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Ice-stream surface texture, sticky spots, waves and
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ABSTRACT. This paper addresses the coupling of flows of ice, till and water, and the
issue of whether such coupling provides mechanisms for meso-scale (kilometres to tens of
kilometres) variability in ice-sheet flow and texture, The question of whether effective
pressures at the ice-bed interface are statically or hydraulically controlled is examined in
this paper. The answer is scale dependent, and has a significant effect on the relationship
between ice surface and basal topography.

The consequences of these considerations on till flow, coupled ice—till flow and
coupled ice, till and water flow are examined. An analysis of till-flow kinematics and
shock formation is carried out. The lincar stability of coupled long-waveleng th ice-till flow
is analysed, and regions in parameter space where this flow is unstable, with rather small
rate constants are found. Upstream-moving ice surface waves are predicted. The linear
stablity of coupled ice~till-water flow is examined, where water flow is modelled using a
basal flow system with effective-pressure-dependent properties. Again, regions in para-
meter space where the systemis lincarly unstable are found, this time with relatively rapid
rate constants. The water pressure exhibits “breather” modes,

These analyses assume that there is a substantial basal traction. A problem with
models of ice streams wholly restrained at the side is identified: they seem to predict ero-
sion rates which are unfeasibly large.

There appears to be sufficient variability in the ice— till-water system to potentially
explain texture in ice-stream surfaces, variations in ice-stream thickness of tens of metres
not directly relatable to topography, and waves moving upstream or downstream. Most
importantly, the ice-stream-bed system is shown to exhibit meso-scale variability simply
by coupling ice flow according to the shallow-ice approximation, till flow according to the
hydrostatic thin-till approximation and water flow according to an effective-pressure-
dependent hydraulics.
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cAyeal and others, 1995), the role of ice-stream margins
(Echelmeyer and others, 1994; Van der Veen and Whillans,
1996; Jackson and Kamb, 1997), migration of inter-stream
divides (Nereson and others, 1998), migration of smaller
scale wave-like forms (Hulbe and Whillans, 1997) and puta-
tive instability mechanisms (Kamb, 1991; Fowler and John-
som, 1995, 1996; Anandakrishnan and Alley, 1997a).

Tt seems that ice-stream texture is something of a puzzle;
for example, there is not always a clear relationship between
surface and basal topography (Whillans and Van der Veen,
1993; Bindschadler and others, 1996). Iigure 1 shows an
image of the Siple Coast ice streams, and shows in particu-
lar the small-to-medium scale (tens of kilometres) topogra-
phy that gives the fast-llowing ice streams surface texture. If
this texture is not due directly to form drag induced by flow
around obstacles, as Bindschadler and others (1996) state,
then it can only be due to variations in friction at the base
(Alley’s (1993) sticky spots) or variations in the properties of
the ice (e.g. Whillans and Van der Veen, 1993; Hulbe and
Whillans, 1997). In either case, we expect dynamism in these
forms, and there is some suggestion that this is true; Hulbe
and Whillans (1997) in particular identify surface forms
moving upstream, explaining this in terms of variations
within the ice fabric.

The implication of this is that ice-stream texture arises
from the same mechanisms which are believed to control
the large-scale flow of ice streams. This paper concentrates
on basal mechanisms which give rise to surface topography
not strongly related to basal topography and basal mechan-

isms which might give rise to spatial and temporal variabil-
ity in ice-stream flow. It shows that simple physical models
of ice, till and water flow give rise to a wide variety of possi-
ble behaviour; this is a desirable feature of models when the
message {rom observations at the moment is that rather
different types of behaviour are possible. A recent related
study, by Gudmundsson and others (1998), has found a
strong dependence of surface topography on basal-friction
variations. There is no intention to argue that variations in
ice rheology, due in particular crystal fabric, cannot pro-
duce the same sorts of effects.

A primary concern of this paper is the effect effective-
pressure distributions at the ice—till interface have onice dy-
namics. In particular, it is concerned with the coupling
between ice-sheet dynamics and long-wavelength (i.e. long-
er than the ice is thick) variations in the interfacial effective-
pressure distribution arising from both static and hydraulic
effects. This is a complex and controversial subject, and has
implications for, and ramifications on, variability in ice-
stream dynamics, ice-surface texture, water routings be-
neath an ice sheet and subglacial-sediment deformation. At
its heart is the interplay between static pressure gradients in
ice, water and sediment and the potential gradients induced
by the need to discharge subglacial melt, and the effect this
has on the coupled flow of ice, till and water.

A significant difference in the hydraulic theories of
glaciers overlying porous media and those overlying imper-
vious media is that, in the latter case, water is gencrally be-
lieved to drain through a thin film or distributed system

Fig. 1. AVHRR image of the Siple Coast. Upstream areas of ice streams marked with letters. Flow is separated into slow domes, with
smooth texture and clear vidges, fast-flowing ice streams with lots of texture, and the smoother, stagnant Ice Stream C. After
Bindschadler and Varnberger (1990) to whom thanks ave expressed for providing this image. The vertical dimension is about 500 km.
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which is more or less at the local ice pressure (Paterson,
1994; Hooke, 1998). Thus, the effective pressure is, on this
level of theorizing, independent of elevation. The implica-
tion of this is that hydraulic potential gradients are impor-
tant compared with static pressure gradients over short
length-scales. In contrast, for glaciers overlying porous
media, hydraulic gradients are small compared with static
pressure gradients over sufficiently short horizontal length-
scales. Thus, for example, as one moves up along the surface
of a porous subglacial hummock, the interfacial effective
pressure inereases owing to the difference in density between
ice and water.

A message of this paper is that contrasting the theories
in such a manner rather oversimplifies matters, Over short
wavelengths (how short is discussed extensively here), inter-
facial effective pressures are significantly aflected or con-
trolled by hydrostatic and lithostatic effects. We investigate
length-scales over which drainage by ground water alone is
possible, and consider the effects of basal and ice topogra-
phy on interfacial effective pressure and drainage routings.
Ifall water could be drained by ground-water flow, the mat-
ter would be simple; but it cannot in general, and there is in
consequence a need, especially for ice sheets advancing over
the continental shelf, for theory to explain drainage
between ice and till, for example that provided by Walder
and Fowler (1994). A more general theory from a dynamical
point of view, which includes the Walder—Fowler theory (but
does not make the same specific predictions about sub-
glacial sedimentology associated with drainage) and is also
related to that presented by Alley (1996}, is used in this paper
to examine the interactions between drainage, ice cover and
static effective-pressure gradients.

While theories of subglacial water flow which assume
that the water pressure is of the ice-overburden form are
well known, the lesser used theory of static effective-pres-
surce gradients has been exploited (Lliboutry, 1983; Boulton
and Hindmarsh, 1987, 1996; Hart and others, 1990: Boulton
1996a, b: Hooke. 1998) to construct theories which try to
explain a variety of glacial-geological [eatures; certain
properties of eskers, tunnel valleys, till thicknesses and
observations of depth of tectonization and drumlinization.
It is fair to say that in each of the cases the static ellfective-
pressure-gradient theories have not been ruled out as signif-
icant mechanisms,

An apparent implication is that at increased elevation
subglacial relief draped by or composed of porous sediments
will be more resistant to glacier flow owing to its increased
strength. This effect is quite significant; where hydraulic po-
tential gradients are small, a 100 m hillock will produce a
80 kPa difference in effective pressure between the top and
the bottom. Since such eflective-pressures differences are
comparable with typical basal shear stresses, and it is widely
believed that for a bed to be deforming, effective pressures
must be comparable with the applied shear stress, there is a
strong suggestion that even relatively gentle relief can signif-

icantly affect ice-stream dynamics and may be one cause of

the sticky spots (arcas of slower ice velocity) discussed by

Alley (1993). The basal relief of Ice Streams D and E is of

the order of hundreds of metres (Bindschadler and others,
1996), as is that of the Rutford Ice Stream (Smith, 1997).
However, if interfacial pressures are statically controlled, a
increase in ice thickness of 10m can also increase effective
pressures by 10° Pa and could amplify or damp effects in-
duced by variations in basal topography. The relationship
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hetween ice and surface topography where basal flow is ef-
fective-pressure dependent is investigated in this paper.

The theory of interfacial pressure distributions is re-
viewed in section 2. Here it is shown that over relatively
short length-scales, interfacial effective pressures are stati-
cally controlled, while over long length-scales, interfacial ef-
fective pressures are hydraulically controlled. What is meant
by short depends on the hydrogeological properties of the
aquifer beneath the glacier and the recharge rate. Above
sedimentary basins, static gradients are expected to occur
over length-scales of hundreds of metres to kilometres. This
analysis is extended by the introduction of the so-called
“linked-cavity” fpe of drainage system (Walder, 1986;
Kamb, 1987; Paterson, 1994; Walder and Fowler, 1994; Hooke,
1998), where storage and transmissibility decrease with ef-
[ective pressure; this is not a claim that linked cavities are
the main drainage routing but is a claim that R-channels
are not the preferred water routing under ice strecams (e.g.
Alley, 1989b, Walder and Fowler, 1994). There have been
some important recent borehole observations of subglacial
hydraulic system by Murray and Clarke (1995) of Trapridge
Glacier and Engelhardt and Kamb (1997) of Ice Stream B.
They describe the small-scale variability of basal water-
pressure systems and Engelhard and Kamb contrast these
with the much less variable large-scale flows. Hindmarsh
(1997a) and Engelhard and Kamb (1997) discuss the causes
and consequences of this scale-dependence of variability;
however, this remains an important unsolved problem.

In between the two poles of statically controlled and
constant interfacial effective pressures are cases where both
hydraulic and gravitational factors are significant. The
interaction between bed and ice topography, effective pres-
sure and drainage routings are examined in a plane-flow
model (section 2.5). This shows that coupling between static
and hydraulic gradients reduces, but does not eliminate,
interfacial effective-pressure gradients over short length-
scales.

The above analyses do not consider the additional
coupling induced by the flow of ice. This is introduced by
assuming that the ice motion is entirely due to till deforma-
tion. The ideas of till deformation in this paper rest upon the
notion of a viscous rheology for till, which is becoming in-
creasingly controversial; laboratory observations and point
measurements under glaciers indicate plastic-type beha-
viour (Kamb, 1991; Iverson and others, 1995; Murray and
Clarke, 1995). Hindmarsh (1997a) has reviewed this contro-
versy, arguing that while on the small scale till behaves plas-
tically on the larger scale the net effect of failure events is
that of viscous behaviour, One way of testing that till is
viscous on the large scale is by looking at the large-scale con-
sequences of the idea. To this end, tll kinematics and shock
formation (jumps in till thickness) are considered (section
3). This uses a model of subglacial till deformation, which
has a constant shear stress with depth and where effective
pressures are controlled by static gradients. We shall call this
an H'T'TA theory, for hydrostatic-thin-till approximation. It
was developed in the late 1980s by several glaciologists
(Boulton and Hindmarsh, 1987; Clarke 1987; Alley, 1989a).

The coupling of ice and till flow and topography are
examined in section 4. The consequences of these ellects on
sticky spots (Alley, 1993; Whillans and Van der Veen, 1993)
are considered, as well as the possibility that zones of drum-
lin formation may have dynamics; that is, subglacial condi-
tions may change so as to cause zones of drumlin formation
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to move. It is found that small variations in till topography
can induce much larger variations in the ice-surface topo-
graphy. In this section, the problem of how till and ice topo-
graphy change through time is not considered.

Some aspects of the dynamic problem are considered by
conducting a linear stability analysis (section 5.1). Hind-
marsh (1998b) has found that the HTTA model coupled
with Newtonian ice allows unstable growth of till relief for
short wavelengths (i.c. less than the thickness of ice). In this
paper, we carry out a corresponding linearized analysis for
long wavelengths. Regions of parameter space where till
flow is lincarly unstable are found. Shock formation is sug-
gested as a mechanism for non-linear quenching of these
instabilities. It is known that till kinematic waves can move
backwards (Hindmarsh, 1996) and it may be that obser-
vations of ice features moving upstream (Hulbe and Whil-
lans, 1997) are a consequence of this, a possibility that 1s
considered here.

This model is extended to include water pressure as a
prognostic quantity (section 3.3), its evolution being deter-
mined by a non-linear diffusion equation, analogous o the
Darcy equation but with effective-pressure-dependent para-
meters which represent a distributed system (Alley, 1996).
Again, a highly unstable system is found, with unstable
modes with very high growth-rate constants. “Breather”
modes in the water pressure occur. It is suggested that these
instabilities are related to observations of meso-scale variabil-
ity in ice strcams (Rose, 1979; Retzlafl and Bentley, 1993;
Bindschadler, 1997). These analyses differ from those of Kamb
(1991) because they are not coupled to the heat equation.

These linear-stability analyses are based on a model of
ice-stream mechanics which ignores lateral shear. There
have been some fairly strong assertions in the literature
(e.g. Whillans and Van der Veen, 1997) that basal resistance
in some ice streams is negligible. This conclusion is obtained
on the basis ol force-balance measurements and assump-
tions about ice rheology in the marginal zone. However, it
is shown in the Appendix (A.4) that ice streams resting on a
till layer less viscous than that suggested by Boulton and
Hindmarsh (1987) or Anandakrishnan and Alley (1997h)
will be subjected to unfeasibly large erosion rates. Animpli-
cation of this paper is that ice-stream texture can potentially
be explained by basal interactions, and it is the beliefof this
author that the debate over the partitioning of stresses
between base and flanks will be settled by explanations of
the smaller scale features within ice streams.

2. DRAINAGE THEORIES AND THE DATUM
EFFECTIVE PRESSURE

Much theory in soil mechanics is based on the idea of verti-
cal effective-pressure gradients determined by static condi-
tions. This assumption is valid over a wide range of
conditions for vertical gradients within the soil but the
situation is more complex along the ice—water interface. It
seems that the interfacial effective-pressure gradient de-
pends upon (i) whether ground-water flow is able o dis-
charge glacial melt and (i) whether any interfacial
drainage system (e.g., channels cut into ice or till, or sheet
flow or some other sort of distributed system) exists. In this
section, we analyse interactions of static effective-pressure
gradicnts and potential gradients necessary to discharge
meltwater.
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2.1. Pressure and stress fields: static interfacial
gradients

We let (2. y) be the horizontal coordinates, z the vertical co-
ordinate and ¢ represent time. The effective pressure is
defined by p.=p-—p, where p=op;+ (1= ey 13
termed the bulk pressure of the sediment, ¢ is its porosity,
Py is the water pressure and p, is the pressure in the sediment
grains. Under static conditions the bulk stress p = pi(D) +
pg(D — z) where pis the bulk density of the sediment, g is
the acceleration due to gravity and D represents the upper
surface and thickness of the till body. The water pressure is
given by py = pi(D) — pr + pw (D — z) where py is the den-
sity of water and pr = pe(D) is the effective pressure at the
ice—till interface, The effective pressure within the body is
given by pe = pr+ (1 — 0)(ps — pw)g(D — 2) and at the
base of the body by
pe=pi+ 8D, (1)
B=(1-¢)ps—pu)y. (2)
The horizontal pressure gradients along the upper sur-
face of the till are

dp; _Op 0D oD
dx —p Oz - Mo
dpy _dpw 0D oD
dz | p T 0z Ox Rt ™%

which when combined with the definition of effective pres-
sure vields

(‘(1% ;=D: (pw — Pi)!f% (3)

which integrates to
pr=p(z=D)=aD+p., (4)
o =r(py — Py, (5)

that is elevation causes an increase in the interfacial efective
pressure. The quantity p, is the datum ice-bed interface
effective pressure. This is an important idea, representing
the means by which hydraulic theories interact with the
present theory. The quantity r is a drainage-model switch,
taking on the values of | (interfacial effective pressures
statically determined) or 0 (interfacial effective pressures
constant, see section 2.2).

The integration of Equation (3) can be carried out along
an arbitrary line on the (i, y) plane; the theory is not re-
stricted to one dimension. Over relatively long length-scales
(depending on the hydrogeology) hydraulic potential gra-
dients are comparable with static gradients and in such
cases dpe/dx|._j is given by a hydraulic theory such as the
one developed by Walder and Fowler (1994). This is dis-
cussed further below.

The effective pressure at the base of the till body (1.c. at
z = () is given by combining Equation (4) with Equation (1)
to ohtain

Py =pe(z= f) =D +pc, (6)

where
y={p—p—d(ps —puw)lg=a+ 0. (7)
We also assume that the shear stress 7y, within the ice can be
transmitted to the till body and does not vary greatly with
depth. This is the “thin-till” approximation (Alley, 1989b).
This assumption is mechanically dubious under some of
the circumstances investigated in this paper and requires
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further investigation. It does represent the simplest mechan-
ical configuration able to produce discharge of till and, as
we shall see, produces quite varied results.

2.2. Pressure and stress fields: no interfacial
gradients

The classical glaciological hard-bed assumption is that the
effective pressure is constant (actually, zero) over the whole
bed. Having a zero interfacial effective-pressure gradient
gives rise to the usual glaciological calculations of water-
pressure gradients which are set by ice-surface gradients
(Paterson, 1994). We do still expect static gradients within
the sediment and the effective-pressure formula is thus
Pt = Pe;
o = pele=F) =80 4 p,.
Horizontal water-pressure gradients are given by the usual
[ormula
epw = pig0:H + py g0, f

where H is the thickness of the ice. This configuration applies
(i) to the case where the drainage system is very sensitive to
small changes in the effective pressure, and can maintain an
effective pressure which is constant, or (i) the water pressure
equals the overburden pressure and drainage is through a
thin film. These ideas have been discussed by Alley (1996).

The same cqmliom for surface and basal effective pres-
sures (Equations (4
r= 0,

remains constant.

) and (6)) can be obtained by setting

ensuring tlmi the interfacial effective pressure

2.3. Combined theory

In fact, we expect the situation to be more complex and for
effective pressure to be determined by a mixture of static
and hydraulic effects (e.g. Boulton and Hindmarsh, 1987).
In particular, for any LO]TII)]I]Z{HUII ol aquifer and basal
topography with reliel magnitude [?], there exists a hori-
zontal length-scale [L] such that the potential variations
needed to drive ground-water flow are comparable with
the static interfacial effective-pressure gradients. Over these
length-scales we expect topographic variation to be
reflected in the interfacial effective pressure.

There is some controversy over the spatial scale of drain-
age structures heneath ice sheets. If water flow is fully chan-
nelled then it is reasonable to assume that the channel
spacing will be determined by [L] (Boulton and Hind-
marsh, 1987; Walder and Fowler, 1994). In these cases, the hy-
draulic theories set the effective pressure in topographic
depressions, where the effective pressure is lowest and drain-
age channels most likely to form.,

Theories have also been proposed where the drainage
structures have small spatial scales (i.e. less than the hori-
Alley, 1993, 1996
Walder and Fowler, 1994). These drainage structures are

zontal length-scale of the relief) (e.g

considered in the following analysis; low-pressure R-chan-
nels are specifically excluded. Closely spaced channels can
co-exist peacefully with the large-scale drainage theories,
as they may describe drainage of the watershed into the
larger channels. It is expected that the interfacial drainage
systems will have effective-pressure-dependent transmissi-
bility; this is important because it can affect interfacial effec-
tive-pressure gradients,

We consider these situation in more detail by first show-
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ing how to compute [L] and then by considering the possibi-
lity of effective-pressure-dependent interfacial drainage,

2.4. Length-scales over which discharge by ground-
water flow is possible

Elevation differences large enough to be of significance
require relatively large bed slopes and thus relatively large
static pressure gradients as one moves along the ice—bed
(see Equation (3)). Over longer horizontal dis-
tances, where average slopes are less, the hydraulic gradi-
ents

interface

necessary to discharge subglacial melt become
comparable with static water-pressure gradients, and the in-
terfacial effective pressure is affected by hydraulic gradients.

[tis a straightforward matter to investigate length-scales
over which hydraulic gradients become significant and the
following calculation is in essence the same as that pre-
sented by Boulton and Hindmarsh (1987), who hypothesised
that tunnel valleys were spaced over length-scales where
hydraulic gradients became large.

We first seck those length-scales where drainage is possi-
ble by ground-water flow alone. A necessary condition for
this to be useful is that these length-scales are greater than
the fluctuation length-scale. For length-scales shorter than
those that appear in the [ollowing analysis, we expect inter-
facial effective pressure to depend primarily on elevation,
while for longer length-scales, we expect to find the water
pressure close to the ice overburden and regulated by an
interfacial drainage system.

One constructs a vertical scale [R], a horizontal length-
scale [L], and finds that the static interfacial-pressure-differ-
ence magnitude is (p; — py)g[R]. Under the Dupuit
assumptions (Bear, 1972, p. 361-366) the Darcy flux ¢, over
the depth of the underlying porous medium is given hy

kA Oy
Gy = ———=1mz (8)
i 0%

where 2is the hydraulic potential, g is the viscosity of water,
m is the basal melt rate, A is the thickness of the porous
medium and & is its permeability. The potential difference
¢ arising over a distance [L] is given by
2
1] pm[L]”
U] = ———
kA
At the length-scale where hydraulic and static gradients
become equal we have
[V] = (pw — i)yl B

and can solve for the length-scale

EA(ow —

i)y [R]

Jom

Let us take g0 = 0.001 Pas, m = 10 “ms ™, (py —p)g =
800Pam |, kA = (10715 — 10712V m® (see, e.g., Bear,
1972, table 5.5.1). The corresponding length-scale [L] is com-
puted and shown in'Table 1,

(L] =

The lowest length-scales correspond to the most im-
permeable strata, and the lowest permeabilities chosen for
illustration are very low indeed. Over good aquifers (e.g. k
=10 "m? Dz10m) the le ngth-scales are comparable with
those nl drumlins. Such aquifer transmissibilities could be
provided by a till deposit alone.

2.5. Drainage at the interface

We now consider the effect a distributed drainage system
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Table 1. Dependence of length-scale [L) of hydraulic/static
equality on the hydrogeology kA and the relief [ R]

EA L]

ﬂ],‘ m

107 % ([R]/m) "2
10" 10([R|/m)"
g 00([R]/m)"
10" 1000([ R /m)"

might have on the effective-pressure distribution. We use a
heuristic function & to describe effective-pressure-depen-
dent flow at the icebed interface

= (ﬁ—b‘ i (p@)) Vi, (9)

We model # as

k(o) = Fe/p) (10)

where K, 1s a constant. This is, in functional form, the same
as the Walder—Fowler model if we set A = n, the Glen expo-
nent, but we do not wish to restrict consideration to a parti-
cular drainage mechanism. This model causes the
transmissihility of interfacial drainage routes to increase as
the water pressure reaches the ice pressure and has been
examined by Alley (1996). The basic idea is that as the water
pressure increases, more and more routes become available
to drain the water as the ice and till decouple.

The value of &, determines whether interfacial routes
play a role in subglacial drainage, while the exponent A
determines the range of effective pressure over which inter-
facial routes play a significant role; the greater A, the nar-
rower the range of effective pressures where interfacial
routes drain significant quantities of water. The steady con-
servation equation

V.gq,=m

is then solved numerically using finite differences.

Firstly, it is solved in one dimension, across an finitely
long valley symmetric about the talweg with constant slope
across the valley. Various cases are solved with kA/m® €
(10” M I H. 10 10 q} . A no-flow condition is applied
at the hill crest, while the effective pressure is set along the
talweg, simulating the presence of a suhqla( ial river. In all
cases, this eflective pressure was set at 10" Pa.

We vary the constant g as part of the experiment. A mag-
nitude for the constant g was specified as follows. We write
Ko = Uks. We suppose that the hydraulic potential 1s roughly
of the same order as the channel potential. We then define £y
as that constant which permits water to be discharged at
around the channel effective pressure. Thus, to scale

[ =m[L] = (ﬁh/pm%

whence
. 2
o = p[} 'm[L]".

We then vary ) as a parameter; if ¢ < 1, then interfacial
drainage can only occur at very low effective pressures and
in consequence we expect effective pressures to be very low,
and water pressures to track the ice pressure, whileif 9 > 1,
interfacial drainage can occur at relatively high effective
pressures.
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Some typical calculation results are shown in Figure 2.
Figure 2a shows cross-valley effective pressures for various
transmissibilities; for each case the multiplier ¢ € {001, 1
100}. The results show that for low aquifer transmissibilities
kA. the value of the multiplier ¥ determines the drainage
style, with effective pressures being somewhat less than the
channel effective pressure (9 = 0.01), of roughly the same
magnitude (¥ = 1) and statically determined (¥ = 100).
Figures 2b, ¢ and d show the hydrogeology of a valley with
a bump on its side (Figure 2b), the computed effective pres-
sure (Figure 2c¢) and the transmissibility enhancement
#/kA (Figure 2d). The transmissibility kA = 10 ¥ m®* and
¥ = 0.01. There is an obvious increase of effective pressure
around the bump but the average vertical gradient follow-
ing the surface is about 25% of the static value. That is,
effective pressure does increase with bump elevation but not
as rapidly as if effective pressures were statically determined.
Very approximately, we can view the parameter r lying
hetween zero and one. The transmissibility enhancement
#i/kA is shown in Figure 2d. The area of the bump haslower
transmissibility. while its (lanks have higher transmissibility
and water from upstream is thus diverted around the bump.
The same experiment, but for ¢ = 1, is shown in Figures 2¢
and £ In this case, detailed inspection of the results shows
that while the effective pressure along the valley flank is
not statically determined, the effective-pressure gradient
following the bump is statically determined.

In short, we do not know enough about interfacial drain-
age in ice sheets to determine how interfacial effective pres-
sure varies with elevation for bumps of different horizontal
dimension but it is certainly possible that interfacial effective
pressure increases with elevation, possibly at nearly static
rates, and that this becomes more likely if the span of the
hump decreases.

2.6. Effect of ice topography

An interesting feature of the results above is that they can be
applied in a straightforward way to understand the effect of
variations in the ice thickness. From a hydrogeological point
of view the bump can also be considered to be a bump in the
ice thickness reduced by a factor of a/pig. In this case the
effective pressure is increased by the additional weight of
ice. A typical value of e is about 0.1 Thus, small variations
in the ice-surface topography can have marked effects on
hasal water pressures. By choking the drainage system, the
increased effective pressure causes water pressures to rise
under the ice mound. This reduces the increase in effective
pressure and allows more drainage to occur.

2.7. Coupling of ice, till and water flows

Such mounds of ice or sediment arise in response to the
coupled dynamics of the ice and the bed, and anything
which affects the water pressure in this way will also affect
the Tow of ice and of till, This means that we need to consid-
er the coupled flow of ice, till and water. We shall do this by
looking at the kinematics of sediment and shock formation,
an important topic for drumlin formation, and then we
shall use the analysis in linear-stability analyses of coupled
ice, till and the water-flow system. For this purpose it is now
convenient to develop a linearized ground-water model.
We model potential and effective-pressure distributions,
using the heuristic function & (see Equations (9) and (10)) to
describe effective-pressure-dependent flow at the ice—bed
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Fig. 2. The relationship between effective pressure, hydrogeology and topography. The quantity O determines at what effective
pressure interfactal drainage becomes significant; high O means it becomes signficant at a relatively high effective pressure. (a)
Dependence of effective pressure across a valley of uniform slope with varied a quifer transmissibility kA and interfacial drainage
coefficient ). For each transmissibility the effective pressure is plolted as a_function of distance x_from the valley axis. Each
transmissibility has three cases corresponding to ) € {0.01, 1, 100 ; the relative position of the lines is the same for each case.
For high O or high transnussibility, effective pressures are statically controlled ( i.e. increase with elevation), (b ) Study of the
effect of a bump in a valley side on pressure and water flow. Basal axes are posttions x and y. (b ) Valley topography with 30 m
bump. Case () corresponds lo the same valley with no bump. (¢) Variation of effective pressure p. over valley side, ) = 0.01. (d)
Variation in space of transmissibility enhancement arising from interfacial drainage & [ kA relative to aquifer transmissibilty;
=001 (¢) Variation of effective pressure pe over valley side; 0 = 1. (f) Variation of k [ kA relative to aquifer transmissibilty;
W) = 1. Note constrast in effective pressures between (¢ ) and ().

interface. Since we are now considering a dynamic theory,
the water storage has to be considered, and we assume it to
be given by (cf. Alley, 1996)

5= DI'Adpe -+ S(pv)

where the first term on the righthand side represents the
normal aquifer storage and the second term represents
storage in ponds, etc., at the interface which we also model
according (o some sort of power law

S(pe) = Se/pY.

This is motivated by similar considerations that led to the
transmissibility-effective-pressure relationship (Equation
(10)); as water pressure increases, the ice and till decouple,
leading to the creation of storage volume for water at the
iterface. Linearizing, we [ind that

ds ds

S(;Uu) = SH 17 ‘gl — Sfl '5‘7]’[-[ S - Pwl
dpe dpy
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where

ds - Sy

dp.  peo

S“ — S(p,\[)).

and the first-order storage is given by

5 5 VS'II -'/S-‘n
'51 = IOA L Pwl — - Pil
Peo Peo
and we can compute
kA dr o .
Gw = dwo o Qw1 = — + Ky + — Pel d_,-(ff’n == f;’|)
1t dp.

to find the first-order water ux

kA . ) dw
Gwl = — + Ko f).r'la'l 217 ()..".U’”_ Pel |-
1 dp.

Under the Dupuit assumptions (e.g. Bear, 1972, p. 361-366),
potential lines in aquifers are independent of depth. This
means that we can identify the first-order water pressure
(which is defined at the glacier base) with the frst-order
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potential. Conservation then gives us the first-order water-
pressure-evolution equation

v

MS[_:

Aope
(1 +£ﬂl’) dpw1 — Opn — ad Dy (11)

EAN g
=F (1 + 4_) a;pwl I ()J 1ii"llE0.l'pw-l_

R
(.).I'Q'IJEU.I'])H - aJ‘ U:’()CIEa.,»Dl

where we have used

ds o /\h’-n
dpe Pel)
and defined a diffusion coefficient
D A
F=dle. E=F>, (12)
JJSn Peo

We shall use this theory later.

3. SEDIMENT-FLOW KINEMATICS

In order to couple ice and till low we need to examine sedi-
ment kinematics. Our next step in investigating till flow will
be to produce a kinematic-wave theory (e.g. Whitham, 1974)
for which we need to know the sediment discharge-thickness
relationships. We also consider some aspects of shock forma-
tion, which is postulated to be an important part of
drumlinization and is one of the non-linear mechanisms
which acts to control the growth of sediment-thickness
instabilities.

3.1. Internal deformation flux relationship

The flux contribution arising from internal deformation can
he computed rom a postulated viscous relationship for till
(Boulton and Hindmarsh, 1987)

ea ;P

8z ¢ P’
where the subscript d refers to internal deformation. This
flux computation is discussed in detail by Alley (1989h)
who treats the special cases b = 1. 2. Since the effective pres-

(13)

sure varies linearly with the depth, we can compute the
integral by the change of variables

Ou du i o (i
5z Tope Mg ¢ A 1 /, 4dps/

whence
{1

&
u—uy = Ag m

(i

(p(i:—h - pé—b)' (14)
.
— A( — e G BN
T
(B —pl "o+ (b—2)8D)).  (15)
For b = 2 a special form exists

T” 5
= A4 = (In(pr/pv) — BDp, 1.

A special [orm also exists for b = 1 but we shall not consider
this case. Both [orms were derived by Alley (1989b).

3.2. Sliding

Two till-sliding laws have recently been proposed, a quasi-
plastic (Cuffey and Alley, 1996) and a viscous one (Hind-
marsh, 1996), which is the form used here. They need not be
mutually exclusive; plastic behaviour may be an appropri-
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ate description for small length- and time-scales, while the
viscous one is more appropriate for larger scales.
Hindmarsh suggested that the till-sliding velocity is
given by
T
up = As—. (16)
Dy
The flux contribution from sliding is Dy, and the total till
flux ¢ is given by the formula

T”

= A( i N . BD(b —
4= A g —pap W —m et DG -2))
Dr¢
+ A (17)
By
3.3. Scaling

"T'here are a large number of free parameters in the flux ex-
pressions but these can be reduced by scaling.

The scale of the glacially applied shear stress [7] is re-
garded as an externally determined parameter. There are a
number of reasonable choices in the way we scale the depth.
It can be done by setting

D) = [r1/ (18)
L.e. setting the depth-scale equal to the scale of the depth of
the base of deformation. Tt might seem logical to set the
depth-scale according to the initial condition, but owing to
the fact that there is a non-monotonic dependence of the
flux on the thickness in a large volume of parameter space,
this can result in the lux-scale computed below being com-
pletely unrepresentative. It is possible that in these cases the
most suitable depth-scale is that depth which produces the
greatest flux, but this scale is not always bounded, and in
any case this depth is only definable implicitly (see section
3.5). We thus use Equation 18 to set the depth-scale. Henceforth
in this paper, apart from presentation of results of computations in sec-
tions 5.2 and 5.4, discussion is presented in dimensionless units.

The cffective pressures are scaled

[pe] = [7]. (19)

whence in dimensionless form

Aqg 9t foud 6]
- s v 7D f -
1= 2=-n@a-» (p' LA =2

+ A E!
Py
where
B [TJ” +-2—b r {T]r‘—n’—fl
lA(I] T ,53‘2[1’}} 3 [A*-] == .8[(]] . (20)

The messy denominator (2 — b)(1 —b) in the flux expres-
sion is essential; this ensures that g is an O(1) function for
reasonable values of b. It is easy to show that in scaled form

p=p+D, pr=p+06D,
and after defining
U= (b—2)3/y+1 (21)
we can write the flux relation in scaled form as
= ﬁ@ ((p., +6D)% " — (p. + ¥D)(pe + D)H’)
+ A.D(p. + D)™ (22)
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The parameter 6 is given by

= a/y. (23)
We are free to choose [g], and the natural choice is to set it so
that one of the two cocfficients Ay, A, is unity, with the
other coefficient being the lesser. Thus, we compute

S

24
[9a] - (24a)
c—d+1
] = o (24h)
and set
lq] = max([qq]. [g]). (25)

and use this flux scale to compute the parameters A, 4.

The parameters 6 and W depend upon densities and the
acceleration due to gravity, which are well known, and the
porosity @, which can reasonably be expected to vary
between 0.2 and 04, which is a small variation when com-
pared with that conceivable in the other parameters, With Ps
= 2700kgm *, p, = 1000kgm *, p; = 9NTkem *, ¢ =
(0.2 — 0.4) gives 6 = (0.06 — 0.08) and we shall take
6 =10.07 in this paper, which roughly corresponds to
¢ =0.3. It is significant to have & non-zero, as this (i) leads
to reverse shock motion when internal deformation only is
occurring and the till thickness is sufficiently large, and (ii)
leads to the possibility of relief amplification when internal
deformation only is occurring and the till thickness is suffi-
ciently large. These processes can occur when the tll is slid-
ing even when é = (),

We see now that the parameters arc the exponents b, d,
the datum effective pressure p. and the rate-factor ratio
Ag/As. In this paper we shall not vary b and d indepen-
dently. The fourth free parameter is B, the initial thickness
of the sediment hody.

3.4. Analysis of the flux expressions

For the purposes of illustrating the dependence of flux upon
thickness, we consider the contributions from internal de-
[ormation and sliding separately. Defining P = D/pe, we
find from Equation 22 that we can write the flux relation-
ships in an alternative form as
4q
P)=—"
Bt s
(1+6P" — (14 wP)1+ P)')
= . (26
(2—=0)(1—1b) (28)

=P +B* (27)

QP =1
Ap.

The monotone direct dependence of Q on p,. expressed
by the middle relationships, implies that whether it de-
creases with pe for a given P simply depends on whether
b>2 and d > 1 for internal deformation and sliding re-
spectively. Thus, relations in Equations (26) and (27) show
how p. enters as a rate factor. Since we do not know As, Ay,
this is not as significant as the influence p. has through its
appearance in the variable P = D/p...

We illustrate Q(P) for both flow mechanism for various
b.d (Fig. 3). The constructions in Equations (26) and (27)
show that the datum effective pressure has two clearly
defined roles; as a rate factor, through its appearance multi-
plying the coefficients Ay, Ao, and as a depth-scaler,
through its appearance in the term P = D/p,. The thick-
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ness P determines whether a sediment body is thick enough
to experience kinematic-wave-velocity maxima and zeros
which are crucial to shock-generation properties.

Figure 3 shows that for small thickness, sediment llux
increases with thickness in both cases, Tor sliding, a maxi-
mum flux is reached for all cases of d considered, and there-
after the flux declines with thickness, and asymptotes 10
zero. The flux increases because more sediment is heing
transported in a plug flow, despite the decrease in the sliding
velocity. Eventually, the decrease in sliding velocity with
thickness (effective pressure at the base) becomes a signifi-
cant factor. A maximum flux is reached and thereafter the
flux declines asymptotically to zero if there is no internal
deformation present.

For internal deformation, the situation is more complex
and is analysed further in section 3.5. The flux increases but
the rate of increase falls as sediment thickness increases.
This is because the average viscosity increases with sedi-
ment thicknesses since the effective pressure and tll viscos-
ity are high at depth. Morcover, as the sediment-body
clevation increases, the effective pressure at the interface
increases owing to the density difference between ice and
water. This eventually causes a decrease in the flux for
b > 2. This is also analysed in section 3.5,

It is convenient from the point of view of presentation of
the flux relations to consider sliding and internal deforma-
tion separately, and to consider the dependence of Q upon P
rather than ¢ upon D. Where sliding and internal deforma-
tion are operating together, this convenience is lost. In
much of the rest of the paper, however, we consider 3, the
initial maximum thickness (which determines the subse-
quent evolution ), and p,. as being separate parameters. This
is essentially a matter of taste.

3.5. Kinematic waves and shocks

In Hindmarsh (1998a) drumlinization as a shock-formation
process is modelled using numerical codes, Shock formation
occurs when characteristics of the hyperbolic conservation
equation

AD+ g =10

cross. Kinematic waves move along these characteristics
and in this section we consider kinematic waves and shock
formation in rather more detail than in Hindmarsh (1998a .

Standard kinematic-wave theory (Lax, 1973: Whitham.,
1974) yields the following expression for the kinematic-wave
velocity

|
'=aD’
We can construct
o dq Qp, Qp. WP oD N
W=RF)=c="—=p~, ——=r"g 28
& (P) b ¢ 0 . 0 p (28)

thus, W is proportional 1o the wave velocity © This fact is
used in Figure 3 which illustrates the dependence of W and
thus von P = D/p. i.e. on a combination of the thickness
and the effective pressure. It should be remembered that the
relationships in Equations (26) and (27), which define the
ratio 0/q. imply a further monotone dependence of W
upon p. which does not affect the kinematic-wave analysis
which follows.
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Fig. 3. Till kinematics showing the dependence of Q(P) o flux q and W (P) x kinematic-wave velocily v on thickness for
internal deformation (a—c) and sliding (d f). Paramelers are b (internal deformation ), d ( sliding) and P = D/pc. (a.d)
Graphs of Q { never negative ) and W for internal deformation () and sliding (d). (b,d)=3. (b.¢ ) T hree-dimenstonal plots
of Qon P and b or d for internal deformation (b) and sliding (). Note viewing angles differ. (¢, /) Three-dimensional plots of
W on P and bor d for internal deformation ( b) and sliding (¢ ). Note viewing angles differ. Note that kinematic-wave veloctlies

are negative in some regions of the parameter space.

3.6. Kinematic-wave expressions: sliding

Let us consider the dependence of kinematic-wave velocity
on thickness. Consider first the case of sliding only.

et
g e [ 29
"TD D+p)\  Dtp il

and from Equation (28) we obtain

1 P
W=——-—(1—d——|- ik
1+ P)* ( P 1) (81)

The ratio D/(D + pc) < 1 but increases with D while the
quantity d is expected to be greater than one; plasticity the-
ory gives it as oc. Ifd > 1, this expression permits kinematic
waves which move both forwards and backwards, with
velocities becoming more negative as the till becomes thick-
er. This can be seen in Figure 3. The implication of this is
that shocks will form on the upstream side of the bodies,
which will therefore have blunt upstream ends, as do drum-
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lins. The thickness D, at which the kinematic-wave veloeity
becomes zero is given by

Pe 1

T i,
=i =

S
[
b

3.7. Kinematic-wave expressions: internal defor-
mation

For internal deformation alone, the wave velocity, its large
thickness asymptote and its derivative are given by

o Ay
ROV
((p( + D)_b(fsp(: + lPD) - (5(pL + 6D)|Ar’), (32&)
v (b"fll) Dl_b(\IJ s 5'24:)! D = p(/é‘ (32}))
dwv L :
7 A Aq((pe + D) M (WD + (20 — 1)pe)—
&{pe +8D)"). (32¢)
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The corresponding expression for W(P) is
1

WP) ==

((1 +P) 6+ UP) — 6(1 + ap)‘*“). (33)

which is also illustrated in Figure 3. This shows that kine-
matic-wave velocities increase with P (thickness) up to a
point, whereafier they decline, sometimes reaching negative
values.

3.8. Further analysis

3.8.1. Conditions for negative wave velocities, internal deformation
The asymptotic formula forlarge D (Equation (32b)) shows
that cases exist, depending on b and 6 (recall ¥ = (1 — §)
(b —2) +1), where the kinematic velocity is positive or
negative for sufficiently large D. We can write the condition
for v(D — oo) — 0 (assuming b > 1) is

(1-86)b-2)=1—8""°

Since by construction 0 < 6 < 1, we can casily show that
both sides of the equation are negative (positive) as b is
greater than (less than) 2, with equality occurring for
b = 2. Thus, negative wave velocities are expected for some
thickness when b > 2.7To be precise, if & = 0, (i.e. horizontal
hydraulic gradients are significant) the wave velocity
asymptotes to zero for large thicknesses but never becomes
negative, This is the only significant qualitative difference
between & = 0and & > 0.

We are particularly interested in whether negative wave
velocities can occur for realistic drumlin thicknesses. The
length-scale [D] is maximally of the order of ten metres,
while drumlins a hundred metres thick represent a very
approximate observational upper limit. We take the upper
limit of scaled drumlin thickness to be 40 and, using Equa-
tion (32a), look for those parameter ranges which give a flux
maximum, and thus a kinematic wave of zero, and compute
the (unique) corresponding thickness Dy if it exists in this
range. These values are shown in Table 2 and demonstrate
that the thickness decreases with p. and
decreases as b increases. There is an increasing expectation
of the thickness of maximum discharge being greater than

maximum

Table 2. Dependence of thickness of maximum fTux D on the
paramelers b and p. when a sediment body is deforming in-
lernally. The maximum was sought for in the range 0D40;
where il was not_found tn this range, a NaN (i.e. the IEEE
undefined number ) is specified. The search range is a plaus-
ihle upper limit to the range of scaled drumlin thicknesses

b\pe 010 020 030 040 0350 060 070 080 090 10

20: 25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
22 35 70 1 14 18 2] 25 28 32 35

24 1.7 33 50 67 84 10 12 13 15 17
26 11 21 5.2 13 534 64 7.5 86 97 11
28 078 16 23 31 48 L7 34 B2 70 7.8
3.0 061 12 1.8 24 30 36 42 48 85 6.1
32 049 099 L5 20 25 30 35 39 44 49
34 041 083 1.2 1.7 21 25 29 53 a7 |
3.6 036 071 11 14 18 21 2.5 29 32 36
3.8 031 062 094 12 16 19 22 Z5 28 3l
10 028 055 083 LI 1.4 1.7 1.9 22 U5 2B

Hindmarsh: Ice-stream surface texture, sticky spots, waves and breathers

the thickness of the original sediment body as b decreases
and as p, increascs.

Of course, there is a linear dependence of Dy upon p.
which arises [rom the symmetry of terms in D and p, in the
righthand side of Equation (32a) which we have previously
expressed through the ratio P = D/p.. Inspection of the
results inTable 2 shows that

D,  const.

bz 2

Rt

P (b—2)
which is analogous to the expression for the case of sliding
only (Equation (29)), but this is only approximate and not
deducible from the wave-velocity expression; it may be an
asymptotic result.

3.8.2. Thickness of maximum kinematic-wave velocity

In a similar way, the thickness D, corresponding to the
maximum  kinematic-wave velocity may be computed.
Where a maximum exists, again we expect reverse-facing
shocks, as kinematic waves from thinner, faster regions
catch up with those from thicker, slower regions. Thick-
nesses  corresponding (o maximum  kinematic-wave
velocities are shown inTable 3. The same symmetries ensure
that Dy o pe, and inspection of Table 3 shows that there is
an inverse relationship between Dy and b. The significance
of D, is that any sediment body which has an initial thick-
ness less than D, will not form upstream-facing shocks. It
can be seen that this is favoured by low effective pressures
and high b. The maximum kinematic-wave velocity for slid-
ing occurs when D = 0. Upstream-facing shocks are there-
fore inevitable for sliding,

3.8.3. Downstream-edge shocks

A further point of importance is that it can easily be shown

that for flow by internal deformation

do(D =0)
dD

which means that at zero the function is concave and up to a

v(D = 0) =0, = Agp %8 — 1),

(.

certain thickness we expect shocks to form at the down-
stream edge whatever the rheological index might be.

In the case of sliding, it is easy to see from Equation (29)
that at zero thickness the kinematic-wave velocity is the slid-
ing velocity, and that dv/dD = —2b/p"!, meaning that

dable 3. Dependence of thickness D, at which the maximum
kinematic-wave velocity occurs on the parameters b and p,. It
depends on p.., band b and no other parameters

Wpe 010 020 030 040 050 060 670 080 050 L0
15 017 034 031 069 08 10 12 14 15 17
17 013 025 038 050 063 075 088 10 11 13
19 0099 020 030 040 049 039 069 079 089 099
20 0087 007 026 035 044 032 061 070 078 087
22 0075 015 023 030 038 045 053 060 068 075
24 0065 013 019 026 032 039 045 052 058 065
26 0057 011 017 023 028 034 040 046 03 057
28 0051 010 015 020 025 030 036 041 046 05l
350 0046 0092 014 018 025 028 032 037 04 046
32 0042 0084 013 017 021 025 029 033 038 042
34 0038 0077 012 0I5 019 023 027 031 035 038
36 0035 0071 011 014 018 02 025 028 032 035
38 0033 0066 0099 013 016 020 023 026 030 033
40 0031 0062 0092 012 015 018 022 025 028 031
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wave speeds become faster as the sediment thins. No shocks
are expected at the downstream edge.

3.84. Equalily of kinematic-wave speed and shock speeds
It is of interest to know if there is any thickness where the
kinematic-wave velocity is equal to the shock speed, where
the till thickness on the other side of the shock vanishes. It is
easy to show for sliding that this does not occur at any finite
thickness.
For internal deformation, equality occurs when
Ag
Dv—g=0= (b_—T)

(D((Dr iy D) ‘h((s])t == lIJD) — 6(10[. ok (()D)l-h) =
1
((b,r + 6DV — (e + UD)(pe + D)l-f.))

which we can write in terms of P = D/p,

(Dv—q) ]
1= —=WP-Q=0
2 Agpz? it

(P((l +P) "6+ TP) —8(1+ 5P)‘—“)/(_b—

((_1 +6P)* -1+ ¥P)(1 + P)"")/(b—l)(b_:z)).

For 1.5 < b < 4, the P at which equality occurs declines
from about 4 to a bit less than 1. For example, if p. were 0.1,
P would range from 0.4 units to 0.1 units; roughly 4 m to 1 m.
For values of b less than about 1.5, P increases very rapidly,
above likely original thicknesses.

38.5. Effect of shocks on total relief

The inevitable effect of shock formation is to reduce the rate
at which relief grows or (o cause it to become negative.
Shocks move through the flowing material at different rates
to the kinematic waves, meaning that a shock will even-
tually move to an elevation maximum. At this point, the
clevation of the higher shock edge is that of the local maxi-
mum, and as the shock continues to move, the elevation of

the higher shock edge will decrease. In this way, the rate of

change of relicfis made (more) negative.

Where instabilities exist to cause sediment relief to
increase, we expect shock formation to occur. It is likely that
this could be sufficient to control the instability in an aver-
age sense.

3.8.6. Smoothing of shocks

A shock is an ideal state where the thickness of the sediment
jumps. In practice, the jump is smeared by diffusive pro-
cesses. These processes are likely to express themselves over
length-scales equal to the thickness of sediment deforma-
tion. Firstly, at this length-scale, the weight of the tll affects
the shear-stress distribution. Including this term will cause a
diffusive term in the sediment thickness to appear, which is
of significance at the length-scale of the deforming-layer
thickness. Secondly, over this length-scale, it is not at all
clear whether till behaves as a viscous fluid anyhow
(Murray and Clarke, 1995; Hindmarsh, 1997a). The effect
of this is unknown but is unlikely to operate over length-
scales much longer than the deforming-layer thickness. This
length-scale is of the order of a few metres and we thus ex-

600

https://doi.org/10.3189/50022143000002100 Published online by Cambridge University Press

pect the expression of shocks to be blunt, but not vertical
faces with horizontal expression of at the very most a few
tens of metres. Diffusion also leads to the decay of shocks,
but this also occurs in the absence of diffusion, so is not a
serious objection to the drumlinization as shock formation
discussed in Hindmarsh (1998a).

4. SEDIMENT-THICKNESS VARIATIONS AND ICE-
SURFACE TEXTURE

The increasing spatial coverage of ice-stream velocity fields
has led to the observation that there are spatial variations in
ice-sheet velocity over scales somewhat smaller than the ice
streams (MacAyeal, 1992a; Alley, 1993; Whillans and Van
der Veen, 1993). Of interest are recent observations by
Bindschadler and others (1996). They find that there is
increased roughness in the surface topography of Ilee
Streams D and E associated with areas of increased bed fric-
tion, and conclude that this variation in surface topography
is due to variations in bed friction rather than basal topo-
graphy. We ask whether this might be explained by coupling
of the HTTA theory with ice-flow theory. Two tractable
situations are long-wavelength variations in basal topogra-
phy (i.e. wavelength much greater than ice-sheet thickness)
and short-wavelength variations in basal topography
(wavelength much less than ice-sheet thickness). In the
latter case, it is known that under certain conditions, sheet
flow of till is unstable (Hindmarsh, 1998b) and it is hypothe-
sized that this might lead to zones of drumlin formation,
which increase basal drag (Smalley and Unwin, 1968;
Boulton, 1987; Menzies, 1989). We look at long-wavelength
perturbations below.

4.1, Long-wavelength bed variation and ice-stream
surface texture

We investigate relationships between basal and long-wave-
length ice-sheet topography using a perturbation method.
This is a long-wavelength theory and can determine the
necessary basal relief to create sufficient frictional variation
to induce observed ice-sheet texture.

We first need to establish the bottom-velocity relation-
ship for ice. We define scales for basal-ice velocity by

[ ]u+1—h

[’Lml = A([—Tg—, [u,,] = AS[TT‘H’.
where subscripts d,s refer to deformation and sliding
respectively. This scaling is equivalent to the flux scaling,

We need to consider the scaling of the applied shear
stress T a little more carefully. Using the variant of the Hut-
ter-Morland- Fowler scaling (Hutter, 1983; Morland, 1984;
Fowler, 1992) described by Hindmarsh (1997b) we can write
the shear-stress scale in terms of the ice-sheet-thickness scale
[H), the ice-sheet-aspect ratio or bed slope € and the density
ofice

[r] = epig|H]

and use the same scalings for the shear stress, effective pres-
sure and vertical distance. We also define a characteristic
length [X] = [H]/e. We now need to introduce the effect of
varying ice thickness on the interfacial effective pressure py.

At the point where we define the datum effective pres-
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sure, we define a datum thickness Hp, and we then con-
struct

H,=H — Hy.

The hydrostatic-pressure scale is pig[H], which implies that
aterm H, /& accounts for the contribution to effective pres-
sure from the varying thickness of ice, In scaled form there-
fore, the additional thickness enters divided by a small
parameter, and is thus likely to play a very important role,
The surface effective pressure is given by pr = p.+
rH,/e+ 6D, and the basal effective pressure by p, =
pe+rH, /= + D. We know [rom the shallow-ice approxi-
mation that 7 = —Hd,.(H + pD) where
[7] =3 -2
gom e PT s 1"
=B )
is the conversion factor from “till-thickness units” to “ice-
sheet-thickness units™ We can also write
_ epiglH]

BlH]

whence

o™=

i
=284 _ o,

Jj
Again, the parameter r enters; if 7 is zero, then the inter-
facial effective pressure is given by p. (recall 6 is a product
of r and some other terms), and this configuration repre-
sents the usual glaciological hard-bed case; if » = 1, inter-
facial effective pressures are statically determined.

We find in scaled form that
Ug = GrllHa:(H a3 I’D)lu

14 14
((I’v +rH./e+6D) " = (p. +rH./e+ D) ’)

= =5 .(34)

1
(pe + rH. /e + D)

Uy = Gs|HO(H + pD)|"

where

atl-h c—d
X][a
Ga ZL. G 2&. [u] = [ ]M.
(1] Bra [u]na [H|
We have chosen the length-scale [X] to be the characteristic
span of the ice sheet, so that & = [H]/[X]. This choice of

scales ensures that ice- and till-velocity units are scaled simi-
larly. We need to ensure that we choose the till-lux scale [q]
(see relationships in Equations (24a) and (24b)) such that
[q] = [u][D]. We do expect the scaled velocities to be order
one, otherwise our assumption that all the deformation is
occurring by till internal deformation cannot be correct,
but we can no longer expect the till flux to be order one in
general.

Let us write the velocity functions from Equations (34)
and (35) as

(R oy e )

and consider sensitivity coefficients

OR OR OR
=2 g 0B n PO 36
k=50 Fa=gw Hv=gn (36}

Iinally, we introduce a length-scale for the bed forcing
= < 1 (indimensionless units) and write a further scaling

£ =b/E,
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The perturbed ice flux is given by

{a) (h)
et B et ey
Hy  10:H,  pd(Di+ fi)

g1 = Hiug+ im0 | — + = 0. Hy

Hy Z8.Hy E

()
e

T —— 7 e
+ :R“Hi + RaDy + rRify .

() (e)

In steady state ¢ = 0. Consider first, for the sake of argu-
ment, the case where fi, D) are prescribed. We expect the
coeflicients By, Ry, Rp tobe O(1),and Ry = O(ré).

Consider first the case where Z > O(p. 2). Ifris O(1), it
is clear the dominant foreing terms (d) and (¢) will be ba-
lanced by the (a) term 2R, H on the righthand side, and
that we can expect Hy = O(eD,e6f1). If; on the other
hand, r = 0, terms (c) and (¢) are zero and we expect the
(d) term to be balanced by the (a) term and we thus expect
to find that H; = O(ZD,).We can illustrate by taking [H] =
1000 m, [D] = 10m, ¢ = 0.01. Then, if r = 1, 6 = 0.07 and
fi =01 (i.e. Im), since H; = O(gé f;) this should force a
change of 70 mm in the elevation of . If on the other hand
it were sediment relief of Im (i.e. D) = 0.1). we should ex-
pect Hy = O(eD)). a perturbation of 1 m. Now let us con-
sider the case r = 0. Since H; = O(ZD,) this could force
quite a large change in I for longer-wavelength variations
in the ull thickness; the rato of the ice-thickness change to
the till-thickness change in physical units is Z/p. Thus, if
= = 0.1 and g = 0.01, the ratio would be 10, and a 10 m till
mound would produce a 100 m ice mound. However, we do
not expect a till mound to persist in one position but to exist
as a travelling wave, with the implication that substantial
ice relief due to till mounds will also be a travelling wave.
This 1s nvestigated in the next section. Finally, consider
the case r = 0,E = O(yt. ). Then, we find that H, = pDy,
which in physical terms means that a 1 m change in Dy or fi
produced a change of the same order of magnitude in the ice
thickness.

Note that the dependence on bedrock topography arises
for different reasons (the effective-pressure variations) than
the classic reasons discussed by Budd (1970) and Johannes-
son (1992) and that this topography is measured in till units
(i.c. orders of a few metres) rather than ice-sheet units
(order of a kilometre). In both cases we do not expect to sce
a very obvious relationship between ice topography and
basal topography: when 7 = 1, a small additional ice weight
(the response from term (¢)) can suppress topographic in-
fluence, while when r» = 0, the influence of basal topogra-
phy on ice-surface topography is primarily controlled by
variations in till thickness and the length-scale over which
this happens (response from term (a)). Amplification (in
the sense that the ice-surface reliel is greater than the indu-
cing bed-surface reliel) can occur.

How does this analysis accord with such observations of
ice-surface rugosity? Typical normalized short-wave fluc-
tuations in the Iee Stream D and L profiles are maximally
0.05 (Bindschadler and others, 1996), which can be obtain-
able from small variations in till thickness in the appropriate
part of parameter space. We can say that the HT'TA theory
suggests correlation between bed and surface topography
should not be strong, as the influence of ull thickness and
eflective-pressure  variations will dominate, in general
agreement with Bindschadler and others’ results, but there
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is no specific validation. The HTTA scale theory does not
provide a simple explanation of why high traction and ice
texture should be associated; we shall see in the next section
that more sophisticated calculations do suggest the HT'TA
theory can explain this phenomenon.

It is not really possible to produce a sticky spot in a one-
dimensional analysis such as this. If the ice thickness is per-
turbed by 10%, then continuity implies that the steady

velocity will also be perturbed by 10%. An investigation of

sticky spots really requires a two-horizontal-dimension
study to determine whether basal perturbations such as
those described in this section can produce sticky spots.

4.2, Sticky-spot migration and the Smalley—Unwin
bifurcation

Smalley and Unwin (1968) proposed that drumlin fields ar-
ose as a result of spatial variation of stability properties. T do
not agree with their proposed method of relief amplification
but the idea that there is a spatially varying stability para-

meter which determines whether drumlins form or not is of

great significance. The possibility of some counter-intuitive
effects occurring exists; for example, Hindmarsh (1998h)
shows that for the short-wavelength instability, an increased
effective pressure tends to stabilise the sheet flow. An impli-
cation of this is that an increased effective pressure would
cause a drumlin field to disappear. If the drumlins, by pro-
truding into the ice are creating an obstruction to flow and
increasing the basal drag, their disappearance implies a
reduction in the form drag 1o see whether the disappear-
ance of drumlins can cause overall bed roughness to
decrease with increasing effective pressure, we need to look
at the drag contribution from drumlins. The following
analysis parallels that presented by Alley (1993) with some
emphasis on “skin {riction” (the drag at the interface) as
compared with “form drag”(increased stresses generated
within the ice).

We consider flow around cuboid shapes of dimension
(L, £y, £.), and consider the increase in skin friction only
along the upper surface. We configure the problem such that
the drumlin has a blunt upstream face of width £, elevation
£. and upstream slope £./¢,, and ()\'(‘ralll length L. The
strain-rate iiq w/f,, the stress B(u/t,)" and the force
Bl.t,(u/t,)". Here, B= A%. The extra skin friction is

Table 4. Contribution lo basal shear stress from drumlins
assumed 30 m high, occupying 20%% of the bed. The rows rep-
resent drumlin length, the columns the horizontal length of the
drumlin blunt end. Stress in Pa. The contribution of the skin
[riction is around 5 x 107 Pa, independent of the plan dimen-
sion. Stress contrihutions of both components are proportional
to drumlin elevation and to the ground covered by drumlins.
Drumlins can provide a substantial proportion of the driving
stress of a typical ice stream

L, 10 30 10 %107 3.0 x10°
T
1.0 x10° 33 x10* 24 % 10" 1.8 x10" NaN
3.0 %107 14 %10 1.1 x10* 92 x 10 7.9 % 10°
1.0 % 10* 77 x10° 6.8 % 10° 62 %10 58 x10°
3.0 x 107 5.8 x10° 5.5 % 10* 53 x 10 52 x10*
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given by rael £, L. If the drumlin density in terms of drum-
lins per unit arca is denoted @, we have ® = ¢, [, /= and
= = ¥,L;/®, which means that the increase in shear stress
1s given by

1
Blu/t.)"
bR, % 4 vy

Tor cases where the drumlins make a significant contri-
bution to typical basal shear stresses (in ice streams they are
typically 20-30 kPa), form drag is the dominating compo-
nent (Table 4). If till-sheet flow is unstable to sediment-
thickness perturbations, drumlin formation can occur very
much more quickly and could play a role in ice-sheet dyna-
mics, and this would only occur for soft-hedded ice sheets.
Migrating areas of drumlin formation or annihilation could
play a significant role in ice-sheet dynamics.

5. LINEAR-STABILITY ANALYSIS OF A COUPLED
ICE-TILL-WATER FLOW SYSTEM

We now introduce dynamic coupling between ice, till and
water flows though considerations of the linearized equa-
tions. Linear-stability analyses ol ice sheets date back to the
1950s (Bodvarsson, 1955; Nye, 1959). For an ice-sheet body
with a finite span, the lincarized eigenvalue problem is of
Sturm-—Liouville form (see also Hindmarsh, 1997b) which
implies that the basic response is relaxation hy diffusion.
For the infinite plane (e.g. Paterson, 1994) perturbations
propagate as well as relax. In either case, perturbations dis-
appear very quickly by a basically diffusive mechanism.
Further modes of behaviour are introduced by the flow of
till and water, but the diffusive mode always seems to exist.
We call this mode the Nye diffusion mode.

5.1. Model formulation

Firstly, we consider the coupling of ice flow and till flow. The
model configuration is an infinite plane with slope £, ice of
thickness Hj overlying a deforming bed of thickness Dy.
The till rate factor and constant cftective pressure py are
chosen such that the velocity on the top of the till is ug. By
assumption, internal deformation within the ice is negligi-
ble, so the ice is moving as a plug at that speed.

In this section we analyse the linear stability of a system
of coupled ice and till flow, with and without hydrological
modelling. The mechanical model of the ice is the shallow-
ice approximation, meaning that this is a long-wavelength
theory (wavelength longer than the ice-sheet is thick), in
contrast to the short-wavelength theory discussed by Hind-
marsh (1998b) where unstable growth was found to occur.
The perturbations are periodic along the plane, and we
consider perturbations for wavenumbers k.

First of all we consider cases where the water pressure is
uncoupled. To first order, we have

u=uy+ Ry + Ruper + Rp Dy + Rifi,
T = 'T“(H]/H() = 0J-H|/E = C‘)_‘{I_)I/E = Bxf]/f)‘
pe1 = rpigHi [e = rpH, [eHy

where changes in the interfacial effective pressure due to se-
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diment-thickness changes are included in the Rp term.
Hence we can write

Hl al'Hl O.I'D] U.rfl

oo H
+R“ﬁ#+ RnDy + R fi,

Hy d.Hy 8D Oy
g = upH, +HnTuR«( > e B o fl)

Hy ¢ € &

rpi0 H,

€ Hu

where the Ry = {R,, R,,. Ry, R¢} are defined in Equation
(36) and section A.l, and continuity for ice gives us

+ Hy R, —+ HyRp Dy + HyRifi

Hom R
Gy = I 'BH.—(R 7 + Ry 20 +u(.)() B
HymR
O™ 2Dy — HyRpdoD; + (37)
HnTnﬂ’n

——— & — BB fr.

Simiiar]y, we can write down the till-continuity equation as

Ot [)1 = "Qi 6.--71 - an').r}'h-l et Q”(l).l'Dl == Qf'(‘),l'.ﬂ s

where

dq g _ g _Og
(21 = T‘ Qn — 8])(\5 QI) e=> ()D Qf = E)f (‘58)
to obtain
p Qr T Qt 70 TPio \ .
aDy = n H 3¢
L D PH, — T +4Q Py . Hy (39)
Q‘T“ D1~ Quo.Dy + PR, — Qed i

Expanding lhc' perturbations in terms of trigonometric
functions

D, = D{(t)sinkz + D{(t) cos kz,
H, = H\|(t)sinkx + HY{(t) cos kz,
fi = fisinkx + f] coskx

where [ is a wavenumber, and substituting in the evolution

Equations (37) and (39) gives us mode-evolution equations
[or ice thickness

HS = — EgH' + A(R e R = uo ) Hj
— ErD; + kHoRp D — Enf¢ + kHoR:f?,
=~ ExHy — k(R + R, Lt
Enf?,

(40a)

— kHyRp DS — Eq D8 — HoReff — (40D)

and till thickness
i N "
Dl = — EQH (Q,‘T“ +-:Qx {1”) Hl

— EqD; + ""QDDT S o e G
'-” ;" .r’ ] (5 6
‘D] = == H_ (QITI] 3% Qn%) H1 - EQHl

— kQoD{ — EqD} — kQif; — Eqf}

(41a)

(41b)
where

HURn Tu’\

2

Stability is determined by the eigenvalues of this system.
An important point is that the coefficients in this equa-

tion system are all proportional to the till deformation rate

factor. This means that increasing the rate factor does not
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effect the location of bifurcations in the parameter space.
However, an increase in rate factor will lead o a propor-
tional increase in the basal velocity and in the rate constants
(i.e. the eigenvalues of the system). Having more than one
order of spatial derivatives means that scale dependencies
are not simple.

5.2. Computations for the linearized ice-till system

In this section results are given in dimensional units. Para-
meter space for the coupled icetill system (Equations (40)
and (4)) has been explored by sampling at approximately
60 000 points for r = O and r = 1 (constant interfacial effec-
tive pressure and statically-determined interfacial effective
pressure respectively). The set of sample points Sy com-
prised the direct product of the sets Dy/m € {1.2.5. 10, 20,
50}, Hy/m € {100, 200,500, 1000, 2000}, L/m € {200,
500, 1000, 2000, 5000, 10 000. 20000}, pu/10°Pa € {0.05
0.1,0.2,0.5,1}, 79/10° Pa € {0.2,0.5,1,2}, b € {1.02, 2.03,
5,10}, a € {1,2,5.10}, where L = 2n/k. Excluded from
Syt are the points in parameter space where L < H, as in
this region the shallow-ice approximation is not valid. The
basal velocity was set to be 100ma ', by adjusting the rate
factor. This study was carried out for internal deformation
only. For v = 1. only 1% of cases were unstable (had positive
growth rates), while 50% of parameter space contained in-
stabilities for » = 0. This is the opposite dependence from
the shorter wavelengths considered by Hindmarsh (1998b).
Figure 4 shows the proportion of cases with positive-growth-
rate binning along cach parameter in turn forr = 0. This is a
rough indication of how the parameter affects stability, These
include very strong dependencies on the thickness and the
cffective-pressure index b. The system is most unstable for
rather thin tills; this is the case the least likely to develop into
asurface of large relief.

Closer ins‘pm-liun ol the results shows that there is a com-
plex conjugate pair of eigenvalues with large negative parts
(relaxation times of less than a year), and these can be
shown to be approximately what would be expected if we
were simply dealing with short-wavelength ice-sheet diffu-
sion (Nye, 1959; Paterson, 1994). We shall call this rapidly
decaying mode the Nye diffusion mode. The robustness of
this mode stems from the fact that it produces diagonally
dominant elements on the matrix corresponding to the
LEquation system (40) and (41) which dominate one of the
pairs of complex conjugate eigenvalues.

The other two eigenvalues form a complex conjugate
pair with a much longer time constant, between 100 years
and 100 000 years or longer, and sometimes with a positive
growth rate. The eigenvectors, and more specifically, the
orthogonal matrix associated with the Schur decomposi-
tion, show that these modes are associated with till-profile
evolution, as opposed to the fast stable modes, which are
strongly associated with ice-profile evolution. Experiment-
ing with madel perturbations showed that these cigenvalues
were nearly associated with neutral stability. A consequence
of having a complex conjugate pair of eigenvalues is that the
solutions have a travelling-wave component. However, with
the Nye diffusion modes, the decay is so fast that the wave-
like aspect of the behaviour is barely discernible. In
contrast, the pair of eigenvalues associated with the nearly
neutral modes can have a discernible travelling-wave com-
ponent. Figure 5
wave-velocity binning, the whole result set against each

» shows the proportion of cases with negative
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parameter in turn, for various wave velocities. Negative
wave velocities only occur for r = 1 (for internal deforma-
tion) which is consistent with the kinematic-wave analysis
presented in section 3. The figure shows a complex set of de-
pendencies, with the proportion of waves moving backward
increasing with sediment thickness (consistent with the
kinematic-wave analysis) and decreasing with length-scale
(not covered by the kinematic-wave analysis).

These modes arise from a kinematic-wave mode, which
in the uncoupled linear approximation would simply he a
travelling wave of sediment. Coupling with the ice turns this
into a wave which can grow or shrink depending upon the
parameters, and whose small real part value is a conse-
quence of the fact it i1s associated with the neutrally stable
wave (cigenvalue with zero real part). This also means that
the growth rate can vary by several orders of magnitude,
and provide time constants so long that the instability would
never be seen in practise, and the regions of parameter
space where glaciologically significant growth rates (i.c.
time constant of centuries) can be seen are rather more
restricted. This 1s called the bed mode or bed-wave mode,
and the real part of its eigenvalue is denoted by G2,

However, it seems that instabilities for reasonable till
thicknesses (greater than ten metres) develop so slowly (rate
constants £ 10 *a ' that in general, they compare with, or
arc greater than, expected ice-stream occupation times,
and therefore unlikely to have sufficient time to develop.
More detailed investigations show that for low ice thick-
nesses (which imply large slopes because we are keeping
the shear stress constant), and low till thicknesses, growth
rates arc fast; however, this really corresponds to a valley
glacier. In this case the basal velocity is 100ma ' If the
basal velocity were 1000 m a L growth rates would be ten
times greater, but even so they are not large enough in gen-
eral to be expected to play a significant role in ice-shect dy-
namics. This should he contrasted with the growth rates
expected for smaller drumlins (Hindmarsh, 1998b) which
are sufficiently large to have dynamical consequences.
These low growth rates should also be compared with the
much faster time constants introduced when there is
hydraulic coupling. This is considered in the next section,

The effect of steady response to a I m sinusoidal bedrock
wave is shown in Figure 6 (r = 1) for the parameters indi-
cated in the figures, For small till thicknesses the response is
mainly taken up by the ice, while for larger thicknesses it is
taken up by the tll. That there could be such a complicated
response is decducible from the scale analysis and the magni-
tudes of the response are consistent with the scale analysis,
The response is rather simpler for » = 0, where the interfa-
cial effective pressure is constant in space (not shown in a
figure).

Some evolutions are presented in Figure 7. Two initial
conditions are considered, one where a 30 m sine-wave per-
turbation is applied to the ice-sheet surface, the other a 4m
till wave. Figure 7a a shows an evolution with an ice impulse
applied to the nearly always stable case r = 1, where inter-
facial pressure are statically controlled. After some rapid
Nye diffusion, a travelling wave emerges. In general, this
wave does not move at the kinematic-wave speed (it will
only do so when the ice and till perturbations are un-
coupled). Then, decaying bed modes emerge, of very lim-
ited amplitude, which in this case move upstream.
Upstream-moving waves are also found when coupling with
the water system is introduced. Figure 7h shows the res-
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ponse to a till impulse, in a case where interfacial effective
pressures are constant. The wavelength is longer and the
ice-surface response is very marked, there being an ice-sur-
face wave of amplitude 40 m (i.e. total relief 80 m). This case
is unstable, and the tll wave grows slowly.

That there is a bigger response at long wavelengths is
predictable from scale theory. At high effective pressure,
the ice-surface expression of basal-till-thickness variation is
rather marked. This is in accordance with the observations
by Bindschadler and others (1996) that there is increased
roughness in surface topography of Ice Streams D and E
assoctated with areas of increased bed friction.

5.3. Coupling water flow

Now we consider the flow of water through the basal-drain-
age—aquifer system. The zeroeth-order configuration is a
low of water down the plane, through the aguifer and inter-
facial drainage system with potential gradient —epig in phy-
stcal unils. Since we are dealing with an infinite plane, no
recharge can be modelled.

Firstly, the ice- and till-thickness-evolution equations re-
quire extra terms to account for the effect of water pressure
on the effective pressure, and become, in dimensionless

form,
a8 =20y, (Remo+ B2 4wy )0, Hy
2= IIlan(.).rP\\'l == H(IHI)OJ'[)] ot HIIRfar'.fJ- (12)
5 Qito 40 1 Pio .
3y = dH —— + Qn— |0 H
Mt H”(Q‘T" 9‘5) :
+ Qudepwr — Qpd, Dy — Q0. fi. (43)

In section 3 it 1s shown that the water-flow Equations (11)
can be written in dimensionless form as Equation (49).
Down the inclined plane, the zeroeth-order potential gradi-
ent is —1, so we arrive at the dimensionless equations for
water-pressure evolution
SwOpw1 + S0 Hy + Spd Dy (44)
= 1‘\\'\\'(‘)_:,%]’\\1 e I1“'(‘).1'])\\'1
+ D0zl +Tp@Dy
The coeflicients in this linear equation have a complicated
dependence on  the
interfacial flow. In Appendix 3 it is also shown how a con-

aquifer characteristics and  the

figuration where there is dependence on only two new para-
meters can be created (relation in Equation (50)). These
parameters are F' (a dimensional quantity) and A. defined
in Equation (12). The first is a water-pressure diffusion co-
cfficient (in other words, by varying it, we are seeing how
characteristic time-scales of the drainage system interact
with the flow of ice and tll), while A represents an index of
how much the transmissibility of the drainage system
changes with effective pressure. The Ty, coeflicient is pro-
portional to I, while the coeflicients I'y,, I'; and I'py are pro-
portional to the product of Fland A.

There is currently one hydrological model which yields
the water-pressure diffusivity along the interface, due to
Anandakrishnan and Alley (1997h). They suggest that the
diffusivity is between 10 and 100 m*s . However, it is doubt-
ful that it is this well constrained, and we consider a range of
values necessary to reproduce the cases where the interfacial
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H/m=1000, p_/10°Pa=0.1,7/10°Pa=1, b=2.03. a=1,

Fig. 6. The coupled flow of ice and till introducing bedrock topography ( i.e. beneath the till ). Showing steady profiles forr=1{ i.e.
constant interfacial effective pressure) arising as a consequence of a Im sinusiodal variation in bedrock lopography al indicated
parameter values. Basal axes are position x and the parametric variable Dy, the till thickness. Vertical axes ave ice thickness (Ul),
tll thickness ( tr), shear stress (bl ) and effective pressure (br). Note how as the till thickens the response is taken up by the till
thickness rather than the ice thickness.
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Fig. 7. The coupled flow of ice and (ill showing the evolution of ice and till profiles. Basal axes are position x and lime t. Lefthand
column is ice thickness, righthand column is till thickness. Cases (a) and ( b) are for indicated parameters. The initial condition
was (a) a 30 m sine wave in the ice, interfacial effective pressures statically determined (v = 1) and (b) a 3m sine wave in the
till, interfacial effective pressures constant (v = 0). Case (a) is stable, there is rapid decay of the Nye diffusion mode, while the
sloweer decaying bed mode expresses itself as an upstream-moving wave. Case (b)) is unstable and is a case where smaller absolute
variations in deforming layer thickness lead to larger absolute variations in the ice thickness. Again, rapid decay of the Nye diffu-
sion mode occurs, while the bed mode grows slotwly.
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effective pressure is statically controlled, where it is con-
stant, and intermediate cases.
We now expand the water pressure periodically
Pw1 = p“] ( ) sin kx = p\\l( ) cos k‘T‘

our [inal set of mode f'qualicms is

; H;
I i adl 0Tk H‘ +k(1?m> . X =+ uu)HI’
+ kHyRp DS — kHyR,p°,, + HoRif?. (45a)
; Hymok?
Hy = — RS2 HY = k(Rery + Ry 2w ) B
- R‘HuRDD' + fanh’uP", — HyRi f}, (45D)
e T € 1 a
D= - ™+ +ar (Qm+ Q2
% fiTQDD” = A'anwl + kQx fY (45¢)
Tok? )
D= - @™y -5 (Qm +@.2) g
~ kQp D’.‘ + A:an“.] — kQu S (45d)
S H' + Sy = —kIHT — k'ff“,w]);, = kPemta.  (A8e)
SiHY + Syply = RDUHS + KDy — KT,y (45f)

The two uncoupled drainage styles can be retrieved as
special cases. The case where the effective pressure remains
constant corresponds to the righthand side of Equations
(45¢) and (45f) being zero (e.g. very long wavelength or
low transmissibility). The case where the water pressure
does not change occurs when the only non-zero coeflicients
arc Sy, and Iy Sufficiently large k2Gyy /Sy and small A
ensure this. Another special case can be retrieved by setting
Q. Q. Qp and Qs o zero, implying no motion of the bed.
The basal-ice velocity can be regarded as due to sliding, and
the hydraulic system some sort of linked-cavity system; in
other words, a hard-bed configuration.

As an example, calculations to investigate how far the
parameters £ and A had to be varied to obtain the limiting
cases were carried out for L = 3000m, Hy = 1000 m and
Uy =100ma
bed-mode cigenvalues for r = 1 (interfacial effective pres-
sures statically controlled) that the required values of the
A=0 and F=
| while in order to retrieve the case r = 0 (in-
=1 and F =

suggested by

| These showed that in order to retrieve the

hydrological were
10000 m” a
terfacial effective pressures constant)
00Im?a . The value of 50m2a
Anandakrishnan and Alley (1997h)

between the two. This would not he the

parameters

thus falls roughly
case [or other
length-scales, and a scale analysis could be usefully carried
out,

The dynamics of the system can be analysed by comput-
ing the eigenvectors and eigenvalues of the system. This
vields three complex conjugate pairs of cigenvectors and
cigenvalues. One pair of modes always has a dominant pro-
Jection onto the bed profile. This is called the bed mode, and
the real part of its eigenvalue is denoted by GB, The other
two mode pairs have significant projections onto the water
pressure and the ice thickness. One of these mode pairs
always has negative real part of its eigenvalue, and this one
is defined as the Nye mode, and the remaining mode pair is
called the pressure mode, with the real part of its eigenvalue
denoted by GF. On occasion, this mode pair has a stronger
projection onto the ice thickness than the other mode pair
but in these cases the maximum difference is less than 3%.
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In general, the mode pair with negative real part cigenvalue
projects more strongly onto the ice thickness.

5.4. Computations for the linearized ice-till-water
system

In this section results are given in dimensional unils. Parameter
space has been explored for Equation (43) by sampling at
approximately 20 000 points for a mobile bed and a fixed
bed (i.e. @ = 0). The set of sample points Smp mm]n ised
thc direc't product of the sets A € {0.1, 1,10}, Fm*a ' € {10 *,

2 1,10,10%,10° 10% 101, D.,/m e '1 3.10,30,100}, Hy/m

’100 300, 1000, 2000}, Up,/m*a™' € { 1 100, 200, 500, 1000,

L/m € {300, 1000, 3000, 10 000}, p[(./l() Pa € {01,02, 0.5},
’rg/[() Pae{l1},be {203},a€{l}, where L = 2w /k. Ex-
cluded from Sy, are the points in phase space where
L < Hy, as in this region the shallow-ice approximation is
not valid. Again, varying the basal velocity is accomplished
by varying the deformation rate factor Ay. Till sliding was
not investigated in this study. The stability properties of this
coupled system are somewhat more complex then the un-
coupled case. There, the Nye diffusion mode generally has
a strong projection onto the ice thickness only, and in gener-
al the other mode projects strongly onto the till thickness. In
this coupled case, there are unstable water—ice modes with
extremely fast growth-rate constants. These occur at a
rather specilic range of water diffusivities.

Figure 8 shows the proportion of cases with bed-mode
growth-rate constant (}'],i greater than indicated amounts,
binning along cach parameter in turn. This is a rough indi-
cation ol how the parameter affects stability, and how this
qualitative demonstration of sensitivity varies with the
growth-rate constants. Figure 9 shows a similar diagram
for the case of a mobile bed. A
similar diagram (not included) yiclding fairly similar

for the pressure modes,

results occurs for the case of a fixed bed. All of these dia-
grams show the complexity of the dependence of the stabi-
lity properties of the system upon glaciological parameters.
The dependence of these parameters on the hydraulic diffu-
sivity Fis shown in Figure 10, which reinforces the idea that
the stability properties of the sysiem are very complex. The
distribution of fast unstable modes is different from the dis-
tribution of all unstable modes, being concentrated in areas
of higher diffusivity. At higher diffusivities still, the system
stabilises, becoming equivalent to the static controlled un-
coupled case (i.e. r = 1) when A = 0. For the most part, the
fixed bed (@ =0) is more stable than the mobile bed.
There are significant numbers of unstable modes in the
parameter range around F = 50m%a
ndakrishnan and Alley
streams.

argued by Ana-
(1997h) to be appropriate for ice

Figure 11 shows the steady responsc to a I m sinusoidal
variation in bedrock topography, at indicated parameter
values. The parametric variable is A, the exponent repre-
senting the degree to which the transmissibility of the
system changes with effective pressure. OFf particular note
is the fact this drainage parameter affects the ice-surface
response.

Figure 12 shows the evolution of ice, till, water-pressure
and effective-pressures profiles. for indicated parameters; in
particular, note that # = 10°m”a ". The initial condition
was a (.l m sine wave in the ice. This case has a very high
e th-rate constant for the water-pressure mode (G} =
8a "), which is reflected in the short time- -span over V\I]l( 11
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Fig. 11. The coupled flow of ice, till and water, showing steady profiles arising as a consequence of a 1 m sinusiodal variation in
bedrock lopography, at indicated parameter values. Basal axes are position x and the parametric variable N, the exponent repre-
senting the degree to which the transmissibility of the system changes with effective pressure. Vertical axes are ice thickness ( tl ), till
thickness ( Ir), shear stress (ml), effective pressure (mr ), water pressure (bl ) and effective pressure + water pressure (br ). This
drainage parameier affects the ice-surface response.
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the evolution is shown. Over this short period the waves in
the ice and till move backward, while a typical feature of the
pressure oscillation, the fact that it remains fixed in space, is
seen. This is known as a “breather”™ mode. The change in ef-
fective pressure is “large”, and indeed is about to float the ice.

Figure 13 shows the evolution of another set of ice, till,
water-pressure and effective-pressure profiles, Here the
hydraulic-system diffusivity is F = 1m”a ' and the initial
condition was a 50 Pa sine wave in the water pressure. For
this case, the bed mode and pressure mode are nearly
neutrally stable, but note amplification of this ncarly stable
response toa very small initial perturbation, causing “large”
changes in the effective pressure.

6. CONCLUSIONS

This paper has tried to address the issue of how ice, till and
water flow couple, asking in particular whether the cou-
pling of flow can explain the texture and variability seen in
ice-stream flow. At the moment, there are two scparate
issues, whether it can and whether it does.

Whether the present theory can explain these phenom-
cna is related to the technical arcas explored by this paper.
This paper has heen concerned with the effect and conse-
quences of scale upon effective-pressure distribution. On
small scales, interfacial effective pressures are strongly
affected by static pressure variations, while on the longer
scale there is significant coupling between hydraulic and
static gradients, some of which arises as a result of the likely
cifective-pressure dependence of basal-drainage systems.

Variations in ice thickness cause variations in effective
pressure; on the small scale, an ice mound causes an increase
in effective pressure, while on the larger scale, this increased
overburden is associated with an increase in water pressure
which keeps the basal-drainage system transmissibility high.
Similar effects are found with mounds in basal topography.

An analysis of the kinematic and shock-formation prop-
erties of deforming till is made. Kinematic waves can move
up and downstream, and shocks facing upstream or down-
stream moving upstream or downstream can occur. The up-
stream-motion property of waves and shocks requires
interfacial effective pressures to be significantly affected by
static pressure variations. Thicknesses can occur where the
velocity of a wave is equal to the shock speed for the jump
between that thickness and zero thickness, leading to very
persistent migratory forms.

Coupling between ice and till flow is examined at long
wavelengths (1.c. greater than the ice is thick). Where inter-
facial pressures are statically controlled, small changes in ice
thickness can significantly affect the effective pressure, and
the effect is to reduce the ice-surface expression of basal var-
iation in topography or [rictional variations. Where interfa-
cial pressures are controlled by drainage, small variations in
till thickness can result in significant variations in ice-sur-
face topography, not obviously related to basal topography.
Length scales over which effective pressure is controlled sta-
tically may often be smaller than the ice-sheet thickness.

Coupled linearized dynamic analyses are performed.
The coupled system is more or less stable when interfacial
pressures are statically controlled, and shows instability in
50% of the phase space volume explored when interfacial
effective pressures are maintained constant by the basal-
drainage properties. There is always a fast stable mode, the
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Nye diffusion mode, and there is a slow mode, sometimes
stable and sometimes unstable, which produces growing till
and ice-surface relief. This slow mode is associated with a
coupled till and ice wave moving downstream or upstream,
but the volume of parameter space where there are unstable
upstream-moving waves is very small or zero. In areas of
parameter space occupied by ice streams from large ice
sheets, the time constants are rather greater than what are
believed to be characteristic occupation times for ice
streams.

Introduction of coupled water drainage though a system
with “linked-cavity properties” (i.e. transmissibility and
storage decreasing with effective pressure ) introduces, in cer-
tain regions of parameter space, unstable modes with time
constants comparable with the stable Nye diffusion mode.
This time constant seems usually to be associated with the
pressure mode, depends on the (linearized) diffusivity of
the hydraulic system, and can vary from being too slow to
be of practical consequence to highly significant. The model
produces unstable upstream- as well as downstream-moving
waves in ice and till, although pressure oscillations appear to
remain fixed in space (i.c. show “breather” solutions). For the
most part, bed modes have long time-scales, although there
are restricted areas in phase space where the growth rate
becomes very fast (greater than 0.1a ).

Clearly these instabilities are not sustainable. It is ex-
pected that shock formation will play a role in the quench-
ing of bed-mode instabilities. The implication of this is that
wave-like forms can grow and migrate. Other non-linear
phenomena are likely to occur. For example, areas of high
water pressure may connect (o others, so reducing the water
pressure and altering the dynamics. Kamb (1991) consid-
ered coupling to the heat equation, though Kamb’s results
do not suggest that introducing thermal coupling will stabi-
lise the system.

Many of the issues raised in this paper can be addressed
by modelling the non-linear systems. Ensuring that such
models represent the inherent instability of the system with-
out introducing further numerical instabilities or removing
real instabilities represents a major challenge.

Whether the mechanisms described in this paper do ex-
plain ice-stream texture and variability depend upon future
observations. The coupling of ice, till and water flow pro-
duce a system with stability properties which depend
strongly upon the location of the system within parameter
space. One would strongly suspect that as the system moves
through phase space, its stability properties will change, as
is found in chaotic systems or systems in sell~organised criti-
cality. If this is the case, the question of prediction and
model verification become statistical issues, with the need
to observe and monitor whole flow ficlds. Theory can help
us determine how much data we need; at the moment, theo-
ry tells us we do not have enough. Satellite data should be
able to give us evolving topography and velocity fields and
better definition of the bed and internal layers (which
should help resolve whether variability is induced by rheo-
logical or basal heterogeneity ) are achievable. Ohservations
of variations of deforming-till thickness of sufficient spatial
resolution do not seem possible in the foreseeable future,
while observations of basal-water pressure are straightfor-
ward but expensive.

A useful and achievable first step is the identification of
the migration velocity of topographic features in the ice. Are
they standing, moving upstream or moving downstream?
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Are they growing in amplitude or shrinking? Theory
should be able to tell us whether the observed behaviour is
due to internal or basal heterogeneity.
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APPENDIX
A.l. EFFECT OF ROCK CORING

It is straightforward to introduce variations in the basal
topography into the analysis. This can be viewed as a highly
competent mass which could be bedrock or gravel. More
complicated models could introduce variations in the sedi-
mentology and determine the influence on drumlin-shape
evolution,

Let us denote the basal topography by z = f(x). Then,
the effective pressure in dimensional form at the base is
given by

Py =pc+aD+p3(D — f) =D - 3f,

where D is now the upper surface elevation and the thick-
ness is given by D — f. In non-dimensional form this is

m=p.+D—(1-8)f
where we have scaled f by [r]/~. An analysis which exactly
parallels the development in section 3 yields the following
formulae for the flux in dimensional form

7 i

FA—mE o 7 Pt (- 267))

where T'= D — f, while the sliding contribution is

q:

i
g =—7.
?lr-"'pfa
In dimensionless form we can also write
Ph=pc+S.
S=T+é6f=D—(1-6)f

and obtain the combined flux formula
q= A ((n- + 6D — (p. + UT+)(p. + 5)* ,,)

+ AT (p. + 8)™

A.2. SCALING THE WATER-PRESSURE EQUATION

We now scale the water-pressure Equation (11), which we re-
write, indicating variables with a physical magnitude with a
tilde. It is understood that Sy has physical dimension, and
we will not be considering its dimensionless counterpart,
Thus,

(l l".r’_\(ﬁpt "

3

)‘}P“l — Opi — adtD, (46)

2 EA . o e
=F|1+— d}pwl + O E0z
Fkyg
— 0o B0y — 8:00a B0 D,
We scale pressures and potentials by [7], till thicknesses by
7]/~ and thicknesses by [H]. We also set
By = Pi.G’H .
The zeroeth-order water-pressure gradient has scale magni-
tude £pig. Horizontal length-scales are scaled by [X],and

times by [X]/[u]. Thus,
FA¢pu [T]M (] [u] _ gl
(” S ) TP e g D

JrA-A) [7] 52, E"»L-PIJ[TJ

5 0Py U0, py
ko ) [XT? wPwl [X] Yoy pyn

g llAg

B899, 00051, - 5P o wop, ()

[X]
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whence

A
(1 | LA%. ") Brpwr — —o Hy — 68,D;

VSU
F EA epigl
= ot f)'Pul ———— Qb0 p
[u][X] ( i ) o
N GE
”[‘f] OethoBs Hiy — ’f - 0sn0. Dy, (48)
For the infinite place,
8,‘&5“ = —[—Jif[:f',
Il -2
Ity = —pige,
[x]
[H|pige -
ety = —pige.
[«Y] 2 %0 iy
and if we scale and define dimensionless coeflicients
ToAp o -
FECWE L . N S S
USU
F kA epgk 1
Fyw=——|1+—], Tw=—2222—_—
X ] ( R ) [u] PO
I = _r\\'/f- I‘U = _br\\'

where in this expression the py is in dimensional units, we
finally arrive at the dimensionless evolution equation for
water pressure

SwOpw1 + S0 Hy + Spd, D,
= Fs\'s\'a.,l-p\\'l - Ft\'drﬂ’(}al'p\\'l
= ri(‘).r d!'rf"'llo.r[II = rl_)a.,-'l;"u(‘)_,-D1 J

Since we don't know the properties of the drainage system,

(49)

but we are interested in the cffeet of ground-water time-
scales, we may as well as simply ignore the intricacies of
the drainage system and write a consistent approximation,

Sy Sr=—1, Sp = =6,
F epgE s
F\vw = TeAT 3 w = (50)
[X][] 4] pe’
Fi = ﬁ'rw/f- I'p = —oly

where there are now two parameters introduced by the sub-
glacial hydrology, F', a diffusion coeflicient, and the index
A, which indicates the degree to which the drainage system

changes to responses in effective pressure.

A.3. KINEMATIC AND TRAVELLING WAVES

Let us consider a flow down the inclined plane, for example

of the thickness H. Let us suppose that the flux is given by
qg=AH"|0,.H|",

which could arise from sliding or internal deformation. If it

is uncoupled, a simple analysis paralleling those above

shows that the first-order, linearized evolution equation is

P f)l'Hl H]
OH = o8, [ n=L — m—L
L = R (” BN Ht.)
and
H'l sin kr + H”‘ cos kx
&
= X 5, (HS coskz — H? sinkz)
H,
: qo
— nk? ——— 8, (H{ sin kx + HY cos kx
18 Ho| O ):
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Table 5. Showing erosion rates € tnm a "fora 6 m layer of till
underlying an ice stream 100 km long km thick with 9.p =
30 Pam ' Also showing the deforming-layer thickness D
needed to sustain an erosion rate of Imm a ¢

] € D
Pa s ma ! m
10 1.3 %10 0.012
1000 1.3 x 10 0.054
l(lf 13 0.25
10° 0.013 1.2
i 0.00013 54
whence
i .
H} — nk“?l/'(r)_-,-ffﬂl quTn,/H(] H]
. = ¥ ;
HY — kgem/Hy — k*n/|0.Hy| | | H

The migration velocity M of a sine wave with wavenumber
J and phase ¢ is given by —¢/ k. It can readily be shown that
1

2
(Hic)

Without loss of generality we can take H” = 0, and write

v O _H _am
K }\H; IJ{)

which is of course well-known as the kinematic-wave formula.

= (H{ H; — H{H}).

7
)

In the coupled case, there exists the possibility for two
waves, one associated with the Nye diffusion mode, the
other with the bed-wave mode. The fast disappearance of
the Nye diffusion mode leaves the bed-wave mode. This
may be computed as follows.

Consider the system of Equations (40a), (40b), (4la) and
(41b). This may be written as a system of equation

u= Au
and the matrix A may be written in a form

A = EBE’!

where B is a block diagonal matrix with two by two blocks
with equal diagonal elements (the real parts of the eigenva-
lues) and off=diagonal elements equal in magnitude but op-
posite in sign. The matrix E is not orthogonal but contains
pairs of orthogonal vectors.

Premultiplication of the evolution equation by El
vields

Ela=BE'u
or

¢é=Bec, c=E'u

where ¢ is a vector of TEFS trigonometric-function-sum
(TFS) mode amplitude. A TFS mode is a weighted sum of
the trigonometric-function amplitudes H*, H?, D, 1), the
weighting for each mode being given by the components of
a column of E. TwoTFS modes are Nye diffusion modes and
we are not interested in them, as they decay very quickly.
Let us suppose that they are the first two TFS modes. The
remaining modes will be “bed-wave” modes, although of

course we expect in general projections onto the ice profile.
In order to compute the wave velocity of the bed-wave
modes, we can without loss of generality, set

== [00; 1,0]—1.,

11 = Eeg.
Then
u=EBe
and the wave velocity is given by
M= _i(l;? (D5 DS — DDy,
DS =iz, D=,

Df =iy, D= ties.

Similar calculations reveal the wave velocity for other
modes.

A 4. EROSION RATES OF VERY WEAK TILL

There have been suggestions that Ice Stream B in particular
is underlain totally by a very weak till layer and that all the
resistance to flow occurs at the margins (Whillans and Van
der Veen, 1993, 1996). This implies that the basal traction is
very small. Nevertheless, there is an ice-thickness gradient
which causes a pressure gradient to be applied to the very
weak till. The ice-thickness gradient is reasonably well
known, which means that we can also readily estimate ero-
sion rates for tills of different viscosity. With a free surface,
the Mux of till ¢ with deforming thickness D, constant visc-
osity g and pressure gradient 9,p is given by the Poiscuille
relationship for a tractionless surface —2D°8,p/3p. An ero-
sion-rate magnitude e s given by g/ L, the length-scale. The
dependence of e upon viscosity for a typical configuration,
assuming that all the dilatant tll has the same viscosity, is given in
Table 5.

It is assumed that the ice stream overlies a flat bed, is
1 km thick, has a driving stress of 30 kPa and overlies a dila-
tant bed 6 m thick (¢f. Blankenship and others, 1987). This
study shows that erosion rates are unfeasibly large except
where viscosities approach values such that the till would
exert a significant traction on the base of the ice (p =
10” Pas).

Now we suppose that jetting of the till by pressure gra-
dients is occurring but confined to a narrow layer overlying
the till. The third row of Table 5 shows weak layer thick-
nesses necessary for sediment to erode at lmm a ! For low
viscosities typical of slurries (Whillans and Van der Veen,
1993) the thickness of the weak layer, which is by implica-
tion weaker than the dilatant till, is not implausible.
Whether this can lubricate the bed to a state of tractionless-
ness on the large scale is open to question; the layer is thin
enough to be a classical hard-bed thin film, with the stron-
ger till underneath potentially providing sliding resistance
through basal relief; hard-bed glaciology re-obtained. In
any case, the slurries found at the base of glaciers (e.g.
Engelhardt and others, 1990) cannot be more than a few
centimetres thick even if they are a continuous film.
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