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We construct all semirings with a given completely simple additive Eerrif.roup
Jl(G, I, A , P) by means of an associative and distributive multiplication on G,
and associative multiplications on / and A satisfying certain conditions.

Let R be a semiring such that (R, + ) is a Rees matrix semigroup over an
(additive) group G with sandwich matrix P = (pxw); we select elements 0 e / and
0 e A such that pOi = px,0 = 0 for all i e / and X e A . Our main result then shows
that, given associative multiplications on / and A , and a multiplication on G,
which together with the + , turns G into a semiring with zero satisfying the con-
ditions of Theorem 4 below, then R together with the multiplication defined by:

,n) = (ij, -pXll,tj + Pxu,oo + ab - pklt,00, Xy)

for all (i,a,X), (j,b,(i)eR, is a semiring. Conversely, every semiring with a com-
pletely simple additive semigroup is isomorphic to such a semiring.

Properties of semirings whose additive semigroup is completely simple are
studied in Section 1, including some preliminary results on their structure. Our
main result is proved in Section 2, while in Section 3, we give interesting particular
cases and examples.

Recall that a semiring R is a set with two associative operations + , • such
that x{y + z) = xy + xz, (x + y)z — xz + yz for all x, y, z e R; no other assump-
tion is made. A zero element of R is an element 0 such that Ox = xO = 0, 0 + x
= x + 0 = x for all x e R.

1. Preliminary results

Let R be any semiring whose additive semigroup (R, + ) is completely simple.
We can represent (R, + ) as a Rees / x A — matrix semigroup *#(G, I, A , P)
over an (additive) group G with sandwich matrix P = (/>x,,), and thus write (R, + )
as the set of all triples (i, a, X) with i e I, X e A and aeG, together with the addi-
tion defined by:
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(i,a,X) + (j,b,n) = (i, a + pXyJ + b,y)

for all i,jel, a,beG and X,ne A . Furthermore we shall select elements 0 e / and
Oe A , and assume with no loss in generality that pki0 = pOii = 0 for all iel and
Xe A.

Since the additive Green's relation JSf and 8% are multiplicative congruences,
it is clear that the multiplication of R induces associative multiplications on / and
A so that, for all (i, a, X), (j, b, n) e R, we have:

for some m = m(i,j, a, b, X, fi) e G.
The additive idempotents of R are the elements euk = (i, — Px,i,X), with iel,

Xe A . We denote by E the set of these additive idempotents; trivially, whenever
et>Jt e E and (J, b, n) e R, we have:

THEOREM 1. Let R be a semiring such that (R, + ) = Jt(G, I, A , P). Then,
for every i,j,kel and X,fi,ve A , we have:

(1) P^.kj = Vxn.ij - Pv*,ij + Pvu.kj

(2) PyX.Jk = P&.ji ~ P»v,ji + Pnv.jk-

PROOF. Let i,j,kel and X,fi,ve A . Then

(»/.-PvM.y.^) = ey.v,, = ('»Px,*» v)cy>|1 = ((i,0,A) + (/c, 0, v))e,-,w

= (i, 0, X)eJ,ll + (fc,0, *)«,•.„ = e,-,-,̂  + ekJ,yit

= ((/, -Pxn.ipW + (kj, -pvi,,kj,vfi)

= ('J. -Pxn.ij + Pk^kj ~ PmuM)-

Therefore -pvil,ij = -p^.ij + Pxu.kj — P^,kj a i Jd (1) holds. Formula (2) is proved
similarly.

Next we study the products in R of the type (0, a, 0)(0, b, 0), where a,beG.
Clearly the multiplication * denned on G by: (0,a,0)(0, b,0) = (00,a * b,00) fails
to be distributive with respect to the addition of G. However this can be corrected
by adding the constant pOo,oo to a * b, and our next result shows that the multipli-
tion of R induces a structure of skew-ring ( = semiring whose additive semigroup
is a group) with zero on G.

THEOREM 2. Let R be a semiring such that (R, + ) = J({G, I, A , P). Then
the multiplication defined on G by:

(0,0,0X0,5,0) = (00,ab - poo,Oo,00)

for all a,beG is associative and distributive with respect to the addition of G.
Furthermore 0 is a multiplicative zero, and for all iel, Xe A , aeG we have:
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(3) PMa = apM = 0.

PROOF. We first check the distributivity. For all a,b,ce G, we have:

(00,(a + b)c - Poo.oo.OO) = (0,a + b,O)(O,c,O)

= (0,a,0)(0)c)0) + (0,fe)0)(0,c)0)

= (00,ac - .Poo.oo.OO) + (00,be - poo,oo,00)

= (00, ac + be - Poo.oo>00).

Thus (a + b)c = ac + be for all a,b,ce G. Distributivity on the left is checked
similarly.

To prove that 0 is a multiplicative zero, let aeG. Then, since e0 0

= (0,0,0)eE, we have:

(00,-Poo.oo.00) = eOo.oo = (0,a,0)(0,0,0) = (00, aO - p0o.oo>00).

Thus aO = 0 for all aeG. Similarly 0a = 0 for all aeG.

Next we show that formula (3) holds. For all iel,ke A and a e G, we have:

('0,-Pxo.io^O) = ei0M = c,-,x(0,a,0) = (ei>0 + (0, -Px.,t,O) + eOj)l)(0,a,0)

= eio,oo + (00, ~Px,ia — Poo,oo» 00) + eooxo

= ('0, -Poo.io + Poo.oo — Pk,ia — Pxo,oo.^O),
Thus we get:

~PxO,iO= ~P00>i0 + .?00,00~.PMa~jPx0,00-

This formula holds in particular when a = 0, and it follows that pXtia = plti0 = 0.
Similarly apXii = 0pXi = 0. Therefore (3) holds.

Finally to show the associativity, observe that, for all a,b,ce G, we have:

((0,a,0)(0A0))(0,C,0) = (00,ab-poo,oo,00)(0,c,0)

= (coo.o + (0,a& - Poo.oo.O) + e0,ooXO,c,0)

= «ooo,oo + (00, (aft - p0o,oo)c - Poo.oo.00) + eOo,ooo

= (000,-poo.ooo + Poo oo + (a^)c-Poo,ooc — Pooo.oo>000)

= (000, -Poo.ooo + Poo.oo + (ab)c - pOoo.oo.000),

by distributivity in G and (3). Similarly we have:

(0,a,0)((0,fe,0)(0,c,0)) = (000,-poo,ooo + Poo.oo + a(jbc) - Pooo.oo.OOO)

By associativity in R, we therefore have a(bc) = (ab)c for all a,b,ce G, which
completes the proof.

It is now clear that, by representing any two elements (i, a,X) and 0', b,n) of
R as sums
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(i,a,X) = eM + (0,a,0) + eo.x

(j,b,n) = ej,0 + (0,6,0) + eOll,

and using the distributivity laws in R and the relations given above, we can express
the product (i, a, X)(j, b, fi) under various forms in terms of P, and products in
/, A and G. For instance, for all (i, a, X), (j, b,fi) e R , we have the following:

,fi) = (e,,0 + (0,a,0) + eOA)(j,b,fi)

= ett0(J, b, fi) + (0, a, 0)(;, b, fi) + eOA(j, b, fi)

= ey.o» + (0,fl,0)(e;,o + (0,6,0) + eoj + e0jAll

= «</,<>„ + (0,fl,0)ey,o + (0, a, 0X0,6,0) + (0,a,0>0,, + e0JM

= ev,o» + eoj,oo + (00, ab — poo,oo» 00) + e0o,ow + eoj,\u

= (y» —Pop.ij + Pop,oj — Poo.oj + Poo,oo + ab — pOll,oo

From (2), we have:

•Pop.oo = Pou,oj ~ Poo.oj + Poo,oo

Poo.oy = Poo,oo - Pon.oo + PoM,Oj.

(8) (i,a,X)(j,b,fi) = {ij, -pOuJj + pOll,oo + ab - poo,oo + Poo.oj - P^.oj.'W-

A similar transformation of the product (i, a, X)(j, b, fi) also gives the following
expression:

(9) (i,a,l)(J,b,fi) = (ij, -pxo,ij + Pu>,oo + ab - p00)0o + Poo,,o ~ Pxt.io,^)-

The final result of this section is obtained by comparing these two expressions
(i, a, X)(j, b, fi) successively in the two cases when j = 0, k = 0 and i — 0, fi = 0.

PROPOSITION 3. Let R be a semiring such that (R, + ) = J((G, I, A , P).
Then we have

(4) ab = k + ab - k

where k = —poo,oo + Poo.io — Pow,;o + Pow,oo»

(5) ab = k' + ab - k',

where k' = -p0 0,oo + Poo,o; ~ Pxo.oj + Pxo,oo-

2. The main result

THEOREM 4. Let R = Jt{G, I, A , P) be an additive Rees I x A - matrix
semigroup over the (additive) group G, and let Oe / , Oe A be such that pxo
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= Po.i — ®for all iel,ke A . Given associative multiplications on I and A , and
a structure of skew-ring with zero on G satisfying the following conditions:

W Pxp.kj = Pxpnj ~ Pvu.ij ~^~ Pvit.kj

(2) P,A,jk = PuX.ji ~ Piiv.ji + Piivjk

(3) PKia = apM = 0
(4) ab = fc + ab- k,

where k = -/>oo.oo + Poo.io ~ Po^.to + Pou,oo>
(5) ab = k' + ab - k',

where k' = -poo,oo + Poooj ~ Pxo.oj + PJLO.OO. f°r a^ Uj,kel, X,n,ve A and
a,beG; then R together with the multiplication defined by:

(6) (i, a, A)0\ b, n) = (ij, -px^j + p^oo + ab - / v 0 0 . ^
for all (i, a, X), (j, b, n) e R, is a semiring.

Conversely every semiring with a completely simple additive semigroup is
isomorphic to such a semiring.

PROOF. Let R be as in the statement of the first part of the theorem, and con-
sider on R the multiplication denned by formula (6). We first check that this
multiplication is distributive with respect to the addition. For all x = (i,a,).),
y — 0» b, n) and z = (fc, c, v) belonging to R, we have:

xy + xz = (ij, -pKll,ij + p X u , 0 0 + ab - J V O O . ^ A O

Pxv,ik + Pxv.oo + ac - Av.oo>^v)

= (y» -Pxu-ij + PXII.OO + ab - pXu,00 + pXll,ik - pXv.ik

+ Pkv.oo + ac - Pxv,oo>A.v)>
while

x(y + z) = (j, a, X)(j, b + pu,k + c, v)

= (y> -Pxv.ij + Pxv.oo + a(b + pu,k + c) - pkv,00,lv)

= W, -Pu.ij + ^xv.oo + ab + ac - Av.oo.^v),
since by (3) we have ap^ = 0.

To prove that xy + xz — x(y + z), it is then clearly enough to show that, if

m — ~Pi.v>00 + Pi.y<ik ~ Pkp.ik + PxtfOO*

then m + ab = ab + m'. Consider Grst the expression ofm. By (2) we have

P\vij ~ Pxu.ij = Pxv.iQ — Pxii-iOi

whence
m = —Pxv.OO + Pxv.iO — Pxix,iO + Pxpi.OO'

Since by (1) we also have:
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~Pxv,00 + PxviO = "" PovOO + Pov.iO

~Pxp>iO + Pxn'00 ~ ~P0u-'0 + Pon-OOi

we get:
m = ~Pov,OO + POv.iO ~ POii-iO + JPO<I.OO-

Since this expression does not depend on j , we get at once:

m' = m.

Then, using twice formula (4), we have:

m + ab = -Pov.oo + Pov.,o - /Vio + Po .̂oo + ab

= ( —Pov.OO + POv.iO ~ PoO,iO + ^OOiOo) + (""JPOO.OO + PoO.iO

~ Pou.to + Pou.oo) + °b

= (-Pov.oo + Pov.;o - Poo.io + Z'oo.oo) + «h + (-^oo.oo + Poo.io

~ PO/j,iO + Pon.oo)

= ab — Pov,oo + Pov.io ~ Poo.io + Poo,oo ~ foo.oo + Poo.io

~ P0p,i0 + .POp-00

= ab — />ov,oo + Pov.io — Poa,io + /Voo = a ^ + m ' -

Thus distributivity on the left holds. That distributivity on right holds too is
proved similarly using formula (5) instead of formula (4).

Associativity of the multiplication of R follows then from Proposition 1.1 of
Grillet (197a), since it is easily seen that the subset E U Hoo of R is a generating
subset of (R, + ) which also generates a multiplicative subsemigroup. This comple-
tes the proof of the direct part of the theorem.

For the converse, assume that R is a semiring such that (R, +)
= Jt(G, I, A , P). We already have proved in section 1 that the conditions stated
in the direct part hold, and also that, for all x=(i, a, A), y = (j, b,n)eR,we have,
by (8):

xy = (i, a, X)(j, b, ft) = (y , -pOu<iJ + p0ll,oo + ab ~ Poo.oo + /'oo.o; - Px*,oj, W-

By (2), we have: -pXll,0J = -Pu>,oj + Pxo.oo ~ IVoo> whence

xy = (ij, -Pov,ij + Pon.oo + ab- .pOo,oo + /'oo.o; - PXO,OJ + Pxo,oo ~ Px^oo^t1)-

From (5), it then follows that

xy = {ij, —Pon,ij + Pon.oo — Poo.oo + .Poo.oj — Pxo.oj + Pxo.oo + ab - p l w,Oo»^)-

Since by (2) p0/l00 - p0000 + p00OJ = pOll>OJ, we have:

xy — W, ~PonJJ + POU.OJ — Pxo.oj + Pxo.oo + ab — / V o o > ^ )
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= («/» -Povij + Pon oj - Pxp.oj + Pi.it oj - Pxo.oj + Pxo,oo + ab- p^.oo. */0-

By (1) ~Pon>ij + Pov.oj - Pkp-oj = -Pin,ij> and by (2) pku,Oj - Pxo.oj + Pxo.oo
= JVoo, so that

xy = ((/. -Px,/.y + A/..00 + ab - pklt,00,^)-

Therefore (6) holds which completes the proof.
We give now alternate descriptions of the multiplication on R given in

Theorem 4, which have interest of their own.

PROPOSITION 5. Given the data in Theorem 4, the following formulae
(6) xy = (ij, -pXll,ij + JVoo + ab- pXll,00,^)
(7) xy = (ij, -Poo.ij + Poo.oo + ab - p o o , o o + p0 0 > i J - p^,y,A/i)
(8) xy = (i/, -Po^.y + Pon-oo + ab - poo,Oo + Poo,oj ~ Pkp.oj, ^ )
(9) xy = ((/, - R 0 , i ; + Pxo.oo + ab - Poo.oo + JPOO.;O - Px^.,o. ^ )

/or a// x = (i, a, A), y = (j,b,fi)eR, define the same multiplication on R.

PROOF. By Theorem 4, we know that formula (6) defines a structure of semiring
on R. We then proved in section 1 that (8) and (9) hold, and thus clearly define the
same multiplication on R as (6). To complete the proof, we have left to show that
formula (7) holds in R. Let x = (i,a,X), y = (j,b,n)eR. Starting with (8), since
by (2) -pOll.ij = -Poo.y + Poo.to ~ Po».io we have:

xy = (y» - Poo.ij + Poo.io — Po^.io + Pon.oo + ab — p0o.oo

+ Poo.oj — iVoj.'ty*)-
By (4), it follows that

xy = (y, -Poo.ij + Poo.oo + ab — pOo.oo + Poo.io ~ Pon.io

+ P0II>00 ~~ Poo.00 + POO.0./ ~ Pxn-Oji ^-W-

Again by (2), we have: p0 / 1 ( 0 0 - p 0 0 , 0 0 + poo,Oj. = pOlt,Oj, so that

•XJ' = (y» — Poo.i/ + Poo.oo + ab — Poo.oo + Poo.io ~ Po^.io

+ P0|i.0j - P^.Oj.^)

= (0> ~ Poo.ij + POO.OO + ^fc — PoO.OO + PoO.iO ~ Po/i.iO

+ Pop.ij ~ POii.ij + PO/i.Oj — Px»,Oj>ty)-

Now by (2) poo,iO - pOfL,iO + po^,y = poo,ip and by (1) -p o ^ .y + Po^o; ~ Pxp.oj
= - P ^ . y . whence

xy = (y, - Poo.ij + Poo.oo + a& - Poo.oo + Poo.y "" Pu^.y>^)i

which proves that (7) holds.
Corresponding to the situation when (0, a,0)(0, b,0) = (00, -p0o.oo + ab,00)
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instead of (0, a, 0)(0, b, 0) = (00, ab - poo,oo, 00), we clearly have a result dual to
Theorem 4; it can be stated by replacing in Theorem 4 formulae (4), (5) and (6)
respectively by

(4') ab = h + ab - h

where h = pOo.io — Po^io + Pon.oo - Poo.oo;

(5') ab = h' + ab - h'

where h' = Poo.oj ~ Pxo.oj + Poo.o; — Poo.oo I

(6') (i,a,X)(j,b,fi) = (y, -pOo.y + a& + pOo.y ~ Px^ijM)-

We shall give below an example showing that in general p00,00 does not com-
mutes with products ab of elements a, b of G. Thus even if all conditions involved
in both statements are satisfied, these theorems usually give different semiring
structures on R. We note that, if we assume that pOo.oo commutes with all products
of elements of R, then, trivially, conditions (4') and (5') are respectively equivalent
to (4) and (5), and in view of Proposition 5, the two multiplications denned by
formulae (6) and (6') are the same.

A last remark we can make about Theorem 4 is that, though for practical
reasons we broke our conditions as much as possible, it is possible to condense
conditions (4) and (5) into only one condition. For instance, it is easy to see that,
assuming that (2) and (3) hold, conditions (4) and (5) together are equivalent to
the following:

(10) ab = m + ab — m

where m = -pOo.oo + Poo y ~ Px^u + Pkn-oo-

3. Examples and applications

We start this section by giving two examples showing that there is little hope
of simplifying the conditions of theorem 4. First we note that the formula

Pxti-ij = Pi.ii.kl ~ Pvp.kl + Pvp.ij

does not need to hold in general as shown by the following:

EXAMPLE 6. Let R — Jt(G, I, A , P), where
G = {0, a} together with the addition: 0 + 0 = a + a = 0, 0 + a = a + 0

= a, and the trivial multiplication;
/ = {0,1} with multiplication: 00 = 01 = 0, 10 = 11 = 1;
A = {0,1} with multiplication: 00 = 10 = 0, 01 = 11 = 1;

Po.o = Po.i = Pi.o = 0, p l t l = a.
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Observe that the conditions of Theorem 4 are trivially satisfied so that
formula 6 defines a structure of semiring on JR. However we have: a = /> l l j U

^ .Pi i,oo ~ Poo,oo + Poo,n = 0.
Next example shows that in general />Oo,oo does not commute with products

of elements of G.

EXAMPLE 7. Let R = Ji(G, I, A , P), where G is the skew-ring given by the
following tables:

+
0

a

b

c

d

e

0

0

a

b

c

d

e

a

a

b

0

d

e

c

b

b

0

a

e

c

d

c

c

e

d

0

b

a

d

d

c

e

a

0

b

e

e

d

c

b

a

0

0

a

b

c

d

e

0

0

0

0

0

0

0

a

0

0

0

0

0

0

b

0

0

0

0

0

0

c

0

0

0

c

c

c

d

0

0

0

c

c

c

e

0

0

0

c

c

c

/ = {0,l}, A ={0,1} with / 2 = {1}; A2 = {1}; Po.o = Pi.o = Po.i = °>
Px i = a. Then formula 6 trivially defines a structure of semiring on R. Observe
that

e = a + c = + c2 c2 + poo,oo = c + a = d.

An important case when the conditions of theorem 4 are trivially satisfied is
ivhen R is a rectangular group, in which case we may assume that P = 0.

COROLLARY 8. Let R=J?(G, I, A , 0) be a rectangular group. Then given
issociative multiplications on I and A , and a structure of skew-ring on G, R to-
gether with the multiplication defined by:

11)

or all (i, a, X), (J, b, n) e R, is a semiring. Conversely every semiring whose addi-
ive semigroup is a rectangular group is isomorphic to such a semiring.

Note that, if (G, •) has no divisor of zero, then formula (3) trivially implies
hat P = 0. Another example where (R, + ) must be a rectangular group is given
y the following.

PROPOSITION 9. Let R be a semiring whose additive semigroup is a com-
letely simple semigroup, and such that R = R2. If there exist a JZ-class and a
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3%-class of R which are left (right) ideals of(R •), then (R, + ) is a rectangular
group.

PROOF. Let (R, + ) = Jt(G, I, A , P), and assume for instance that R con-
tains a .SP-class L and a ^-class S which are left ideals of (R, • ) . We may assume
that L and S contain (0,0,0), so that L = {(i,a,0); aeG, iel} and
S = {(0, a,A); a e G, A e A }. Then clearly LR ^ L and SR c s imply that Oi = 0,
0A = 0 for all i e / and 2 e A . By (1) we have:

Pkliuj = Pkn.OJ — Pon.Oj + POn.ij = PXu.O - Po.O + Ponj ~ 0

for all ijel and A,fie A . Since R = i?2, we have / = I2 and A = A 2 , and it
follows that pk j = 0 for all iel and A S A , which completes the proof.

The assumptions of the theorem hold in particular in case all ^-classes and
all ^-classes of R are left (right) ideals of (R, • ) , i.e. when / and A are left (right)
zero-semigroups. An interesting particular case of Theorem 4 is also obtained in
case / is a left (right) zero-semigroup and A is a right (left) zero-semigroup. For
instance, we have:

COROLLARY 10. Let R = Jt(G, I, A , P) be an additive Ix A-matrix semi-
group over the {additive) group G, Oel and Oe A be such that pK0 = pOi = 0
for all iel, Xe A . Given a structure of skew-ring with zero on G satisfying the
conditions

0 Px,ia = aPx,i = 0
ii) a + Px,t = Px,i+a

for all ae G2, i e I and X e A . Then R together with the multiplication defined by:

(i,a,X)(J,b,n) = (i,-pXJ + ab,n)

for all (i,a,X), (j,b,n) R is a semiring such that all ^-classes (^-classes) of R
are left (right) ideals of (R, •). Conversely every semiring with a completely
simple additive semigroup whose ^C-classes (^-classes) are left (right) ideals of
(R, •) is isomorphic to such a semiring.

PROOF. Trivially under the further assumption that all ^-classes (^-classes)
of R are left (right) ideals of (R, • ) , the conditions of Theorem 4 reduce to the two
above conditions. The result then follows

Our last result restates Theorem 4 in case G is an abelian group. Then condi-
tions (4) and (5) are trivially satisfied, and formula (6) takes a simpler form. We
then have the following:

COROLLARY 11. Let R = Jt(G, I, A ,P) be an additive Rees I x A -matrix
semigroup over an (additive) abelian group G, Oel and 0 e A be such that
JPJ.,0 = Poj = Ofor all iel and Ae A . Given associative multiplications on I and
A , and a structure of ring on G satisfying the following conditions:
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(X) Plu-kj ~ Pkli'ij ~ Pvii,ij + PviHkj

(2) P&.jk = PnXJt - Ppv ji + PMv,jk

(3) px,fi = apx.i = 0

for all ijel, A,fie A and a e G, f/ten /? together with the multiplication defined
by:

for all (i,a,X), (J,b,fi)eR, is a semiring. Conversely every semiring whose addi-
tive semigroup is a Rees I x A -matrix semigroup over an abelian group is
isomorphic to such a semiring.
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