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Internally heated convection with rotation:
bounds on heat transport
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This work investigates heat transport in rotating internally heated convection, for a
horizontally periodic fluid between parallel plates under no-slip and isothermal boundary
conditions. The main results are the proof of lower bounds on the mean temperature,
〈T〉, and the heat flux out of the bottom boundary, FB, at infinite Prandtl number, where
the Prandtl number is the non-dimensional ratio of viscous to thermal diffusion. The
lower bounds are functions of the Rayleigh number quantifying the ratio of internal
heating to diffusion and the Ekman number, E, which quantifies the ratio of viscous
diffusion to rotation. We utilise two different estimates on the vertical velocity, w,
one pointwise in the domain (Yan, J. Math. Phys., vol. 45(7), 2004, pp. 2718–2743)
and the other an integral estimate over the domain (Constantin et al., Phys. D: Non.
Phen., vol. 125, 1999, pp. 275–284), resulting in bounds valid for different regions of
buoyancy-to-rotation dominated convection. Furthermore, we demonstrate that similar to
rotating Rayleigh–Bénard convection, for small E, the critical Rayleigh number for the
onset of convection asymptotically scales as E−4/3.

Key words: Bénard convection, variational methods

1. Introduction

Heat transport by turbulent convection remains a pertinent area of research in both
astrophysical and geophysical fluid dynamics. While boundary-forced thermal convection
has been studied extensively, convection driven by internal heating has been relatively
overlooked (Doering 2020). Nevertheless, internally heated convection (IHC) plays a
significant role within planetary bodies, such as in the Earth’s mantle and core, where the
radioactive decay of isotopes and secular cooling drive fluid motion (Schubert, Turcotte &
Olson 2001; Schubert 2015). Similarly, for stars, convective zones are driven by radiation
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Figure 1. A non-dimensional schematic diagram for rotating uniform IHC. The upper and lower plates are at
the same temperature, and the domain is periodic in the x and y directions and rotates about the z axis. Here
FB and FT are the mean heat fluxes out the bottom and top plates, 〈T〉 is the mean temperature and g is the
acceleration due to gravity.

from nuclear fusion (Schumacher & Sreenivasan 2020) and supernovae are modelled as
fluids heated internally by neutrinos (Herant et al. 1994; Radice et al. 2016). Moreover,
stars and planets are rotating bodies where the Coriolis force affects the flow dynamics
significantly (Greenspan 1968).

Studying rotating turbulent convection is challenging because experiments and
numerical simulations cannot reach parameter values of interest (Glatzmaier 2013). For
example, in planetary mantles, the Prandtl number, Pr, the non-dimensional number
quantifying the ratio of the viscous and thermal diffusivity, reaches values of 1023, while
the Rayleigh number, R, quantifying the ratio of thermal forcing to diffusion is at least 106

(Mulyukova & Bercovici 2020). In planetary cores, the Rayleigh number could be as high
as 1026 (Schubert 2015). Furthermore, the Ekman number, E, representing the viscous to
rotational forces, is estimated to be 10−15 in the Earth’s core (Jones & Schubert 2015).

An alternative route for inquiry is a mathematically rigorous study of the equations
describing rotating convection. Of interest is the regime where the solutions of the
governing equations are turbulent, and a key question is on the long-time behaviour of the
mean quantities of the flow as a function of the control parameters (Pr, R, E). In this study,
we employ the background field method (Doering & Constantin 1992, 1994; Constantin
& Doering 1995; Doering & Constantin 1996) to study the mean heat transport in IHC
subject to rotation between parallel plates with isothermal and no-slip boundary conditions
(figure 1). Unlike turbulent convection driven by boundary heating, i.e. Rayleigh–Bénard
convection (RBC), there are no known rigorous results for turbulent IHC subject to
rotation.

The influence of rotation alters turbulent convection and introduces new flow regimes
and physics (see Ecke & Shishkina 2023 for a recent review). The flow features of rotating
convection in a plane layer driven by boundary heating are well documented (Veronis
1959; Chandrasekhar 1961; Rossby 1969; Julien et al. 1996; Knobloch 1998; Vorobieff &
Ecke 2002; Boubnov & Golitsyn 2012; Stevens et al. 2013), and some insight exists for
non-uniform IHC (Barker, Dempsey & Lithwick 2014; Currie et al. 2020; Hadjerci et al.
2024). However, no study has explored the flow in rotating uniform IHC. The preceding
studies show that rotation inhibits the onset of convective motion and stabilises the fluid,
creating a bias in motion parallel to the axis of rotation. Further, an Ekman boundary
layer exists, enhancing the mean vertical heat transport by Ekman pumping (Greenspan
1968). With sufficient thermal forcing, the E − R parameter space contains two extreme
flow states: if R is sufficiently larger than E−1, then buoyancy dominates and rotation
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Internally heated convection with rotation

plays little effect on the dynamics, whereas if E−1 is large relative to R, and the vertical
velocity is nonzero, geostrophic turbulence occurs (Julien et al. 1996; Sprague et al. 2006).
A wide range of flow features occurs in rotating convection including, cellular flows, Taylor
columns, large-scale vortices and plume-dominated convection (Grooms et al. 2010; Julien
et al. 2012; Stellmach et al. 2014; Aurnou, Horn & Julien 2020; Guzmán et al. 2020;
Kunnen 2021; Song, Shishkina & Zhu 2024).

In addition to experimental and numerical studies on rotating RBC, there exist proofs
of bounds with the background field method, on the enhancement of heat transport due to
convection, quantified with the Nusselt number, Nu (Constantin, Hallstrom & Putkaradze
1999; Constantin, Hallstrom & Poutkaradze 2001; Doering & Constantin 2001; Yan 2004;
Grooms & Whitehead 2014; Pachev et al. 2020). First introduced in the 1990s, the
background field method provides a tool for proving bounds on the long-time averages
of turbulence (Fantuzzi, Arslan & Wynn 2022). In its original formulation, the idea
involves decomposing the flow variables into a fluctuating and background component
satisfying the boundary conditions to construct a variational problem for bounding the
turbulent dissipation. A bound is proven by solving the variational problem by choosing
an appropriate background field and using elementary integral estimates. The method
has been used successfully for many fluid flows, none more so than turbulent convection
(Nobili 2023). Recent insight has shown that the background field method fits within the
framework of the auxiliary functional method (Chernyshenko et al. 2014; Chernyshenko
2022), which can yield sharp bounds for well-posed ordinary differential equations
(ODEs) and partial differential equation (PDEs) under technical conditions (Tobasco,
Goluskin & Doering 2018; Rosa & Temam 2022).

A fundamental feature of the background field method is to work with energy
balances from the governing equations. However, energy identities fail to capture the
effects of rotation, apart from in the case of a fluid driven by rotating boundaries, like
in Taylor–Couette flow (Constantin 1994; Ding & Marensi 2019; Kumar 2022). For
convection subject to the Coriolis force, standard applications of the background field
method do not give a bound on Nu that depends on E. One path for progress is in the limit
of infinite Pr, where the momentum equation simplifies to a forced Stokes flow, leading to
a diagnostic equation between the velocity and temperature, facilitating better estimates.
Notably, without rotation (E = ∞), using the background field method, it was proven, up
to constants and logarithms, that Nu ≤ Ra1/3 (Doering, Otto & Reznikoff 2006), where
Ra is the Rayleigh number based upon the temperature difference between the boundaries,
improving on the bound of Nu ≤ Ra1/2 valid at arbitrary Pr (Doering & Constantin 1996).
Under rotation (E < ∞) at Pr = ∞, established results for RBC are illustrated in figure 2.

High Pr restricts the parameter space when modelling fluid flows. However, proving
bounds in the limit of Pr = ∞ can be viewed as a first step towards establishing bounds
valid for all Pr. Recent studies suggest that for any bound proven at infinite Pr in rotating
RBC, a semi-analytic bound for finite Pr can be obtained under specific conditions
(Tilgner 2022). The results in Tilgner (2022) indicate that the bounds for finite Pr are, to
highest order, equivalent to the infinite Pr results of figure 2, with Ra, Pr and E corrections.
The result is unsurprising since bounds at infinite Pr generally improve those obtained for
finite Pr. At the level of the dynamical system, this can be understood as a consequence of
the relative ease with which information is extracted from the turbulent attractor of infinite
Pr system by bounding methods (Wang 2007).

When rotation dominates over buoyancy, heuristic arguments for RBC suggest that Nu ∼
E3/2Ra2, at arbitrary Pr (King, Stellmach & Buffett 2013; Plumley & Julien 2019; Aurnou
et al. 2020). Bounds that scale similarly to the physical arguments in the rapidly rotating
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Figure 2. Illustration of the upper bounds with blue lines on the Nusselt number, Nu, in terms of the Rayleigh,
Ra, and Ekman numbers, E, for infinite Prandtl number rotating RBC, between no-slip boundaries. All bounds
hold up to constants that determine the exact sizes of the regions and where applicable red text shows the
stress-free result in the same region. The bounds in A are due to Constantin et al. (1999). The green dashed line
crossing A and B shows the upper bound obtained from the non-hydrostatic quasigeostrophic approximation
(Grooms & Whitehead 2014; Pachev et al. 2020). In B, the crossover from the bound Ra2/5 (Doering &
Constantin 2001) to Ra4/11(E−1 + 1)4/11 (Yan 2004) is shown by a blue circle. Similarly in region C the
crossover from Ra4/11 (Yan 2004) to E−4/5Ra1/5 (Constantin et al. 2001) is shown by a blue square. Region
D shows the bounds for buoyancy-driven convection (Otto & Seis 2011; Whitehead & Doering 2011b). The
transition from C to D is continuous up to logarithmic corrections (Constantin et al. 1999).

regime can be proven when working with an asymptotic approximation of the governing
equations known as the non-hydrostatic quasigeostrophic (nhQG) equations (Julien et al.
1996, 2016). Scaling the horizontal length scales by E1/3 and adjusting the time variable
yields the nhQG equations that model the limit of rapidly rotating convection in a plane
layer. Applying the background field method to the nhQG equations gives the green bounds
in figure 2 of, up to constants, Nu ≤ E2Ra2, for no-slip conditions (Pachev et al. 2020) and
Nu ≤ E4Ra3 for stress-free boundaries (Grooms & Whitehead 2014).

IHC remains less studied in part due to significant differences in the physics between
RBC. Notably, in uniform IHC between isothermal boundaries, the mean conductive
heat flux is zero, rendering the standard definition of the Nusselt number inapplicable
(Goluskin 2015). In previous works with zero rotation (Goluskin 2015), an alternative
measure of the turbulent convection is the non-dimensionalised mean temperature, 〈T〉,
where angled brackets 〈·〉 denote a volume and overbars denote a long-time average.
As the flow becomes increasingly turbulent, the temperature within the domain becomes
homogenised, quantified in a lower value of 〈T〉 and a higher proxy Nusselt number defined
as Nup = 1/〈T〉. An additional measure of turbulence is 〈wT〉, quantifying the portion of
heat leaving through each boundary, FT and FB, due to convection (Goluskin & Spiegel
2012). For a stationary fluid, the heat supplied leaves the domain symmetrically out of both
boundaries to ensure the statistical stationarity of the solutions. As the thermal forcing
increases, convection carries heat upwards, causing a higher portion of the heat to leave
through the top relative to the bottom boundary (Goluskin & van der Poel 2016).

In line with previous works on uniform IHC (Goluskin 2015; Arslan et al. 2021a,b;
Kumar et al. 2022; Arslan et al. 2023; Arslan & Rojas 2024), the non-dimensional heat
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Internally heated convection with rotation

Region Condition Bound on FB Condition Bound on 〈T〉
I E � R−2 d4R−2/3 + d5R−1/2| ln(1 − d6R−1/3)| E � R−2/3 d11R−2/7

E ∈ [Em, E0] E ∈ [Em, E1]
Ia E � R−2/3 d13R−1E−1

E ≥ Em

II E � R−2 1
2 E � R−2/3 1

12
E ∈ [Em, E0] E ∈ [Em, E1]

III E � R−2 d1R−2/3E2/3 + d2R−1/2E1/2| ln(1 − d3R−1/3E1/3)| E � R−5/9 d10R−2/7E2/7

E ≤ E0 E ≤ E1

IIIa R−5/9 � E � R−2/3 d13R−1E−1

E ≤ E1

IV E � R−2 d7R−1 + d8R−4/5| ln (1 − d9R−2/5)| E � R−2/3 d12R−1/3

E ≤ E0 E ≤ E1

Table 1. Summary of the lower bounds on FB and 〈T〉 proven in this work. The constants in the bounds
are collated in Appendix A for brevity, while E0 = 5.4927, E1 = 8 and Em = 41.4487. Region I corresponds
to buoyancy-dominated convection, region II corresponds to solid body rotation, region III corresponds to
buoyancy or rotation-dominated convection and region IV corresponds to rotation-dominated convection
provided R > RL(E) where RL is the value of R above which the system is linearly unstable.

flux out of the top and bottom boundaries is given by

FT := −〈∂zT〉h|z=1 = 1
2 + 〈wT〉, (1.1a)

and

FB := 〈∂zT〉h|z=0 = 1
2 − 〈wT〉. (1.1b)

The non-dimensionalisation sets the limits of 〈wT〉 as 0 and 1
2 , with each limit

corresponding to no convection and infinitely effective convection, respectively. We seek
bounds of the form FB ≥ f1(R, E) and 〈T〉 ≥ f2(R, E) in different regions of E–R space,
where f1 and f2 are functions of only R and E. In previous applications of the background
field method to IHC, bounds for 〈T〉 are proven with minor adaptation from the background
field method as applied to RBC (Lu, Doering & Busse 2004; Whitehead & Doering
2011a, 2012). However, in the case of obtaining bounds on 〈wT〉 and consequently FB,
it has been established that the variational problem requires a minimum principle on
T , which states that temperature in the domain is greater than or equal to zero (Arslan
et al. 2021b). The minimum principle is necessary to obtain lower bounds on FB that
remain positive as R increases. In the case of no rotation at Pr = ∞, the best-known lower
bound on the mean temperature, up to constants, are 〈T〉 ≥ (R ln R)−1/4 (Whitehead &
Doering 2011a) and 〈T〉 ≥ R−5/17 (Whitehead & Doering 2012) for no-slip and stress-free
boundaries. Conversely, the best-known lower bounds on the heat flux out of the domain
are FB ≥ R−2/3 + R−1/2| ln (1 − R−1/3)| and FB ≥ R−40/29 + R−35/29| ln (1 − R−10/29)|
(Arslan & Rojas 2024) for the two different kinematic boundary conditions.

In this paper, the bounds we prove for uniform IHC subject to rotation at an infinite
Prandtl number are summarised in table 1.

For notation, ‖ f ‖p
p = ∫ 1

0 f p dz, for p < ∞ and ‖f ‖∞ = ess supz∈[0,1] f for p = ∞,
represents the standard Lp norms of f : [0, 1] → R. The use of � or � indicates equality
up to an independent constant. This paper is structured as follows. In § 2, we describe
the problem set-up before discussing the onset of convection in § 3. Then Appendix B
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A. Arslan

proposes heuristic scaling arguments for rotating IHC before we prove bounds on FB in
§ 4 and on 〈T〉 in § 5. Finally, § 6 offers a brief discussion and concluding remarks.

2. Set-up

We consider a layer of fluid in a rotating frame of reference between two horizontal plates
separated by a distance d and periodic in the horizontal (x and y) directions with periods
Lxd and Lyd. The fluid has kinematic viscosity ν, thermal diffusivity κ , density ρ, specific
heat capacity cp and thermal expansion coefficient α. Gravity acts in the negative vertical
direction with strength g, the fluid rotates at rate Ω and is uniformly heated internally at a
volumetric rate H.

To non-dimensionalise the problem, we use d as the characteristic length scale,
d2/κ as the time scale and d2H/κρcp as the temperature scale (Roberts 1967). The
velocity of the fluid u(x, t) = u(x, t)e1 + v(x, t)e2 + w(x, t)e3 and temperature T(x, t) in
the non-dimensional domain V = [0, Lx] × [0, Ly] × [0, 1] are governed by the infinite
Prandtl number Boussinesq equations,

∇ · u = 0, (2.1a)

∇p + E−1e3 × u = ∇2u + RTe3, (2.1b)

∂tT + u · ∇T = ∇2T + 1. (2.1c)

The non-dimensional numbers are the Ekman and Rayleigh numbers, defined as

E = ν

2Ωd2 and R = gαHd5

ρcpνκ2 . (2.2a,b)

The boundary conditions are of no-slip and isothermal temperature, respectively:

u|z={0,1} = 0, (2.3a)

T|z={0,1} = 0. (2.3b)

Figure 1 provides a schematic for the system under consideration. The vertical component
of the curl and double curl of (2.1b) gives a diagnostic equation involving the vertical
velocity w, the vertical vorticity ζ and temperature T:

∇4w = E−1∂zζ − RΔhT, (2.4a)

∇2ζ = −E−1∂zw, (2.4b)

where Δh = ∂2
x + ∂2

y is the horizontal Laplacian.
The final ingredients are results from Yan (2004) and Constantin et al. (1999) and a

minimum principle on T . We state the results as separate lemmas.

LEMMA 2.1 (Minimum principle). Suppose T(x, t) solves (2.1c) subject to (2.3b) where
u satisfies ∇ · u = 0 and (2.3a). Let the negative parts of T(x, t) be

T−(x, t) := max{−T(x, t), 0}. (2.5)

Then
〈|T−(x, t)|2〉 ≤ 〈|T−(x, 0)|2〉 exp (−μt), (2.6)

for some μ > 0. In particular, if T(x, 0) > 0, then T−(x, 0) = 0 and T(x, t) ≥ 0 ∀t.
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Internally heated convection with rotation

See Appendix A of Arslan et al. (2021b) for a proof.

LEMMA 2.2 (Yan (2004)). Let wk, Tk : (0, 1) → R, be the Fourier transforms of the
vertical velocity w and temperature T with wavenumber k = (kx, ky) satisfying (2.4)
and ∇ · u = 0, subject to the velocity boundary conditions (2.3a). Then we have the
following.

• For |k| ≤ 1
‖w′′

k‖∞ ≤ c1R(1 + 1
4 E−2)1/4‖Tk‖2, (2.7)

where c1 = 61/4.
• For |k| ≥ 1

‖w′′
k‖∞ ≤ c2R

√
k‖Tk‖2 + c2RE−1‖Tk‖2, (2.8)

where c2 = 1 + ((e2 + 1)/(e2 − 1))((4 cosh 1 + 2 sinh 1)/(−1 + sinh 1))

∼ 64.8734.

LEMMA 2.3 (Constantin et al. (1999)). Let w, T : V → R be horizontally periodic
functions such that they solve (2.4) subject to ∇ · u = 0 and the boundary conditions
(2.3a), then

〈|∇2w|2〉 + 2〈|∇ζ |2〉 ≤ R2〈|T|2〉. (2.9)

3. Onset of convection

Before proving bounds on the emergent properties of the turbulence (FB and 〈T〉), we
briefly discuss the onset of convection for (2.1). The trivial solution of (2.1) is found by
taking u = 0 and considering a steady state where the temperature is independent of time.
The conductive temperature profile,

Tc = 1
2 z(1 − z), (3.1)

represents the transport of heat by conduction alone. In the case where there is no rotation
(E = ∞) for the boundary conditions in (2.3), the system becomes linearly unstable for all
R > 37 325.2 (Goluskin 2015). However, unlike RBC when considering (2.1) in the form

ds
dt

+Ls +N(s, s) + Pp = 0, (3.2)

where L and P are linear operators, N is a bilinear operator and s = (u, T) is the state
vector, the linear operator L of (2.1) has a non-zero skew-symmetric component and
nonlinear instability can occur at R = 26 926.6, implying that subcritical convection can
occur for IHC (Straughan 2013; Goluskin 2015). For E < ∞, rotation stabilises the system
to vertical motion and inhibits the onset of convection. For the case of RBC, the effect
of rotation on the onset of convection is well quantified (Chandrasekhar 1961). In this
section, we demonstrate a result for the effect of rotation on the Rayleigh number for
linear instability, RL, in IHC.

3.1. Linear stability
The Rayleigh number up to which the flow is linearly stable is identified by analysing
the evolution of perturbations from the linearised system of (2.1). In the non-rotating
case, for selected thermal boundary conditions, the marginally stable states are stationary
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A. Arslan

(Davis 1969; Herron 2003). When the flow is subject to rotation, the condition for steady
rolls, as opposed to oscillatory-in-time rolls, at the onset of convection is unknown. For
comparison, in the case of RBC, the onset modes are steady provided Pr ≥ 0.68, such
that assuming a sufficiently large Pr fluid removes the question of oscillatory motion in
the analysis we carry out here. The precise structure of the motion at the onset should not
affect the asymptotic behaviour of RL for a small Ekman number. It is noteworthy that in
the case of the rotating internally heated fluid sphere, the first convective modes are always
unsteady (Roberts 1968; Busse 1970; Jones, Soward & Mussa 2000) and recent evidence
from numerical simulations confirms the existence subcritical convection (Guervilly &
Cardin 2016; Kaplan et al. 2017).

Taking the set-up as described in § 2, we start by decomposing the temperature field into
perturbations from the conductive profile Tc(z),

T(x, t) = ϑ(x, t) + Tc(z), (3.3)

to obtain the temperature perturbation, ϑ equation from (2.1c) and boundary conditions of

∂tϑ + u · ∇ϑ = ∇2ϑ + T ′
cw, (3.4a)

ϑ |z={0,1} = 0, (3.4b)

where primes denote derivative with respect to z. Then, we look at the marginally stable
stationary states of the linearised system of (2.1) by considering the z component of
the double curl of the momentum equation and the vertical component of the vorticity
equation; we thus have

∇4w = E−1∂zζ − R∇2
Hϑ, (3.5a)

∇2ζ = −E−1∂zw, (3.5b)

∇2ϑ = T ′
cw. (3.5c)

Given horizontal periodicity, we take a Fourier series expansion in the horizontal (x and
y) directions of the form,⎡

⎣ϑ(x, y, z)
u(x, y, z)
ζ(x, y, z)

⎤
⎦ =

∑
k

⎡
⎣ϑk(z)

uk(z)
ζk(z)

⎤
⎦ ei(kxx+kyy), (3.6)

where the sum is over wavevectors k = (kx, ky) with magnitude k =
√

k2
x + k2

y and
variables with subscripts k are functions of z only. Then, substituting (3.6) into (3.5) gives

(D2 − k2)2wk = E−1ζ ′
k + Rk2ϑk, (3.7a)

(D2 − k2)ζk = −E−1w′
k, (3.7b)

(D2 − k2)ϑk = T ′
cwk, (3.7c)

where D2 = d2/dz2. For no-slip or stress-free boundary conditions, ζk and ϑk can be
eliminated from (3.7) to give

(D2 − k2)3wk + E−2w′′
k = Rk2T ′

cwk. (3.8)

Here, (3.8) is an eigenvalue problem and can be solved numerically by fixing E and
finding the R at which the first eigenvalue changes sign. The equivalent problem for
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Internally heated convection with rotation

RBC is well documented (Chandrasekhar 1961), however unlike RBC, the ODE in (3.8)
admits solutions which are hypergeometric functions because Tc in (3.1) is a non-constant
function. As such, even in the case of stress-free boundary conditions where wk = w′′

k =
w′′′′

k = 0 at both boundaries, (3.8) becomes complicated to solve. Instead, we consider the
asymptotic regime of small E where a simplified form of (3.8) gives the desired asymptotic
relation between RL and E. Following the argument first presented in Chandrasekhar
(1961), we posit that for R close to RL, the wavenumber k tends to infinity so that we
retain only terms in E, R and the highest power in k and (3.8) becomes

E−2w′′
k = k2(R(1

2 − z) + k4)wk. (3.9)

Since (3.9) is of second order, we require only two boundary conditions. However, in
the simplest set of boundary conditions of stress-free boundaries where wk and w′′

k are
zero, the problem is over-determined with four boundary conditions. It suffices to take
wk(0) = w′′

k(0) = 0, such that we can make the ansätz that

wk = Ai(n − mz) − Ai(n)

Bi(n)
Bi(n − mz), (3.10)

where Ai(z) and Bi(z) are the Airy functions of the first and second kind. Substituting
(3.10) back into (3.9) gives

E−2m2(n − mz) = 1
2 k2R + k6 − k2Rz, (3.11)

from which we require the choice that m = (k2RE2)1/3. Substituting for m and rearranging,
we obtain

− 1
2 E2/3k2/3R + nR2/3 − E2/3k14/3 = 0. (3.12)

Given that (3.12) is a cubic equation in R1/3, by application of the cubic formula, we find
the real root to be

R1/3
L = 2n

3E2/3k2/3 + 1
3E2/3k2/3

⎛
⎝−8n3 + 27E2k6 + 27E2k3

√
k6 − 16n3

27E2

⎞
⎠

1/3

+ 4n2

3E2/3k2/3

⎛
⎝−8n3 + 27E2k6 + 27E2k3

√
k6 − 16n3

27E2

⎞
⎠

−1/3

. (3.13)

Then, we want to find the smallest possible RL in (3.13) by finding the minimising k by
solving ∂kR1/3

L = 0 and substituting back into (3.13) to obtain RL as a function of only
E. In figure 3 we plot RL from (3.13) against k for a wide range of E (10−37 to 10−13),
highlighting the minimum in k found. The inset in figure 3 demonstrates that the km varies
as E−1/3. Given figure 3, and noting that in the asymptotic limit of small E we assume
large wavenumbers k, it is natural in (3.13) to take the minimising wavenumber to be

k6
m = 16n3

27E2 , (3.14)

such that the terms in the cube roots are real and positive. Then, substituting km back into
(3.13) and the minimal RL(n, E) is achieved with n = 1, such that (3.13) simplifies to

RL = (1 + 22/3 + 24/3)3

9 · 21/3 E−4/3 ∼ E−4/3. (3.15)
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100

1050
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RL

1020

105

k
1010

10–40

1.0

0.5k m
/
E–

1
/3

10–20

E
100

1015

Figure 3. Plot of RL against k as given by (3.13) for Ekman numbers ranging from 10−37 (red) to 10−13

(yellow). The blue dots represent the minimum RL in k, and the inset demonstrates that the minimum
wavenumber km varies as E−1/3 with a compensated plot.

The asymptotic scaling is equivalent to rotating RBC, unsurprising given the equivalence
of the momentum equations, albeit with different prefactors, and highlights the inhibiting
effect of rotation on the Rayleigh number for the system to become linearly unstable.
In the rest of the paper, we use (3.15) to arrive at heuristic scaling arguments and later
contextualise the bounds proven.

4. Bounds on the heat flux out of the domain

In this section, we present proofs of the bounds in (1) on FB as defined by (1.1). To obtain
a lower bound on FB, we prove upper bounds on 〈wT〉 by the background field method in
the framework of auxiliary functionals (Arslan et al. 2023). First, in § 4.1, we derive the
variational problem for finding U where 〈wT〉 ≤ U. In § 4.2, we outline the preliminary
choices that are made for the proofs and in § 4.3, estimate the upper bound on 〈wT〉. Then,
we first prove a bound on 〈wT〉 valid for large Ekman numbers E in § 4.4 by the use
of Lemma 2.2, followed by a proof valid for small E in § 4.5 by using Lemma 2.3. To
provide an overview, figure 4 illustrates the lower bounds on FB, omitting the logarithmic
corrections for brevity.

4.1. The auxiliary functional method
Here, we outline the main steps in constructing the variational problem to obtain an upper
bound on 〈wT〉. See previous works for a detailed derivation (Arslan et al. 2021b, 2023). To
prove an upper bound on 〈wT〉, we employ the auxiliary function method (Chernyshenko
et al. 2014; Fantuzzi et al. 2022). The method relies on the observation that the time
derivative of any bounded and differentiable functional V{T(t)} along solutions of the
Boussinesq equations (2.1) averages to zero over infinite time, so that

〈wT〉 = 〈wT〉 + d
dt
V{T(t)}. (4.1)

Two key simplifications follow. The first is that we can estimate (4.1) by the
pointwise-in-time maximum along the solutions of the governing equations, and this value
is estimated by the maximum it can take over all velocity and temperature fields that are
periodic in x and y, satisfying incompressibility (2.1a), the boundary conditions (2.3) and
the maximum principle Lemma 2.1.
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Internally heated convection with rotation

A B

E2/3R–2/3 R–2/3 R–2/3

R–40/29

C D

E
E0 Em

0

0

R–1

E � R–2

1/2

FB

Figure 4. Illustrations of the lower bounds on the flux out of the bottom boundary, FB, between no-slip and
isothermal boundary conditions at infinite Pr, the logarithmic corrections in the bounds, table 1, are suppressed
for brevity. The blue plot is the bound derived in § 4.4, valid up to E = Em ∼ 41.4487 and E0 = 4.1688. The
bound derived in § 4.5 is shown with a green dashed line. The dashed horizontal line denotes when all heat
transport is by conduction and FB = 1

2 . In D, we show the bounds for stress-free (top, red) and no-slip (bottom,
blue) at zero rotation (Arslan & Rojas 2024).

We restrict our attention to quadratic functionals taking the form

V{T} :=
〈
β

2
|T|2 − [τ(z) + z − 1]T

〉
, (4.2)

that are parametrised by a positive constant β > 0, referred to as the balance parameter
and a piecewise-differentiable function τ : [0, 1] → R with a square-integrable derivative
that we call the background temperature field. Here τ(z) satisfies

τ(0) = 1, τ (1) = 0. (4.3a,b)

Introducing a constant, U, and rearranging, (4.1) can be written as

〈wT〉 ≤ U − U + 〈wT〉 + d
dt
V{T} ≤ U, (4.4)

where the final inequality holds given that, U − 〈wT〉 − (d/dt)V{T} ≥ 0, where we can
substitute for the Lie derivative ofV{T} by using (2.1c). However, the minimum principle,
Lemma 2.1, is necessary to obtain an R-dependent bound on 〈wT〉 that approaches 1

2 from
below as R increases. The condition is enforced with a Lagrange multiplier, λ(z), so that the
problem statement after computations as outlined in previous work (Arslan et al. 2021b,
2023) becomes

〈wT〉 ≤ inf
U,β,τ (z),λ(z)

{U |S{u, T} ≥ 0 ∀(u, T) ∈ H+}, (4.5)

where

H+ = {(u, T) | horizontally periodic, ∇ · u = 0, (2.3a), (2.4a), T(x) ≥ 0 a.e. x ∈ V},
(4.6)

provided λ(z) is a non-decreasing function, and

S{u, T} := 〈β|∇T|2 + τ ′(z)wT + (βz − τ ′(z) + λ(z))∂zT + τ(z) + U〉 − 1
2 . (4.7)

Ensuring the positivity of the quadratic terms in (4.7) is referred to as the spectral
constraint and is defined as

〈β|∇T|2 + τ ′(z)wT〉 ≥ 0, (4.8)
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1
−(1 – a)/δ

1

1

1– ε z

z

τ (z) λ(z)

δ

δ

(b)(a)

Figure 5. Sketches of the functions τ(z) in (4.10) and λ(z) in (4.11) used to prove (1), where δ is the boundary
layer width at the bottom, ε the boundary layer width at the top of the domain and a is (4.12).

where w and T are related by (2.4) and subject to the boundary conditions (2.3). As
has been established previously (Arslan et al. 2023), provided the spectral constraint is
satisfied, then the non-negativity of S{u, T} is ensured when U is given by

〈wT〉 ≤ U := 1
2

+ inf
λ∈L2(0,1)

λ non-decreasing
〈λ〉=−1

〈
1

4β

∣∣∣∣β
(

z − 1
2

)
− τ ′(z) + λ(z)

∣∣∣∣
2

− τ(z)

〉
. (4.9)

4.2. Preliminaries
To establish a bound on 〈wT〉, we state the main choices used in the proof that minimise
U(β, τ, λ) as defined in (4.9). We make the following choice of background temperature
field,

τ(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1 − a
δ

z, 0 ≤ z ≤ δ,

a, δ ≤ z ≤ 1 − ε,

a(1 − ε)

ε

(
1 − z

z

)
, 1 − ε ≤ z ≤ 1,

(4.10)

and set λ(z) to be

λ(z) :=

⎧⎪⎨
⎪⎩

−1 − a
δ

, 0 ≤ z ≤ δ,

− a
1 − δ

, δ ≤ z ≤ 1.
(4.11)

The piecewise functions τ(z) and λ(z) are quantified by the boundary layer widths δ ∈
(0, 1

3) and ε ∈ (0, 1
3), where δ ≤ ε, and parameter a > 0 that determines the value of τ(z)

in the bulk. See figure 5 for a sketch of the functions.
We further fix

a = 1
2δε1/2, (4.12)

and

β = 〈|τ ′(z) − λ(z)|2〉1/2

〈|z − 1
2 |2〉1/2

. (4.13)

In the following subsections, we prove bounds for different regimes of the Ekman
number. We achieve this by using different estimates on the spectral constraint (4.8).
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Internally heated convection with rotation

However, the expression for the upper bound on 〈wT〉 in (4.9) remains the same. Therefore,
first, we use our choices of τ(z) in (4.10) and λ(z) in (4.11) to estimate (4.9).

4.3. Estimating the upper bound
Starting with (4.9) an application of the triangle inequality and the choice of β in (4.13)
gives

U ≤ 1
2

+ 1√
12

〈|τ ′(z) − λ(z)|2〉1/2 − 〈τ 〉. (4.14)

Then, evaluating the sign positive integral with τ(z) from (4.10) and λ(z) in (4.11), gives

〈|τ ′(z) − λ(z)|2〉 =
∫ 1

δ

|τ ′(z) − λ(z)|2 dz

= a2

(1 − δ)2 (1 − ε − δ) + a2

ε2

∫ 1

1−ε

(
1 − ε

z2 − ε

1 − δ

)2

dz. (4.15)

We will require an upper and lower bound on (4.15). Starting with a lower bound, given
that ε ≤ 1

3 and δ ≤ 1
3 , with z in the range (1 − ε, 1), we make the suboptimal but simple

estimate that (
1 − ε

z2 − ε

1 − δ

)2

≥ 1
9
, (4.16)

such that we get

〈|τ ′(z) − λ(z)|2〉 ≥ a2

ε2

∫ 1

1−ε

(
1 − ε

z2 − ε

1 − δ

)2

dz ≥ a2

9ε
. (4.17)

For an upper bound on (4.15), given that ε and δ are positive, bounded above by 1
3 and that

δ ≤ ε, we use the estimate (1 − ε − δ)(1 − δ)−2 ≤ 3
4ε−1 and z−2 ≤ (1 − ε)−2, to obtain

〈|τ ′(z) − λ(z)|2〉 ≤ 3a2

4ε
+ a2

ε2

∫ 1

1−ε

(
1 − ε

z2 − ε

1 − δ

)2

dz

≤ 3a2

4ε
+ a2

ε2

∫ 1

1−ε

1
(1 − ε)2 + ε2

(1 − δ)2 dz

≤ 3a2

4ε
+ a2

ε

1 + ε2

(1 − ε)2 ≤ 4a2

ε
. (4.18)

Moving on to the integral of τ(z) in (4.9), we have that∫ 1

0
τ(z) dz = 1

2
δ(1 − a) − a

ε
(1 − ε) ln(1 − ε). (4.19)

Substituting (4.19) and (4.18) back into (4.14), taking a as given by (4.12) and ε, δ ≤ 1
3

such that δ2ε1/2 ≤
√

3
9 δ, gives

U ≤ 1
2 − nδ − 1

3δε−1/2| ln (1 − ε)|, (4.20)

where n = (18 − 7
√

3)/36.
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4.4. Large Ekman numbers
To obtain bounds for large E in this subsection, we use Lemma 2.2. The estimates in
Lemma 2.2 are pointwise estimates of the vertical velocity in Fourier space. Therefore, we
exploit the horizontal periodicity of u and T and take a Fourier decomposition of w and T
in the spectral constraint (4.8). Taking that[

T(x, y, z)
u(x, y, z)

]
=
∑

k

[
Tk(z)
uk(z)

]
ei(kxx+kyy), (4.21)

where the sum is over non-zero wavevectors k = (kx, ky) for the horizontal periods Lx and
Ly and magnitude of each wavevector is k = √

k2
x + k2

y . Inserting the Fourier expansions
(4.21) into (4.8) gives ∫ 1

0
β|T ′

k|2 + βk2|Tk|2 + τ ′(z)|wkTk| dz ≥ 0, (4.22)

where the complex conjugate relations of wk = w∗
k holds, and wk and Tk are subject to the

boundary conditions

wk(0) = wk(1) = w′
k(0) = w′

k(1) = 0, (4.23a)

Tk(0) = Tk(1) = 0. (4.23b)

Based on the boundary conditions, we infer the following two estimates. Given (4.23a)
applying the fundamental theorem of calculus and Hölders inequality gives

|wk| =
∫ z

0

∫ σ

0
|∂2

ηwk(η)| dη dσ ≤ 1
2

z2‖w′′
k‖∞, (4.24)

and for Tk, the fundamental theorem of calculus and the Cauchy–Schwarz inequality gives

|Tk| =
∫ z

0
|∂ηTk(η)| dη ≤ √

z‖T ′
k‖2. (4.25)

Next, we substitute (4.10) into the sign indefinite term in (4.22) to obtain∫ 1

0
τ ′(z)|wkTk| dz = −1 − a

δ

∫ δ

0
|wkTk| dz − a(1 − ε)

ε

∫ 1

1−ε

z−2|wkTk| dz. (4.26)

As Lemma 2.2 contains two estimates for different k, we will split the sign indefinite term
in half. Then, given that a ≤ 1, use of (4.24), the Cauchy–Schwarz inequality, (2.7) and
(2.8) from Lemma 2.2 gives that

1 − a
δ

∫ δ

0
|wkTk| dz ≤ 1

2δ

∫ δ

0
z5/2 dz‖T ′

k‖2‖w′′
k‖∞

≤ δ5/2

14
‖T ′

k‖2‖w′′
k‖∞ + δ5/2

14
‖T ′

k‖2‖w′′
k‖∞

≤ c1

14
δ5/2R(1 + 1

4 E−2)1/4‖T ′
k‖2‖Tk‖2

+ c2

14
δ5/2‖T ′

k‖2(R
√

k‖Tk‖2 + RE−1‖Tk‖2). (4.27)
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Internally heated convection with rotation

Taking the term of order
√

k in (4.27), we estimate further by noting that from (4.25) we
have a standard Poincaré inequality of

‖Tk‖2 ≤ 1√
2
‖T ′

k‖2, (4.28)

such that the use of Young’s inequality twice gives

1
14

δ5/2R
√

kc2‖T ′
k‖2‖Tk‖2 ≤ β

2
k‖Tk‖2‖T ′

k‖2 + c2
2

392β
δ5R2‖Tk‖2‖T ′

k‖2

≤ β

2
k2‖Tk‖2

2 + β

8
‖T ′

k‖2
2 + c2

2

392
√

2β
δ5R2‖T ′

k‖2
2. (4.29)

Then, substituting (4.29) into (4.27), the integral at the lower boundary becomes

1 − a
δ

∫ δ

0
|wkTk| dz ≤ β

2
k2‖Tk‖2

2 + β

8
‖T ′

k‖2
2 + c2

2

392
√

2β
δ5R2‖T ′

k‖2
2

+ c1

14
√

2
δ5/2R(1 + 1

4 E−2)1/4‖T ′
k‖2

2 + c2

14
√

2
δ5/2RE−1‖T ′

k‖2
2. (4.30)

We realise that for a sufficiently small Ekman number, the term of order E−1 is larger than
(1 + E−2)1/4 such that if we make the estimate

c1(1 + 1
4 E−2)1/4 ≤ c2E−1, (4.31)

we get a quadratic form in terms of E2, that places an upper bound on E of

E ≤ Em = 1

2
√

2
(−1 +

√
1 + 64(c4

2/c4
1))

1/2 = 41.4487. (4.32)

Now, (4.30) becomes

1 − a
δ

∫ δ

0
|wkTk| dz ≤ β

2
k2‖Tk‖2

2 + β

8
‖T ′

k‖2
2 + c2

2

392
√

2β
δ5R2‖T ′

k‖2
2

+ c2

7
√

2
δ5/2RE−1‖T ′

k‖2
2. (4.33)

Returning to the integral at the upper boundary in (4.26), we apply the same procedure,
where (4.24) and (4.25) are instead

|wk| ≤ 1
2 (1 − z)2‖w′′

k‖∞, |Tk| ≤ √
1 − z‖T ′

k‖2. (4.34a,b)

Given ε ≤ 1
3 we use that z−2 ≤ (1 − ε)−2 to get

a(1 − ε)

ε

∫ 1

1−ε

z−2|wkTk| dz ≤ a
ε(1 − ε)

∫ 1

1−ε

|wkTk| dz ≤ 3a
2ε

∫ 1

1−ε

|wkTk| dz. (4.35)

By use of Lemma 2.2, along with (4.34), (4.28), Young’s inequality and (4.31), we can
estimate the integral at the upper boundary to obtain

a(1 − ε)

ε

∫ 1

1−ε

z−2|wkTk| dz ≤ 3a
2ε

∫ 1

1−ε

|wkTk| dz ≤ β

2
k2‖Tk‖2

2 + β

8
‖T ′

k‖2
2

+ 9c2
2

6272
√

2β
δ2ε6R2‖T ′

k‖2
2 + 3

28
√

2
c2δε

3RE−1‖T ′
k‖2

2. (4.36)
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A. Arslan

Substituting (4.33) and (4.36) back into the spectral constraint (4.22) gives

(
3β

4
− c2

2

392
√

2

δ5R2

β
− c2

7
√

2
δ5/2RE−1 − 3c2

28
√

2
δε3RE−1 − 9c2

2

6272
√

2

δ2ε6R2

β

)
‖T ′

k‖2
2 ≥ 0.

(4.37)

The spectral condition is satisfied provided the term in the brackets of (4.37) is
non-negative. Note that we have an explicit expression for β in (4.13), which in conjunction
with the lower bound in (4.17) gives the following lower bound on β of

β ≥
√

3
3

δ. (4.38)

After estimating β from below with (4.38) and making the choice

δ = ( 9
16 )1/3ε2, (4.39)

the condition for the positivity of (4.37) becomes, after rearranging,

1 − c2
2

49
√

2
δ3R2 − 8c2

7
√

6
δ3/2RE−1 ≥ 0. (4.40)

In (4.40), two possible choices of δ = δ(R, E) guarantee the non-negativity of the left-hand
side. If the second negative term dominates the first, i.e.

c2
2

49
√

2
δ3R2 ≤ 8 c2

7
√

6
δ3/2RE−1, (4.41)

then (4.40) becomes

δ ≤
(

7
√

6
16c2

)2/3

R−2/3E2/3. (4.42)

Taking δ as large as possible in (4.42) and substituting back into (4.40) implies that E ≤
8(

√
2/3)1/2. In the opposite scenario, where

8c2

7
√

6
δ3/2RE−1 ≤ c2

2

49
√

2
δ3R2, (4.43)

then (4.40) becomes

δ ≤
(

49
√

2
2c2

2

)1/3

R−2/3, (4.44)

which holds for E ≥ 8(
√

2/3)1/2. In summary, the spectral condition holds if the condition
in (4.40) is satisfied and (4.40) is guaranteed when we take δ as large as possible in (4.42)
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Internally heated convection with rotation

and (4.44). As a result, we have that

δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
7
√

6
16c2

)2/3

R−2/3E2/3, E ≤ 8(
√

2/3)1/2,

(
49

√
2

2c2
2

)1/3

R−2/3, E ≥ 8(
√

2/3)1/2,

(4.45)

and, by (4.39), that

ε =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
7
√

6
12c2

)1/3

R−1/3E1/3, E ≤ 8(
√

2/3)1/2,

(
392

√
2

9c2
2

)1/6

R−1/3, E ≥ 8(
√

2/3)1/2.

(4.46)

Therefore, substituting (4.45) and (4.46) back into (4.20), along with the fact that 〈wT〉 ≤
U and (1.1) to obtain

FB ≥
{

d1R−2/3E2/3 + d2R−1/2E1/2| ln(1 − d3R−1/3E1/3)|, E ≤ 8(
√

2/3)1/2,

d4R−2/3 + d5R−1/2| ln(1 − d6R−1/3)|, 8(
√

2/3)1/2 ≤ E ≤ Em,

(4.47)

where the constants d1 to d6 are collated in Appendix A. Finally, in § 4.2 we chose that both
boundary layer widths are in (0, 1

3), therefore given (4.45) and (4.46) the bound obtained
in (4.47) holds for all R ≥ 0.4715.

4.5. Small Ekman numbers
Next, we demonstrate a proof of the bound on FB valid for small E in (1). Here, we
use Lemma 2.3 to demonstrate the non-negativity of the spectral constraint (4.8). The
estimates used in this subsection do not require estimates in Fourier space.

Starting with the spectral constraint in (4.8), we start by substituting for τ(z) from (4.10)
into the sign-indefinite term and using the estimate z−2 ≤ (1 − ε)−2 at the upper boundary
gives

〈τ ′(z)wT〉 ≥ −1 − a
δ

〈∫ δ

0
wT dz

〉
h
− a

ε
(1 − ε)−1

〈 ∫ 1

1−ε

wT dz
〉

h
. (4.48)

We first consider the integral in (4.48) near z = 0 and obtain an estimate on wT . Since
we require a lower bound on the right-hand side of (4.48), we can rearrange the order of
integration of the first term on the right-hand side of (4.48) and estimate the integral from
above. Given the boundary conditions (2.3), use of the fundamental theorem of calculus,
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A. Arslan

(2.4b) and integration by parts gives

〈|wT|〉h =
〈∣∣∣∣
∫ z

0
∂s(wT) ds

∣∣∣∣
〉

h
=
〈∣∣∣∣
∫ z

0
T∂sw + w∂sT ds

∣∣∣∣
〉

h
=
〈∣∣∣∣
∫ z

0
−ET∇2ζ + w∂sT ds

∣∣∣∣
〉

h

= E〈|ζ ′T|〉h +
〈∣∣∣∣
∫ z

0
E∇ζ∇T + w∂sT ds

∣∣∣∣
〉

h
. (4.49)

Then, given the boundary condition on the velocity and temperature in (2.3), we have that

|w(·, z)| ≤ 2
3

z3/2
(∫ 1

0
|w′′(·, z)|2 dz

)1/2

, 〈T2〉1/2
h ≤ √

z〈|∇T|2〉1/2, (4.50a,b)

use of which, along with multiple applications of the Cauchy–Schwarz inequality in (4.49),
and that for f ∈ L2(0, 1) we have 〈| f ′|2〉h ≤ 〈|∇f |2〉h ≤ 〈|∇f |2〉, gives

〈|wT|〉h ≤ E〈|ζ ′|2〉1/2
h 〈|T|2〉1/2

h + E〈|∇ζ |2〉1/2〈|∇T|2〉1/2 + z2

3

〈∫ z

0
|∂sT|2 ds

〉1/2

h
〈|w′′|2〉1/2

≤
(

(
√

z + 1)E〈|∇ζ |2〉1/2 + 1
3

z2〈|∇2w|2〉1/2
)

〈|∇T|2〉1/2. (4.51)

Next, we use Lemma 2.3, to bound both 〈|∇ζ |2〉 and 〈|∇2w|2〉 from above and given that
T is horizontally periodic with Dirichlet boundary conditions at z = 0 and 1 we have the
standard Poincaré inequality 〈|T|2〉 ≤ (1/π2)〈|∇T|2〉, which gives

〈|wT|〉h ≤
(

ER√
2π

(1 + √
z) + 1

3π
z2R

)
〈|∇T|2〉. (4.52)

Then, substituting back into the integral at the boundary, whereby (4.12) we have 1 − a ≤
1, we get that

1 − a
δ

∫ δ

0
〈|wT|〉h dz ≤

(
ER√
2π

(
1 + 2

3
δ1/2

)
+ 1

9π
δ2R

)
〈|∇T|2〉. (4.53)

The same estimates hold at the upper boundary with a given by (4.12) and z replaced by
1 − z. Then, since ε ≤ 1

3 we can take 1 − ε ≤ 1 to obtain

1
2
δε−1/2(1 − ε)−1

∫ 1

1−ε

〈|wT|〉h dz ≤ 3
4
δε1/2

(
ER√
2π

(
1 + 2

3
ε1/2

)
+ 1

9π
ε2R

)
〈|∇T|2〉.

(4.54)

Substituting (4.53) and (4.54) back into (4.48) and then into (4.8), gives after use of the
lower bound on β from (4.38) that(√

3δ

3
− ER√

2π

(
1 + 2δ1/2

3

)
− δ2R

9π
− 3δε1/2ER

4
√

2π

(
1 + 2ε1/2

3

)
− δε5/2R

12π

)
〈|∇T|2〉 ≥ 0.

(4.55)

Since ε ≤ 1
3 and δ ≤ 1

3 , then, we will make estimates, 1 + 2δ1/2/3 ≤ √
2π/3 and 1 +

2ε1/2/3 ≤ √
2π/3, such that after rearranging the spectral constraint becomes

√
3δ − ER − δ2R

3π
− 3

4
δε1/2ER − δε5/2R

4π
≥ 0. (4.56)
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Internally heated convection with rotation

In (4.56), the first negative term does not contain an explicit δ dependence, and so we will,
at the very least, choose that

ER ≤
√

3
2

δ. (4.57)

Using (4.57) and further making the choice

δ = 3
4
ε5/2, (4.58)

gives √
3

2
− 2

3π
δR −

(
3
4

)4/5

δ1/5ER ≥ 0. (4.59)

Similar to the proof of a bound for large Ekman numbers in § 4.4, we have a constraint that
we consider in two cases. If in (4.59), the second negative term dominates the first such
that

2
3π

δR ≤
(

3
4

)4/5

δ1/5ER, (4.60)

then

δ ≤
√

3
36

E−5R−5, (4.61)

however, if this δ is to satisfy the spectral constraint then its implication on (4.57) and
(4.59) need to be checked. If we take δ to be as large as possible in (4.61), then, up to
constants, we get from (4.57) and (4.59) that

E � R−4/5 and E � R−1, (4.62a,b)

which leads to a contradiction, and the initial assumption cannot be true. Assuming,
instead, that (

3
4

)4/5

δ1/5ER ≤ 2
3π

δR, (4.63)

gives in (4.59) that

δ ≤ 3
√

3π

8
R−1. (4.64)

Taking δ as large as possible in (4.64), the constraints from (4.57) implies that

E ≤ 9π

16
R−2, (4.65)

Finally, substituting the largest δ from (4.64) into (4.58) gives

ε =
(√

3π

2

)2/5

R−2/5. (4.66)

Then, taking δ as large as possible in (4.64), (4.66), substituting into (4.20), along with the
fact that 〈wT〉 ≤ U and (1.1) we get that

FB ≥ d7R−1 + d8R−4/5| ln (1 − d9R−2/5)|, E ≤ 9π

16
R−2, (4.67a,b)

where the constants d7 to d9 are collated in Appendix A. Finally, for completeness, we
verify that the choice of ε, δ ∈ (0, 1

3 ) made in § 4.2 is not restrictive. Since δ is smaller
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A B C D
E

0

0

1/12

〈T 〉

R–1/4 ln R–1/4E2/7R–2/7

R–1/3

E –1R–1

R–5/17

R–2/7

E1 Em

E � R–2/3 R–2/3 � E

Figure 6. Illustration of the lower bounds on the mean temperature between no-slip and isothermal boundary
conditions at infinite Pr. The blue plot is the bound derived in § 5.3, valid up to Em ∼ 41.4487 and E1 = 8.
The bounds derived in § 5.4 are shown with a green plot. The dashed horizontal line denotes when all heat
transport is by conduction and 〈T〉 = 1

12 . In D, we show the previously known best bound for stress-free (top,
red) (Whitehead & Doering 2012) and no-slip (bottom, blue) (Whitehead & Doering 2011a) at zero rotation.

than ε as expressed in (4.58), taking δ as large as possible in (4.64) the bound obtained in
(4.67) holds for all R ≥ 6.1216.

5. Bounds on the mean temperature

In this section, we prove bounds on 〈T〉 with the auxiliary functional method by using
the same strategy as in § 4.1. First, we derive a variational problem for obtaining a lower
bound on 〈T〉, with a different quadratic auxiliary functional to (4.2). Then, given our
choice of background profile ϕ(z), we can estimate the lower bound L on 〈T〉 in terms of
the parameters of ϕ(z). We then prove bounds for large and small E numbers by Lemmas
2.2 and 2.3. The proofs in this section are algebraically lighter than the proof for a bound on
〈wT〉, primarily due to two reasons. The first is that the minimum principle on T , Lemma
2.1, is not required, and the second, the balance parameters do not have a R dependence.
The lower bounds we prove on 〈T〉, including those already known, are illustrated in
figure 6.

5.1. The auxiliary functional method
By the auxiliary functional method, we obtain an explicit variational problem that we solve
to obtain a bound on 〈T〉. The following derivation, albeit in the language of the classic
background field method approach, appears in previous papers (Whitehead & Doering
2011a, 2012). Here, we only present an outline within the auxiliary functional framework.

Starting with the quadratic auxiliary functional

V{T} = 〈−1
2 |T|2 + 2ϕ(z)T〉, (5.1)

where ϕ(z) is the background temperature field subject to the boundary conditions

ϕ(0) = ϕ(1) = 0. (5.2)

Then, provided V{T(t)} is bounded along solutions of (2.1), the time derivative of the
long-time average ofV{T} is zero, such that we can write

〈T〉 = L −
(

L − 〈T〉 + d
dt
V{T}

)
≥ L, (5.3)
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Internally heated convection with rotation

1

1
2

ϕ(z)

zδ 1 – δ

δ(1 – δ)

Figure 7. Sketches of the functions ϕ(z) in (5.8) used to prove (1), where δ is the boundary layer widths.

where the inequality comes from assuming that, L − 〈T〉 + (d/dt)V{T} ≤ L − 〈T〉 −
(d/dt)V{T} ≤ 0. Noting that we again bound the terms in the long-time integral by the
pointwise in time maximum over all periodic u and T , where ∇ · u = 0, subject to the
boundary conditions (2.3). Hence, after substituting for the Lie derivative of V{T} by
use of (2.1c) and rearranging, we have, after appropriate manipulations, the following
variational problem

〈T〉 ≥ inf
L,ϕ(z)

{L |S{u, T} ≥ 0 ∀(u, T) ∈ H+}, (5.4)

where
S{u, T} := 〈|∇T|2 + ϕ′(z)wT − ϕ′(z)∂zT + ϕ(z) − L〉. (5.5)

In this case, the spectral constraint is given by

〈|∇T|2 + 2ϕ′(z)wT〉 ≥ 0. (5.6)

Then, by optimising the linear terms in (5.5) the explicit expression for L is given

L := 2〈ϕ(z)〉 − 〈|ϕ′(z)|2〉. (5.7)

5.2. Preliminaries
To establish a lower bound on 〈T〉, we take the following class of background fields

ϕ(z) :=

⎧⎪⎪⎨
⎪⎪⎩

1
2(1 − δ)z, 0 ≤ z ≤ δ,

1
2δ(1 − δ), δ ≤ z ≤ 1 − δ,

1
2(1 − δ)(1 − z), 1 − δ ≤ z ≤ 1.

(5.8)

The background field is determined entirely by δ ∈ (0, 1
3 ), the width of the boundary layers

at the top and bottom of the domain, sketched in figure 7. In contrast to § 4, no advantage
follows from background fields with boundary layers of different widths.

The lower bounds on 〈T〉 for different Ekman numbers rely on different estimates of
the velocity in the spectral constraint (5.6) given the diagnostic (2.4). Given the choice of
background profile (5.8), the expression for the lower bound L = L(δ) is unchanged based
on the estimates we use to demonstrate the non-negativity of the spectral constraint for
different Ekman numbers. Thus, we now estimate L in (5.7) given (5.8). Substituting for
ϕ(z) from (5.8), we get

L = 1
2δ(1 − δ)2. (5.9)

Since δ ≤ 1
3 , then the estimate 1 − δ ≥ 2

3 , gives

L ≥ 2
9δ. (5.10)
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5.3. Large Ekman numbers
We can now proceed to establish a lower bound on 〈T〉 by establishing the conditions
under which the spectral constraint of (5.4) is satisfied, given the choice of background
temperature field (5.8) and by use of Lemma 2.2. The estimates in Lemma 2.2 apply to
(2.4) in Fourier space so we exploit horizontal periodicity and substitute (4.21) into (5.6)
such that the spectral constraint in Fourier space is∫ 1

0
|T ′

k|2 + k2|Tk|2 + 2ϕ′(z) Re{wkT∗
k} dz ≥ 0. (5.11)

Substituting for ϕ(z) and using the fact that δ ≤ 1
3 gives −(1 − δ) ≥ −1, the

sign-indefinite of (5.11) is

2
∫ 1

0
ϕ′(z) Re{wkT∗

k} dz ≥ −2
∫ 1

0
|ϕ′(z)wkTk| dz

≥ −
∫ δ

0
|wkTk| dz −

∫ 1

1−δ

|wkTk| dz. (5.12)

Due to the symmetry in the boundary conditions and ϕ(z), we only demonstrate estimates
on the integral at the lower boundary since that at the top gives an identical contribution.
Using the estimates of (4.24) and (4.25) on wk and Tk, Lemma 2.2 and Young’s inequality,
we get ∫ δ

0
|wkTk| dz ≤ 1

2

∫ δ

0
z5/2 dz‖T ′

k‖2‖w′′
k‖∞

= 1
14

δ7/2‖T ′
k‖2‖w′′

k‖∞ + 1
14

δ7/2‖T ′
k‖2‖w′′

k‖∞

≤ δ7/2

14
c1R(1 + 1

4 E−2)1/4‖T ′
k‖2‖Tk‖2

+ δ7/2

14
‖T ′

k‖2c2(R
√

k‖Tk‖2 + RE−1‖Tk‖2). (5.13)

Taking the term of order
√

k, estimating by use of Young’s inequality twice and (4.28)
gives

1
14

δ7/2R
√

kc2‖T ′
k‖2‖Tk‖2 ≤

√
2

2
k‖Tk‖2‖T ′

k‖2 + c2
2

392
√

2
δ7R2‖Tk‖2‖T ′

k‖2

≤ 1
2

k2‖Tk‖2
2 + 1

4
‖T ′

k‖2
2 + c2

2
784

δ7R2‖T ′
k‖2

2. (5.14)

Therefore, the integral from 0 to δ simplifies to∫ δ

0
|wkTk| dz ≤ 1

2
k2‖Tk‖2

2 + 1
4
‖T ′

k‖2
2 + c2

2
784

δ7R2‖T ′
k‖2

2

+
√

2
28

c1δ
7/2R(1 + 1

4 E−2)1/4‖T ′
k‖2

2 +
√

2
28

c2δ
7/2RE−1‖T ′

k‖2
2. (5.15)
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Internally heated convection with rotation

By equivalent estimates at the upper boundary, we get the same upper bound such that
(5.12) becomes

2
∫ 1

0
ϕ′(z) Re{wkT∗

k} dz ≥ −k2‖Tk‖2
2 − 1

2
‖T ′

k‖2
2 −

(
c2

2
392

δ7R2

+
√

2
14

c1δ
7/2R(1 + 1

4 E−2)1/4 +
√

2
14

c2δ
7/2RE−1

)
‖T ′

k‖2
2. (5.16)

Finally, we use the estimate in (4.31), which places an upper limit on E = Em in (4.32), for
which the bounds are valid. Then, substituting (5.16) into (5.11) with (4.31), the spectral
constraint becomes

1
2

− c2
2

392
δ7R2 −

√
2

7
c2δ

7/2RE−1 ≥ 0. (5.17)

In (5.17), two possible choices of δ = δ(R, E) guarantee the non-negativity of the left-hand
side. If

c2
2

392
δ7R2 ≤

√
2

7
c2δ

7/2RE−1, (5.18)

then from (5.17) we have that

δ ≤
(

7
√

2
8c2

)2/7

R−2/7E2/7. (5.19)

Taking (5.19) as large as possible, substituting back into (5.17) and rearranging, we find
that the spectral constraint holds when E ≤ 8. In the opposite scenario, where

√
2

7
c2δ

7/2RE−1 ≤ c2
2

392
δ7R2, (5.20)

substituted back into (5.17) gives that

δ ≤
(

196
c2

2

)1/7

R−2/7, (5.21)

which holds for E ≥ 8. In summary, we have that

δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
7
√

2
8c2

)2/7

R−2/7E2/7, E ≤ 8,

(
196
c2

2

)1/7

R−2/7, E ≥ 8,

(5.22)

which we can finally substitute into (5.10) remembering that 〈T〉 ≥ L to obtain that

〈T〉 ≥
{

d10R−2/7E2/7, E ≤ 8,

d11R−2/7, 8 ≤ E ≤ Em,
(5.23)

where d10 and d11 are given in Appendix A. A final check is on the validity of the bounds
given choices made in § 5.2 that δ is in (0, 1

3 ). Given (5.22) the bound obtained in (5.23)
holds for all R ≥ 7.1363 when E ≤ 8 and R ≥ 10.0922 when E ≥ 8.
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5.4. Small Ekman numbers
Next, we move on to the proof of the lower bound on 〈T〉 in (1) valid for a small E.
Here, we use Lemma 2.3, which does not require estimates in Fourier space. Starting with
the spectral constraint (5.6) and substituting for ϕ(z) from (5.8), the sign-indefinite term
becomes

2〈ϕ′(z)wT〉 ≥ −2〈|ϕ′(z)wT|〉 ≥ −
〈∫ δ

0
|wT| dz

〉
h
−
〈 ∫ 1

1−δ

|wT| dz
〉

h
. (5.24)

In § 4.5, we established the estimate (4.52) and can substitute directly into the integral at
the lower boundary in (5.24) to obtain〈∫ δ

0
|wT| dz

〉
h

≤
[

E R√
2π

(
δ + 2δ3/2

3

)
+ 1

9π
δ3R

]
〈|∇T|2〉. (5.25)

The integral at the upper boundary gives an identical estimate such that the spectral
constraint of (5.6) becomes

〈|∇T|2 + 2ϕ′(z)wT〉 ≥ 〈|∇T|2 − 2|ϕ′(z)wT|〉

≥ 〈|∇T|2〉 − 2
[

E R√
2π

(
δ + 2δ3/2

3

)
+ 1

9π
δ3R

]
〈|∇T|2〉 ≥ 0. (5.26)

Therefore, the spectral constraint becomes the condition

1 − 2ER√
2π

(
δ + 2δ3/2

3

)
− 1

9π
δ3R ≥ 0. (5.27)

Given that δ ≤ 1
3 , we use the estimate that 1 + 2δ1/2/3 ≤

√
2π
3 to obtain the condition

1 − 2
3

ERδ − 1
9π

δ3R ≥ 0. (5.28)

Once more, the condition admits δ = δ(R, E) valid for two cases. If we take

2
3

ERδ ≤ 1
9π

δ3R, (5.29)

then (5.28) is non-negative if

δ ≤
(

9π

2

)1/3

R−1/3, (5.30)

where when taking δ as large as possible the choice holds when E ≤ 3
4 (2/9π)1/3R−2/3. In

the case where
1

9π
δ3R ≤ 2

3
ERδ, (5.31)

then

δ ≤ 3
4 R−1E−1, (5.32)
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Internally heated convection with rotation

for all E ≥ 3
4 (2/9π)1/3R−2/3. Therefore, the spectral constraint is satisfied if

δ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
9π

8

)1/3

R−1/3, E ≤ 3
4

(
2

9π

)1/3

R−2/3,

3
4

R−1E−1, E ≥ 3
4

(
2

9π

)1/3

R−2/3.

(5.33)

Substituting into (5.10) and remembering further that 〈T〉 ≥ L, gives

〈T〉 ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d12R−1/3, E ≤ 3
4

(
2

9π

)1/3

R−2/3,

d13R−1E−1, E ≥ 3
4

(
2

9π

)1/3

R−2/3,

(5.34)

where d12 and d13 are in Appendix A. Finally, for completeness, we verify that the choice
of δ ∈ (0, 1

3 ) made in § 5.2 is not restrictive. Given (5.33) the bound obtained in (5.34)
holds for all R ≥ 95.4259 when E ≤ 3

4 (2/9π)1/3R−2/3 and for all R ≥ 1 otherwise.

6. Discussion

6.1. Regions of validity of the bounds
Owing to the use of two different estimates (Lemmas 2.2 and 2.3), we need to consider
which bounds dominate in the various regions created by the constraints on the bounds.
To this effect, first, we plot the regions in which the bounds on FB and 〈T〉 overlap in
figure 8. For ease of understanding, we split the space of E and R into four main regions.
Region I, where R and E are large, corresponds to a slowly rotating buoyancy-dominated
flow. Region II is the solid body rotation of the fluid since R and E are small. Region III,
where R is large and E small, contains a transition from buoyancy- to rotation-dominated
convection provided R > RL where RL is the Rayleigh number above which the flow is
linearly unstable. At the same time, region IV, where E is small but R cannot get too large,
is for rotation-dominated flows.

In figure 8(a), the blue solid line shows E = 1.7671 R−2, the red line is the constant
E0 = 5.4927, whereas in figure 8(b) the blue line shows E = 0.3102R−2/3, the purple line
E = 1.9273R−5/9 and the red line is the constant E1 = 8. In both (a) and (b), the yellow
line is the constant Em = 41.4487 from (4.32), the dotted vertical line, 26926.6 and the
dashed green line is the asymptotic result of (3.15).

Starting with figure 8(a), the bounds of (4.47) and (4.67) split the diagram into four and
we evaluate the best bound in each region. For region I, where E � R−2 and Em ≥ E ≥ E0,
the only valid bound is d4R−2/3 + d5R−1/2| ln(1 − d6R−1/3)|. The scaling of the slowly
rotating convection bound matches the zero rotation bound of Arslan & Rojas (2024),
noting that the initial assumptions on δ and ε can be adjusted such that the constants in the
two bounds match. The question of a bound dependent on E that, in the limit of E → ∞,
matches the scaling of R−2/3 remains open. In region II, E � R−2 and Em ≥ E ≥ E0,
the best bound would match region I, but the region is below RL when E = ∞, so no
convection occurs, and FB = 1

2 . In region III, E � R−2 and E ≤ E0, the only bound is
d1R−2/3E2/3 + d2R−1/2E1/2| ln(1 − d3R−1/3E1/3)|, provided R > RL. Finally, in region
IV, where E � R−2 and E ≤ E0, the best bound is d7R−1 + d8R−4/5| ln(1 − d9R−2/5)|
again provided that R > RL. While region IV is below the dotted green line in figure 8,
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Figure 8. The Rayleigh and Ekman number diagrams for the bounds (4.47), (4.67), (5.23) and (5.34). Grey
areas denote regions where the bounds proven in this work do not hold. We plot the regions of validity for
the bounds on FB in (a) and for 〈T〉 in (b). The blue solid lines correspond to E = 1.7671 R−2 in (a) and
E = 0.3102 R−2/3 in (b), with the blue area denoting region IV. The horizontal red solid lines are E0 = 5.4927
in (a) and E1 = 8 in (b) and the red area is region III, where for (b) IIIa is the purple zone with the solid purple
line corresponding to E = 1.9273 R−5/9. In both figures, the horizontal yellow lines are Em = 41.4487 with the
yellow zone corresponding to region I. The vertical dashed lines are RL = 26926.6 and the green dashed lines
are the asymptotic result of (3.15). The four main regions are labelled I to IV.

(3.15) is an asymptotic result for instability with stress-free boundaries. The bounds, on
the other hand, are for no-slip boundaries.

We now move on to figure 8(b) and the bounds (5.23) and (5.34). The first difference
with (a) is that region I, is split into two. In region I where E � R−2/3 and Em ≥ E ≥ E1,
there are two bounds of d13R−1E−1 and d11R−2/7, where from a comparison of the two
the better bound is d11R−2/7, due to the requirement of E � R−2/3. However, for region
Ia where E � R−2/3 and E ≥ Em, the only valid bound is d13R−1E−1. Region II, where
E � R−2/3 and E ≥ E1, is below the linear stability limit, so 〈T〉 = 1

12 . In region III, E �
R−2/3 and E ≤ E1, there are two bounds of d10R−2/7E2/7 and d13R−1E−1, and both are
valid in different cases. When R−2/3 � E � R−5/9, referred to as region IIIa and shown
with the purple region, the better lower bound is d13R−1E−1, provided R > RL. If instead
E � R−5/9, then instead the mean temperature is bounded by d10R−2/7E2/7. The dashed
green line scales as R−3/4, so, for sufficiently large R, the entirety of region III corresponds
to convecting flows. In region IV, E � R−2/3 and E ≤ E1, there are two bounds but the
better one is d12R−1/3, provided R > RL. Table 1 summarises the above discussion of the
results.

Having established the regions where each of the bounds is valid in the E–R space, we
now consider the implications of these bounds on rotation in turbulent convection driven
by internal heating. Figure 9 compares the bounds proven in this paper with the best-known
bounds for IHC without rotation (Whitehead & Doering 2011a; Arslan & Rojas 2024). We
fix E at 1 × 10−16 and plot the bounds as a function of R, and then fix R at 1 × 108 and
plot them as a function of E. Equivalent to taking horizontal and vertical slices of figure 8
to visualise the bounds along each line segment.

Discontinuities at the intersections in figure 9, defined by the regions of validity
for each bound (table 1), are expected and arise from comparing bounds obtained by
different lemmas and are a product of the method used to ensure positivity of the spectral
constraint of (4.8) in §§ 4 and 5. In addition, across all subplots, the ratio of the bounds
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Figure 9. Plots of the ratio of lower bounds on FB and 〈T〉 relative to the best-known bounds at zero rotation
FB0 and 〈T〉0 (Whitehead & Doering 2011a; Arslan & Rojas 2024), for E = 1 × 10−16 in (a) and (c) and
R = 1 × 108 in (b) and (d). In all of the subplots, the blue lines are the lower bounds in region IV, the red lines
are the bounds in region III and the yellow lines are the bounds in Region I, while purple lines in (c) and (d)
are the bounds valid in regions Ia and IIIa for 〈T〉. The bounds themselves are in table 1. Vertical dotted lines
show the intersections of the regions for each bound.

is consistently less than 1, though by restricting the choices of δ, ε, and estimates in the
proofs, the y values in figure 9 can be made larger. For brevity in the proofs, constants
were not optimised. Starting with FB at E = 10−16, the bounds in region III (red line)
have the same scaling as the zero-rotation case, while in region IV (blue line), the bounds
decrease, suggesting that at higher R, less heat may escape the domain compared with the
non-rotating case. For fixed R, only the bound in region III changes with E: for smaller
E, the bound on FB is smaller than FB0. For 〈T〉, with E fixed, the bounds scale such that
the ratio 〈T〉/〈T〉0 always decreases. However, when R is constant, the scaling in regions
IV and I (yellow line) is independent of E. As rotation increases, the ratio decreases in
region III but increases in regions Ia and IIIa (purple lines). A smaller lower bound in the
rotating case implies a larger possible range for FB and 〈T〉. Since rotation introduces new
flow regimes, it is possible that some flows cause both quantities to be lower than in the
absence of rotation.

Finally, consider the possible heuristic scalings of 〈T〉 ∼ R−3/5E−4/5 from (B3b) and
FB ∼ R−3/10E−2/5 from (B4b), that may hold for rotation-dominated convection. In the
scaling laws, if we fix R and take E → 0, we tend to the uniform upper bounds for both
quantities. The lower bounds closest to the heuristic scaling are those in region III (table 1).
It is insightful to consider the small E limit where E ∼ R−3/4

L , and we can write that

〈T〉 ∼
(

R
RL

)−3/5

, (6.1a)
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and

FB ∼
(

R
RL

)−3/10

, (6.1b)

whereas the rigorous bounds in region III (table 1) become

〈T〉 �
(

R
RL

)3/14

R−1/2, (6.2a)

and

FB �
(

R
RL

)1/2

R−7/6 +
(

R
RL

)3/8

R−7/8

∣∣∣∣∣ln
(

1 −
(

R
RL

)1/4

R−7/12

)∣∣∣∣∣ . (6.2b)

Since R is always a multiple of RL, for R > RL, the bounds in (6.2), as expected, are
smaller than the heuristic scaling laws (6.1). If the lower bounds are not sharp, then this
would motivate the question of how to improve the bounds, which we now discuss with
concluding remarks.

6.2. Conclusions
In this work we prove the first lower bounds on the mean temperature 〈T〉, ((5.23) and
(5.34)) and the mean heat flux out of the bottom boundary FB ((4.47) and (4.67)), for
rotating uniform IHC in the limit of infinite Prandtl number. Using the fact that the
momentum equation in RBC and IHC is identical, we adapt estimates from Yan (2004)
and Constantin et al. (1999) to prove the first Rayleigh- and Ekman-number-dependent
bounds on 〈T〉 and FB in IHC. By application of the auxiliary functional method, we
prove bounds that apply to different regions of buoyancy to rotation-dominated flows,
summarised in figure 8 and table 1. In addition to rigorous bounds, we demonstrate that
the critical Rayleigh number for linear stability, RL, asymptotically scales with the Ekman
number as E−4/3 when the marginally stable states are steady.

In contrast to previous applications of the background field method, there are several
unique features in the proofs of bounds in this work. First, the background temperature
fields have boundary layers of different widths for the proofs on FB, but not for 〈T〉. In
particular, when we use Lemma 2.2 we find that δ = ε2, while when using Lemma 2.3,
δ = ε5/2. The relation from using Lemma 2.2 (§ 4.4) matches the predictions of heuristic
arguments (Appendix B). However, whether or not the background profiles are optimal
remains unknown and can be addressed with numerical optimisation over a finite range of
parameters (Fantuzzi & Wynn 2016; Fantuzzi 2018; Fantuzzi et al. 2022). The scaling
of the bound obtained for FB in the slowly rotating region (region I in figure 8 and
table 1) matches the best known bound for zero rotation, however, the constants differ. The
scaling of the bounds on 〈T〉 do not match the zero rotation case, but the bounds in this
work only hold up to E ≤ Em = 41.4487, and the background profile is not logarithmic,
which is critical to the bound of Whitehead & Doering (2011a). It would be interesting
if further investigations can prove a bound that holds for large E too and matches the
scaling of the zero rotation bounds on 〈T〉 (Whitehead & Doering 2011a) and FB (Arslan
& Rojas 2024) when E → ∞. The two lemmas used in this work give different bounds
for different regions of the E–R parameter. While both estimate the second derivative of
the vertical velocity, the estimates hold for different Lp norms with Lemma 2.2 utilising
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a finer spectral analysis of the Greens function of (2.1b). More generally, Lemma 2.2 is a
pointwise estimate in z, and Lemma 2.3 is an integral estimate over the whole domain.

Although rigorous demonstrations of the validity of the results at arbitrary Pr are not
provided here, previous work in Tilgner (2022) outlines a strategy for extending bounds
from Pr = ∞ to finite Pr for RBC. The author achieves this under specific restrictions on
E and a numerical approximation of a Greens’ function, making the bound semi-analytic.
A similar approach appears in Wang & Whitehead (2013) to extend bounds on RBC for
stress-free boundaries from infinite Pr to arbitrary Pr in three dimensions (the proof in
two dimensions being given in Whitehead & Doering 2011b). The barrier to adapting to
IHC is the lack of a maximum principle on the temperature of the form ‖T‖∞ ≤ c, where
c = 1 for RBC. Proof of any maximum principle for IHC is unknown for any Lp space.
Therefore, at best, we can conjecture that akin to RBC, to highest order, the bounds in this
work should hold for arbitrary Pr.

In considering turbulent convection subject to rotation, a question of interest is the
behaviour in the limit of rapidly rotating convection. Rapidly rotating IHC could be
investigated by taking the approach of the nhQG approximation (Julien et al. 1996;
Sprague et al. 2006; Julien et al. 2016) to (2.1). It is worth noting that the bounds for
the rapidly rotating limit in RBC apply to arbitrary Pr, making the results relevant for
geophysical flows. However, for geophysical applications, in addition to rapid rotation,
IHC in spherical geometry is of importance. No rigorous study on the turbulent state of
such a system is known, and any change in the bounds with a variation in the geometry is
an intriguing avenue for future research.

For any result obtained with a bounding method, an important question is on the
sharpness of the bounds. High-resolution numerical simulations can provide insight into
the sharpness of the bounds in (1). A numerical study of the parameter space would
provide valuable insight into the nature of heat transport in uniform rotating IHC, as no
such data, numerical and experimental, exists to the best of the author’s knowledge on
IHC. Then, proof of better bounds, by moving away from quadratic auxiliary functionals,
and hence the background field method, can also answer the question of sharpness. In
general, mathematical improvements are obtained in one of two ways: either by changes
to the variational problem, such that the expressions for the bounds and the spectral
constraint change, or by novel estimates of the flow quantities. The latter method is more
mathematically challenging, while the prior can be achieved with new physical insights.
For example, given that additional constraints, such as minimum and maximum principles,
improve bounds for convection (Otto & Seis 2011; Arslan et al. 2021b), it would be
interesting to see if information about rotation can be exploited to construct a variational
problem from (2.1), that yields better bounds. Beyond the relation between the RL and
E, a trait of rotating flows is the Taylor–Proudman theorem, which could form the basis
of an additional constraint which improves the bounds. In addition, alternative auxiliary
functionals might bear fruit in studying bounds on rotating convection. More concretely,
the linear stability analysis reveals the importance of the vertical vorticity, and functionals
that incorporate vorticity may provide insight into improved bounds, especially given the
conjecture in Chernyshenko (2023) for the use of helicity in the auxiliary functional.
Similar functionals appear in studies on nonlinear stability of rotating RBC (Galdi &
Straughan 1985; Giacobbe & Mulone 2014).

As a final remark, recent work has highlighted novel results when the internal heating
is non-uniform (Lepot, Aumaître & Gallet 2018; Bouillaut et al. 2022; Song, Fantuzzi &
Tobasco 2022; Arslan et al. 2024). The change in the physics or bounds due to distributed
heating or cooling would be an interesting future line of research. From the perspective of
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Bound Equation Constant Value

FB (4.47) d1
18−7

√
3

36 ( 7
√

6
16c2

)2/3

(4.47) d2
1
12 ( 1

6 )1/12
√

21
c2

(4.47) d3 ( 7
√

6
12c2

)1/3

(4.47) d4
18−7

√
3

36 ( 49
√

2
2c2

2
)1/3

(4.47) d5

√
7

3 ( 9
32

√
2c5

2
)1/12

(4.47) d6 ( 392
√

2
9c2

2
)1/6

(4.67) d7

√
3π(18−7

√
3)

96

(4.67) d8
(
√

3π)4/5

214/5

(4.67) d9 (
√

3π
2 )2/5

〈T〉 (5.23) d10
2
9 ( 7

√
2

8c2
)2/7

(5.23) d11
2
9 ( 196

c2
2

)1/7

(5.34) d12
2
9 ( 9π

8 )1/3

(5.34) d13
1
6

the PDE, extending the set-up in (2.1c) to arbitrary heating profiles would be the natural
next step when studying bounds on the long-time behaviour of turbulence.
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Appendix A. Table of constants

For clarity in the proofs of the lower bounds on FB and 〈T〉 ((4.47), (4.67), (5.23) and
(5.34)), collated here are the constants that appear in the bounds. References to the precise
equations where they appear are included.

Appendix B. Heuristics scaling arguments

Owing to the lack of data on uniform IHC subject to rotation, we cannot comment on
the sharpness of the bounds proven. Instead, we can use standard physical arguments
to determine possible scaling laws for 〈T〉 and FB. In previous studies, the theory of
Grossman & Lohse (see Grossmann & Lohse 2000; Ahlers, Grossmann & Lohse 2009)
has been adapted to uniform and exponentially varying IHC to determine scaling laws
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in the non-rotating case (Creyssels 2020, 2021; Wang, Lohse & Shishkina 2020). Here,
we follow the heuristic arguments presented in Arslan et al. (2021b) that adapt the ideas
of marginal stability and diffusivity-free scaling of Malkus (1954) and Spiegel (1963).
Heuristic arguments can be adapted to the rotating case to propose possible scaling laws
for rotation-dominated convection (King et al. 2009; Aurnou et al. 2020; Ecke & Shishkina
2023).

The starting point is to suppose that the heat fluxes out of the domain, defined in
(1.1), can be written as FB ∼ 〈T〉/δ and FT ∼ 〈T〉/ε. Once again, δ and ε are the
thermal boundary layer thicknesses at the bottom and top and are different sizes. In this
section, ∼ means approximately equal to up to constants. Then, in the buoyancy and
rotation-dominated regimes, we assume that to the highest order, the mean temperature
is a function of the Rayleigh and Ekman numbers, more precisely

〈T〉 ∼ R−α and 〈T〉 ∼ (R/RL)−γ = R−γ E−4γ /3, (B1a,b)

where α ∈ R+ and γ ∈ R+ are exponents to be determined and we have substituted for RL
with (3.15). The assumption (B1) is justified in the non-rotating case by numerical studies
of 〈T〉 (Goluskin 2015, table 3.2 and references therein).

The two main regimes of buoyancy and rotation-dominated turbulent convection can
be interpolated by varying the Rayleigh and Ekman numbers. However, in going from
buoyancy to rotation-dominated heat transport, the thermal boundary layer will become
larger than the Ekman boundary layer. However, first, we need to determine the behaviour
of the thermal boundary layers. One possible argument, but by no means the only one, is
the following. In the bottom boundary, heating balances diffusion, given that the flow is
stably stratified. Then, heating over δ is proportional to δ while diffusion scales as 〈T〉/δ,
implying that δ2 ∼ 〈T〉 and by the energy balance of FT + FB = 1 that δ2 ∼ ε. Stated in
words, the upper thermal boundary layer scales as the mean temperature and is the square
of the lower thermal boundary layer. The implication is that FB ∼ 〈T〉1/2

. Turning to the
Ekman boundary layers, by standard arguments δE ∼ E1/2 (Stevenson 1979). Therefore,
using (B1) and supposing δ ∼ δE, the resulting algebraic equation gives

γ = 3α

3 − 4α
. (B2)

The relationship in (B2) gives a range of possible scaling behaviours for the IHC as the
flow transitions from buoyancy to rotation-dominated, and it then remains to determine α.
If we first rearrange (B2) in terms of α, we find that α = 3γ /(3 + 4γ ). For γ → ∞, then
α → 3

4 , and the maximal exponent of α is 3
4 , but this does not correspond to any physical

arguments and is ruled out by rigorous bounds (Lu et al. 2004; Whitehead & Doering
2011a).

It remains to determine α to obtain the desired heuristic scaling laws. If we use the
argument of marginal stability (Malkus 1954; Howard 1963) to the unstably stratified upper
thermal boundary layer, ε, we find that α = 1

4 and call this the classical exponent. If,
instead, turbulent heat transport is independent of the fluid diffusivities and is given by
a characteristic free-fall velocity (Spiegel 1963), we find α = 1

3 and refer to this as the
ultimate exponent. See Arslan et al. (2021b) for a detailed explanation of the exponents
for IHC in the non-rotating case. Then, for α = 1

4 or 1
3 , using (B2) gives the following

predictions in the buoyancy and rotation-dominated regimes,

non-rotating : 〈T〉 ∼
{

R−1/4, classical,
R−1/3, ultimate,

(B3a)
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rotating : 〈T〉 ∼
{

R−3/8E−1/2, classical,
R−3/5E−4/5, ultimate,

(B3b)

and

non-rotating : FB ∼
{

R−1/8, classical,
R−1/6, ultimate,

(B4a)

rotating : FB ∼
{

R−3/16E−1/4, classical,
R−3/10E−2/5, ultimate.

(B4b)

While the classical regime for a rotating flow is not physically relevant (Ecke & Shishkina
2023), it appears in (B3b) and (B4b) for completeness.

As mentioned in the introduction, one can define a proxy Nusselt number as Nup =
1/〈T〉. Furthermore, the temperature-difference-based Rayleigh number, Ra, appearing
in studies of boundary-driven thermal convection, is related to the flux-based Rayleigh
number, R, through the relation that Nup = R/Ra. Therefore, substituting for R in the
scaling laws (B3a) and (B3b) returns the known scaling laws for the Nusselt number
in RBC of Nu ∼ Ra1/2 and Nu ∼ Ra3/2E2 for the ultimate scaling. We comment on the
heuristic scaling laws in § 6 and compare them with the bounds we prove in the subsequent
sections.
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