
operator (4) satisfies the conditions of Theorem 2. At one point only
(Note 2.3) will it be necessary to indicate how and why anything extra

need be done to extend the treatment to the operator defined by (1).

The following notation is used throughout the remainder of this

section : Vle,t) = (r+t)Y(s8)/(r+ts+s),
. = = [1 vt = = !
¢ = ¢(t,r) = _[0 iirs V(e) ds , p=14q = fo v(is) ds,
qy = (qe-1)/(r+1) , p, = pr/(+1) , A = D {174/32, 74/8) .
B = D' (3¢/4, 76/8} , o= 17¢/32, B = 74/8 .

Note that p; € ¢ < p for all rz0 .

LEMMA 2.1. The slices D* {a,B} are compact convex sets.

Proof. Let =z, y € DT {a, 8}, and n e [0,1] . Clearly
a <nx+(l-nJy < B . Since =z, Yy are T-representations there are

elements Uys uy e D{a,B} such that x = Tux, y = Tuy and so

nz +(1-n)y = [} y(s,t) (nH(u,(8))+(1-n)H(u, (s)))ds . Since py < ||4]| <P ,

for suitable », v [||a]|, |]|B]|] « [2/2,1] and so

n H(ux) + (l-n)E(uy) = n(2-2ux)+(1-n) (2-2uy) = H(nux +(1-n)uy), S0

nr +(1-n)y is also a T-representation and thus in DT{G, 8} . For

t, t' el0,1] ,
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x(t) - z(t') = j‘é (ﬁdﬁj“(’ﬁ%ﬁ?f H(u (8))ds

and so the slice DT{a,B} is equicontinuous since ||H°ux|| < 2-2||al]| .

NOTE 2.1. For the general mapping (1), define Gqe 81 appropriately
so that [||a;], |I8;]|{1 I . Then m is injective on [|[ay|[, |[8;[]
and there exists v:n,y € D[al, 81] such that m(vx,y (t)) = nm(ux(t))

+ (1-n)m(uy(t)) and this extends the convexity argument of Lemma 2.1 to

the general case.

LEMMA 2.2. There exist a positive constant r and a positive
eontinuous function ¢ such that

Ac.T(A), T(B) aA=g and TB) >4 .
Proof. befine A_ = D'{17p/32, 7p,/8) ¢ 4 < A, = D' (17p,/32, 7p/8} ,
B. = D'{3p/4, 7p,/8} < B < B, = D' (3p,/4, 7p/8} .

It will be shown that T(A) >4, T(B,) nA=¢ and T°(B.) >4 .

We say that 7T is isotone on a slice if z; s %y implies that Ta:l < Tx2 ’
and that T is anti-isotone if z; <%, implies that Txl 2 sz . Now
T is anti-isotone on all the sets At’ Bt for 1 sps 8/7 and r
sufficiently large. Moreover, every element of T(At)’ T(Bt) has a

T-representation and so it suffices to consider only the images under T
of the “"end-functions" of each slice (provided T is injective, see
lemma 2.3). Suppose ¥ is so chosen that 0 < q < 1/35 , and that

r 2 48 . Then

(T 17p/32) (t) = [} wls,t) (2-17(1+q)/16)de

(15/16 - 17q/16) ¢

Il

> 29¢/32 since q < 1/35 , and
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(T 7p1/8) (t) = (1/4 + 7/4(r+1) - 7qr/4(r+1) ¢
< ¢/2 since r 2 48 .

In much the same way T(B+) nAd=¢g, and TZ(B+) 5 A is only slightly

more complicated because of the second iteration.
LEMMA 2.3. T <is injective on A and T2 18 injective on B .
Proof. Tx =Ty for all x, y € A if and only if Tx=1Ty , where

(1 z)(t) = [ Welzle) 4

(5) 0 r+tts

But (5) is the Stieltjes transform of u(t) = {\p(t):c(t), 0<ts<1,
0 s t>1
translated by » , and is thus injective ([10], chapter VIII, Theorem 5b).
Since ¢ is positive, x =y . On the other hand T(B) c DT{0,1/2}
and since T is injective on B, sz = sz for all x, y ¢ B if and only

if To:z = Toy and the same argument prevails.
NOTE 2.3. In the general case To has the form

_ 1 Yls)mlz(s))
(T ) (t) = [, i ds

Suppose that m is strictly monotonic on I and that DT{a,B} is such
that [||e|]|., |I18]]) ¢ I . For :r:,yeDT{a,B}, Tx =Ty if and only
if m(z(t)) = m(y(t)) on [0,1] by the injectiveness of the Stieltjes
transform. Since m is strictly monotonicon I , x =y . To see that
n1+n2 n.n

T is injective on B , use the injectiveness of m on J , the

argument of Note 2.1 and the Stieltjes transfomm.
LEMMA 2.4. There exists a fixed point ae¢ A of T.

Proof. T is injective and continuous on A4 , so there is a

continuous inverse T;z A+A . Since A 1is compact and convex the
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Schauder fixed point theorem may be applied and, any fixed point of

T;ll is also a fixed point of T .

LEMMA 2.5. Let r, p be as in Lemma 2.2 and choose ) > (2p1)-1 .

Then ;l(a,)\) i8 a nonempty compact subset of A and T is partially

expansive on A . Moreover T(A) >4 .

Proof. since |+| and ||:|| are continuous, it is obvious from
the definition of A that it is closed in 4 and thus, by Lemma 2.1,

compact. Moreover, if &« € A then

| (Tx) (t)-a(t) | | (T2) (£)~(Ta) (t) |

]

[}

2 fé ¥(s,t) |x(s)-als)|ds (see the definition of 4 )

v

e (t) | |z-al| ,

these last two lines explicitly using the definition of .Z(a, X)) , and note
that ¢ > p; so take u = 2>\p1 . It remains to show that 4 is nonempty.
Observe that dist(a, 34) > 0. For TD{35¢/64, 13¢/16} > 4 , so

dist(a, 94) 2 p1/6‘4. It follows that there exists u € 4, u # a , since
we may choose V¢ E‘+(a,c) with (2p2)-1 <e<1and ||v-all s 1/64;

for then u = Tv e 4 satisfies

\

[ (T (t) - alt)] 2 cp(t)||v-a]]

v

ep,|Iv-al| > Al|v=al| .

5. Proof of Corollary 3

As in the previous section the ideas of the proof are more accessible
in
COROLLARY 3'. There exist a positive comstant r and a positive

continuous function  such that the mapping T : CL0,1]1 > C[0,1]
defined by

(6) (Tz) (t) = 3.9(1-z(¢)) [} w(s,t)n(s)ds
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18 chaotic.

Lemma 3.1 - 3.4 below show that (6} satisfies the conditions of
Theorem 3, and Note 3.2 indicates the extension to the more general form
(2). 1In addition to, and differing slightly from the notations of Section
4, we say that x has a [K-representation if it has the form (Lu)(Kv)

for u, v € D{0,1} and write DLK{a,B} as the totality of
LK~-representations in D{a,B8} . In what follows Iu = 3-9(1-u) ,

Kv = fz Yv, A = co DLK {-6¢, *85¢} (the closed convex hull of DLK )
— DLK _ .
B = co {-794; -83¢} , n, = 1 and ng = 3 . Note that in general the

"X are not compact.
LEMMA 3.1. There exist » ¢ RT and Y e C'+ such that
AcTa), PB)na=p, (B 524.
Proof. Dpefine
A- =200 (-6p, -85p,} <4 < T I (ep,, 8epY =4,
B_ =G0 0" {-79p, -83p,} < B < 2o ’T {-79p,, -83p} = B,

and we show that T(4_) > 4, TZ(B+) nAd=¢g and that T4(B_) > A for
suitable r, Yy . As in Lemma 2.2, it suffices to consider only the images

under T of the end functions of each slice. Now T is anti-isotone on
Ay Bt for 1 <p < (-85)-1 , so T(-6p) = (-936 - -468q - 1-404q2)¢

> +85¢ provided 0 < q < +13 , and T(-85p1) = (.49725 - -595q1

- -7225q§)¢ < .6¢ provided q; 20, thatis ¢ < 1/r . The other
results follow in like, if more complicated, fashion.

LEMMA 3.2. Let ¢ be a positive continuous function and r ¢ r,
and define Tx = (1-x)Kx . Then T, is injective on A .

Proof. From Lemma 2.3, K is injective on D{1/2,1}, so it suffices
to consider the map x > xKx . Now xKx - yKy = (Ky + xK)(x-y)

and this can only be zero on appropriate slices A if x =y
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NOTE 3.2. (i) The calculations of Lemma 3.1 show that T(B) ,

T2(B) are subsets of D{1/2,1} , and T3(B) of D{0,1/2} . T is
injectiye on these images of B and so T4 is injective on B .
(ii) If K has nonlinear kernel m(z(s)) , then

.

xKx - yKy = (x-y)Ky + x(Kx-Ky) . BAs in Note 2.3 this is zero, on slices
D{a,B} for which m is strictly monotonic on [||al||, ||8||] , if and
only if x~=y .

LEMMA 3.3. Let r, p, q and q, be as in Lemma 3.1 . Then T 4is
a strict set dilator on A .

Proof. The first part of Theorem 1 is satisfied with u = 3-9 and
v = inf {(Rz)(t) : x « D(-65¢, 854}, 0 s t < 1} = -65p%

v 2 2-535p§ > 1.

LEMMA 3.4. There exists a fized point ae¢ A of T and T 1is
partially expansive on A .

Proof. T is continuous and injective on the closed convex set A
and so there is a continuous inverse 121 :A>A . But T is a strict
set dilator on A and thus TZI is a strict set contractor. Again using
Darbo's fixed point theorem (see Lemma 3a), Tzl a=qa for some a¢€ 4,
that is Ta = a . From the observation that 7TD{-69¢, -80¢} > A , it

follows that a e D{-69¢, -80¢} , |l|La|| s 3-9 sup(1--65¢) < 3-9(-31--69q,).
O<t<1

since [|kl| <p, w - ||Zal] |Ik]] 2 2-535pf -1-209>1, and T is

partially expansive by the second part of Theorem 1.
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