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Notation

Let S = Spec(R) be the spectrum of a characteristic 0 complete discrete valuation
ring R with algebraically closed residue field k of characteristic p > 0 and fraction
field K. s, n and 77 denote, respectively, its closed point, its generic point and a geo-
metric generic point, corresponding to an algebraic closure K of K. Let G be
the Galois group of K over K.

We fix a prime number / # p and let A be one of the rings Z/I"7,, 7,; or Q;. To any
finitely generated A-module M with a continuous action of G, we associate its Swan
conductor sw(M) which is a finitely generated A-module (see Section 2 for the
definition). Any G-equivariant endomorphism of M induces an endomorphism
of sw(M).

We work in the category of separated schemes of finite type over S. The subscripts
s and 5, associated with an object in this category, denote, respectively, its closed and
its generic fibers. Associated with a morphism, they denote the induced morphisms
over the closed and the generic fibers.

Let X be a separated scheme of finite type over S. The group of cycles
Z(X) = ®,Z,(X) and the Chow group A(X) = &,4,(X) are graded by the absolute
dimension over S. The latter is the sum of the relative dimension over S and the
dimension of S. In this paper, dimension stands for the absolute dimension over
S. Notice that if X is proper over S, the absolute dimension coincides with the Krull
dimension.

The group of n-bivariant classes associated with a map X — Y is denoted
A"(X — Y) ([7] chapter 17).
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Ifi: X — Y is a closed immersion with ideal sheaf Z, we denote Ny Y = I/I2 its
conormal sheaf and SyY = G},,ZOI”/I”Jrl the graded algebra giving its normal
cone.

An arithmetic scheme over S stands for a regular integral scheme proper and flat
over S. An arithmetic scheme of dimension 2 is an arithmetic surface. One such
is semi-stable if its closed fiber is a reduced divisor with normal crossings.

If X is an arithmetic scheme and ¢ is an S-automorphism of X, we denote
H}(X., Q) for z=1s or 77 the ¢-adic étale cohomology groups of respectively its
closed and its geometric generic fibers. We use the short-hands tr(e)|H (X, Q)
where z = s or 7] and tr(o)|sw(H}, (X5, Q,)) for the alternating sum of the traces
of a.

1. Introduction

The study of cycles on arithmetic schemes was pioneered by S. Bloch. The idea
behind his approach was to overcome the lack of a ground field for these schemes
by providing functorial constructions of cycle classes over their special fibers. In
[3], Bloch associates with an arithmetic scheme X over S of relative dimension
d, a kind of Euler characteristic which measures its arithmetic complexity. The £-adic
¢tale cohomology of the geometric generic fiber of X can produce such an invariant.
But a good candidate should also have an analogue on the cycle level. For instance,
the Euler characteristic of a proper smooth variety over a field coincides with
the degree of the top Chern class of its tangent bundle. In a first approach, one
can consider the top Chern class of the sheaf of relative differentials Q} /s- Since
Ao(S) is trivial, we cannot get any relevant information from this class.

Any zero-cycle class on X can be represented by a cycle on the closed fiber of X. In
term of Chow groups, the push—forward map A4y(X;) — Ao(X) is surjective, but it is
far from being injective. In the special case of cd+1(Q§( /5) N[X] € Ao(X), the graph
construction of Fulton and MacPherson [7] provides a canonical lifting. More
precisely, this construction gives a bivariant class ¢ 1. X‘,(Q} /s) € AN(X, — X)
which refines the usual Chern class cdH(Q} ss)- Bloch [3] defines the localized Euler
characteristic of X to be the degree of (—l)d“cfH,X\‘(Q;/S) N [X], which is a zero
cycle class on the closed fiber X;. He conjectured that the localized Euler charac-
teristic is minus the Artin conductor of the arithmetic scheme. The main result
of his paper is a proof of this conjecture for arithmetic surfaces. Later, many works
have emphasized the importance of this invariant [4, 16, 17].

In this paper, we develop a general theory which includes Bloch’s approach. His
main result turns out to be a special case of a Lefschetz fixed point formula in this
theory. The latter was conjectured by K. Kato, S. Saito and T. Saito for any relative
regular curve over an excellent henselian discrete valuation ring ([10] conjecture
(1.5)), and proved by them in the geometric case (i.e. the equal characteristic case).
Finally, we give an application of our formula to a conjecture of Serre on the exist-
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ence of Artin’s representations for two-dimensional regular local rings in the unequal
characteristic case.

In the following, we describe the results of this paper in more detail. In the spirit of
Fulton’s theory [7], we develop a localized intersection theory adapted to the
localized Chern classes. Our theory works for general arithmetic schemes but
the main theorems are proved only for arithmetic surfaces. For this reason, we
restrict the introduction to the case of an arithmetic surface X over S. Let
Ay — X x5 X be the diagonal closed immersion. We associate with any fiber square:

W——>V

L

Ax——>X XsX

where V' is a scheme of pure dimension &, a (k — 2)-cycle class in the closed fiber of W,
called localized intersection product of Ay with V7, and denoted
(Ax.[VDye € Ak—2(Ws). The formation of this class is compatible with proper
push-forward and flat pull-back, and it satisfies an excess formula. Moreover, it
is uniquely determined by these properties. In this theory, the localized Euler
characteristic occurs as the self-intersection of the diagonal: (Ax.Ax),. =
3 x,(Qy/5) N[X] € Ao(X,).

1.1. LEFSCHETZ FIXED POINT FORMULA FOR ARITHMETIC SURFACES

Let X be an arithmetic surface over S, ¢ be an S-automorphism of X, and
I' C X x5 X be its graph. The localized intersection product (Ay.I'),,. is a O-cycle
class in the closed fiber of X. Therefore, we can take its degree which is equally
denoted (Ax.I'),,,-

THEOREM 1.1. Let X be an arithmetic surface over S and g be an S-automorphism of
X. Then,

(Ax D)y = —tr(0)|sW(H; (X5, Q) + tr(o)| H; (X, Q) — tr(o) | H7 (X7, Qp). (1)

The Swan conductors sw(H (X3, (O;)) vanish when the action of the Galois group G
of K over K on H} (X5, Q) is tame. Hence, for a semi-stable arithmetic surface
X, the Lefschetz fixed point formula becomes

(AX-F)IOC = tr(a)|H*(X57 Ql) - tr(6)|H*(Xﬁ’ Ql) (2)

Formula (1) for ¢ # id was conjectured, in a different formulation, by K. Kato,
S. Saito and T. Saito for any relative regular curve over an excellent Henselian dis-
crete valuation ring ([10] conjecture 1.5), and proved by them in the geometric case.
We prove in remark 10.1 that equation (1) is equivalent to their formulation.
The formula for ¢ = id was proved by Bloch [3]. Our proof closely follows his, even

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

26 AHMED ABBES

if the technical details are more involved. To avoid large intersections with Bloch’s
article, we will restrict the study to non-trivial automorphisms. The reader should
consult this article for a proof of the theorem in the case ¢ = id.

We outline the proof of Theorem 1.1. We proceed in two steps. In the first step, we
prove the theorem for semi-stable surfaces. The vanishing cycles for these surfaces
can be computed explicitly. In particular, the difference of the alternating traces
of ¢ can be expressed in term of its action over the singular points in the special
fiber. Then, we prove that (Ax.I"),,, is given by the same expression. For this purpose,
we establish a residual formula for the localized intersection theory.

The second step is a reduction to the semi-stable case. By the semi-stable reduction
theorem, there exists a finite flat totally ramified Galois extension 7 of .S such that
X x5 T has a semi-stable regular model V. The automorphism o extends to a
uniquely determined 7-automorphism of V. Then, the main problem is to compare
the Lefschetz numbers of o over X and over V. Inspired by the classical intersection
theory and Bloch’s work [3], we solve this problem by a projection formula. This
formula relates the Lefschetz number of ¢ over X to the sum of the Lefschetz
numbers of g ot over V, where t runs over the Galois group of T over S. The
projection formula is the basic ingredient in the proof of Theorem 1.1. But its import-
ance should be emphasized as an independent result.

1.2. PROJECTION FORMULA

Let f: X — Y be a morphism of finite degree n between arithmetic surfaces over S.
Given two S-automorphisms ¢ of X and t of Y such that tof = f o0, we would
like to compare the Lefschetz numbers of ¢ and 7. For this purpose, we consider
the Cartesian diagram

W—>X xy X —— Ay

Lo

[, —>Xxs X —>Y xgY

where W is the intersection of I'; with X' x y X. On the one hand, X xy X has pure
dimension 2. Its localized intersection with I'; is a cycle class of dimension 0 over
Ws. On the other hand, the localized intersection of I', with Ay is also a cycle class
of dimension 0 over W,. We expect that these cycle classes are the same:

(To.[X Xy XDjpe = (Ay.T'0)jp. € Ao(W5).

We call this formula a projection formula because we think of X xy X as the
pull-back of Ay. To prove the Lefschetz fixed point formula, we need to consider
the projection formula only for morphisms f such that f,: X;, — Y, is étale. This
case will be treated in Section 6 for non-trivial automorphisms. The trivial
automorphism case was proved by Bloch [3]. We would like here to emphasize
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an other aspect of this formula, namely a relation with a Hurwitz formula for arith-
metic surfaces.

Given a morphism f: X — Y of finite degree n between two arithmetic surfaces,
we ask for a formula relating the localized Euler characteristics of X and Y and
the ramification of f in the spirit of the usual Hurwitz formula. The equation

fY*(AX[X Xy X])lm? = n(AY'AY)Ia(? € AO(YY) (3)

may be a good candidate for a Hurwitz formula. Indeed, we decompose X x y X into
its irreducible components, [X xy X]=>_;_, m[V;]. The diagonal Ay occurs as one
component with multiplicity one, put ¥} = Ay. Then, formula (3) reads

Sl QY 9) NIXD — 163y Q) N[Y] = =Y mifsulBx.Vi)jye € Ao(Yy).
=2

For i > 1, the scheme theoretic intersection Ay N V; is contained in the ramification
divisor of f, and (Ax.V3),,. should be understood as its contribution to the Hurwitz
formula. We lack a general proof of this formula. But at least two reasons stand
for it. First (3) holds if f,: X,, — Y, is étale, and second it holds in Ay(Y).

1.3. ON SERRE’S CONJECTURE ON THE EXISTENCE OF ARTIN’S REPRESENTATIONS

Let A be a regular local ring with maximal ideal m and G be a finite group of
automorphisms of A. For o€ G, let I, be the ideal of A generated by
{a —o(a),a € A}. Assume

(i) A% ={a e A;a=o(a) Yo € G} is a Noetherian ring and A4 is finitely generated
A%-module;

(it) for each o € G — {1}, A/I, has finite length;

(iii) the map A%/(4° N m) — A/m is an isomorphism.

Then, define the function ag : G — Z by

ag(o) = —leng(A/1l;) if ¢ #1,
ag()=—- Y ag(o).

ceG—{1}

Serre conjectured that ag is the character of a Q;-rational representation of G for any
prime number / which is invertible in 4 ([19], chapter 6). This conjecture was proved
in dimension 1 by Artin, Arfand Serre [18, 19] and in dimension 2 and equal charac-
teristic case by K. Kato, S. Saito and T. Saito [10]. As a corollary of the Lefschetz
fixed point formula (1), we can prove Serre’s conjecture for some 2-dimensional
regular local rings in the unequal characteristic case. A proof in this case was
announced by Kato [8, 9] but has not been published.
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LEMMA 1.2. Let X be an arithmetic surface over S and a be an S-automorphism of X.
Assume that the scheme of o-fixed points over X consists of one closed point x, and let
I, be the ideal of Oy . generated by a(a) — a for a € Oy . Then,

(Ax.I5);. = Leng(Ox /Z5).

We deduce the following from Theorem 1.1 and Lemma 1.2 (the proof is given in
Section 10):

COROLLARY 1.3. Let X be an arithmetic surface over S and G be a finite group of
S-automorphisms of X. Assume that there exists a closed point x in X which is
the unique c-fixed point of X for any o € G — {1}. Then, Serre’s conjecture holds
for the regular local ring Oy .

2. Swan Conductors

In this section, we recall the definition of Swan conductors [10, 18, 19]. Let L/K be a
finite Galois extension of Galois group G(L/K). Let 7 be a uniformizing element in L
and v be the discrete valuation of L. For ¢ € G(L/K) — {1}, put i(¢) = v(o(n) — n).
Then, define the function swz,x: G(L/K) — Z by the following:

1 —i(o) if 0 #£1,
swr k(o) = {Zf;ﬂ(i(f) -1 ife=1.

This is clearly a central function over G(L/K) and we have the fundamental result
[18-20]:

THEOREM 2.1 (Artin, Arf, Serre). For any prime number [ # p, there exists a
ZiG(L/K)|-projective module Swy,x such that Swpx ®z, Q; has swrx as a
character. This module is unique up to isomorphism.

Let G be the Galois group of K over K. Fix a prime number / # p and let A be one
of the rings 7 /"7, 7; or Q;. Let M be a finitely generated A-module with a con-
tinuous action of G. We associate to M the A-module sw(M) defined as follows:

() If A=7Z/I"Z, then the action of G over M factors through G(L/K) for a finite
Galois extension L over K. Put sw(M) = Homg, x)(Swr/x, M). It is a finitely
generated A-module which does not depend on L.

(2) If A=7;, put sw(M) = limsw(M/I"M).

(3) If A =Q, take a Z,-lattice B of M stable under the action of G (which exists by
the compactness of G), and put sw(M) = sw(B) ®z, Q.

Hence, sw(M) is finitely generated over A, and sw is an exact functor which sends free
modules to free modules. If the action of G on M is tame then sw(M) = 0.
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We now consider M a finite dimensional (Q;-vector space on which G operates
continuously and ¢ a Q;[G]-linear map on M. Let P be the p-Sylow subgroup of
G. By compactness of G, the group P acts on M through a finite quotient. Let
L be a finite Galois extension of K contained in K such that P acts on M by its
quotient P(L/K) in the Galois group G(L/K) of L over K (i.e. PN G, acts trivially
on M where G; denotes the Galois group of K over L). Then,

1

tr(o)[sw(M) = mw%m SWL/K(‘C)tr(o"c)|M @)
1
THGL/K) G(ZL/K) swi/k(Dtr(o7)| M. )

The group G(L/K) does not act on M. The meaning of (5) is that sw; k() vanishes if
Tt ¢ P(L/K).

3. Localized Chern Classes

The construction of these bivariant classes is based on the graph construction of
Fulton and MacPherson ([7], chapter 18). We recall in the following a variant intro-
duced by Bloch [3].

3.1. THE GRAPH CONSTRUCTION

For the beginning of this section, we work in the category of separated schemes of
finite type over an arbitrary regular Noetherian base scheme S. Let X be a closed
subscheme of a scheme Y and £. be a bounded complex of locally free Oy-modules
of finite ranks:

dni1 dy dy do
0=Cm1 — & — E—> oo —& —> & — £ =0.

Let H.(£.) be the homology of this complex and assume that
1) & =0fori<0,

(P) § (i) Hi(&.) is supported on X for i > 0,
(ii))  Ho(£.)y_y is locally free of rank e > 0.

We associate with £. localized Chern classes C;X(S.) € A’(X — Y)forallp=e+1.
We first construct a map

ey x(E)N 1 ZAY) > Aup(X).

Let e be the rank of &, Gi=Grass,(&;®E&-1) and set G=
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G, xy G, Xy ... Xy Gy. Let ; be the tautological bundle of rank e¢; on G;, and set
n .
&=y (-Dpr;&] € K°G),
i=0
where pr; : G — G; is the projection. There is a natural closed immersion:
Yxs Al 5 Gxs Al (0 ) (]‘[ T (2di( ), z),

where I'(Adi(y)) C E(y) @ Ei—1(y) is the graph of Adi(y).

Define integers k; by k, = 0 and by requiring k; + k;_1 = ¢; for 0 < i < n. Assume
that ¥ — X is not empty. Then, k; > 0 for all 0 <i <n and ky = ¢y — e. Denote
H; = Grassy, (&), andset H = H, xy H,_| Xy ... xy Hy. There is a canonical closed
immersion t: H — G defined by

(Ln» Lnfl’ ey Ll’ LO) = (Ln @ Lnfla Lnfl @ Lan’ ey Ll @ LOs y),

where y is the projection of Ly to Y (remember that Gy = Y). The pull-back of ¢ to H
is (&) = prjbo, where pro: H — Hj is the projection, and 0y is the canonical
quotient bundle of rank e defined over Hy = Grass,,_.(). Let H® be the restriction
of Hto Y — X. There is a natural section of H” over Y — X. It determines a canoni-
cal closed immersion : (Y — X) — H° given by

y = (ker d,(y), ker d,_1(»), ..., ker di(y), im d(p)).

Consider now the following non-commutative diagram

YXsAI GXsAI—QGXSPI

T Tm (©6)

(Y = X) xg A' —> (¥ — X) xg P 22> HO x g P! —> H x5 P!

Let o be a cycle on Y and denote by «° its restriction to ¥ — X. Choose two
cycles:

(i) o on G xs P! which restricts to @, (0 Xs [A']) on G xg A,
(i) o’ on H xg P! which restricts to i, (o) x5 [P'] on H® x5 P

Let y = i (o — o), where i is the Gysin homomorphism relatively to the regular
embedding of the section oo in P'. Then 7 is a well defined cycle on G that does
not depend on the choice of o' and that changes by a cycle on Hy = H xy X
for another choice of o”. As proved in [7] lemma 18.1, y is a cycle on G xy X.
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Let n: G xy X — X be the projection, and for any p > e+ 1 set
CZX(g) No = TC*(Cp(é) N V) € A*(X)

Since & restricts to a locally free sheaf of rank e on Hy, this definition is independent
of the choice of y.

Forany h: Y — Y and X’ = X xy Y/, the complex A*E. satisfies the conditions
(P) relatively to the closed immersion X’ — Y’. The same construction gives a
map which will be denoted simply:

ey x(E)N_: ZAY') > A (X)),

These maps pass to rational equivalence. They are compatible with proper
push-forward, flat pull-back and intersection product:

(Cy) ifhisproper,let/ : X' — X bethe induced morphism, then forall « € Ax(Y’),
CIIX((E'.) N (heo) = h;(cle(E.) Na) € Ar_p(X),

(Cy) if A is flat of relative dimension d, then for all o € 4;(Y),
ey (E)N(ha) = W*(e) (€)M o) € Ak pra(X)),

(C3) if we have a Cartesian diagram

X — Y —Z
l'// \L l'/ \L l
X — Y — Z

such that i is a regular embedding of codimension d. Then for all o € 4,(Y),
HeyyE)Na) =) y(E) N ([Fn) € Ax_p_a(X),
where i is the refined Gysin morphism.

It follows from [7] chapter 17 that for any locally free O y-module of finite rank F, for
any integer m > 0, and for any a € Ax(Y),

&1 (€)M (en(F) ) = 6l F) N (e (€ N2) € Ak (X)),

where ¢, is the mth Chern class of F and i: X — Y is the closed immersion. We will
use the following propreties of localized Chern classes ([7] proposition 18.1 and
example 18.1.3).

PROPOSITION 3.1. Let i: X — Y be a closed immersion.
(@ Let j:Y — Z be a closed immersion and let £. be a complex of locally free
Oz-modules satisfying (P) relatively to the closed immersion X — Z. Then, for
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all o € A(Z)and p = e+ 1,

il y(E)No) = y(E) N e Agp(Y).

(b) Let0— £V - £@ 5 £0G) 5 0bean exact sequence of complexes of locally fiee
Oy-modules satisfying (P), and denote by e; the rank of Ho(é'(").)‘y, ¥ (s0
ey =ey +e3) Then, forany p = e; + 1,

4
ey (€D =" (M), (£,

Jj=0

where ¢}(€.0) is the localized Chern class ¢/ y(€.7)ifj = e; + 1, and the usual Chern
class if j < e;

Remark 3.2. Proposition 3.1 implies that c; x(€.) depends only on the
quasi-isomorphism class of (£.). In particular, if E is a coherent sheaf of finite
homological dimension on Y such that E;y_y is locally free of rank e, then
c,{X(E) can be defined for p > e 4+ 1 by choosing any resolution of E by locally free
Oy-modules.

From now on, we assume that S = Spec(R) is the spectrum of the discrete valu-
ation ring R fixed at the beginning of the article. The closed immersions which play
an important role in our theory are of the type X; — X where X is a scheme of
finite type over S and X; is its closed fiber. For instance, let X be an arithmetic
scheme over S of relative dimension d. The sheaf of relative differentials Q}/S
has finite homological dimension and is locally free of rank ¢ on the generic fiber
X,. Hence, one can compute ¢} LLX, (Qﬁ( /s) N [X] as a zero cycle class over the closed
fiber X.

DEFINITION 3.3. The localized Euler characteristic of X is

e (X) = deg((—=D)" ey x QY /5) N[XD.

3.2. RATIONAL MAPS

Let g: W — S be a separated scheme of finite type over S and U and V be two
invertible sheaves over W. A rational map U ——— V is an isomorphism
U, — V, over the generic fiber of W. Let m be the maximal ideal of R and
L = g*m be its pull-back.

LEMMA 3.4. Let ¢: U ——— V be a rational map over W. Then, there exist a posi-
tive integer n and a morphism Y: L®" @ U — V extending the isomorphism
o: U, =V,

Proof. It follows from [5], proposition 4. O
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Following Saito [16], we use Lemma 3.4 to associate to any rational map
@: U ———V, localized Chern classes ¢/, (U ——— V) e A(W; — W). Let n
be an integer as in Lemma 3.4 and : L®" QU —> V be a morphism extending
the isomorphism ¢ on the generic fiber. Put

civ’VWv(U ———= V)
i—1
=y (LTQU - V)= > (U ——— V)l (L®"® U — U),
k=0

where ¢ (U ——— V) is the usual Chern class (¢(V)c(U )*l)dimzk. This definition does
not depend on the integer n and the morphism .

Remark 3.5. Let U ——— V be a rational map and define the inverse rational map
V' ——— U to be the inverse isomorphism V, — U,. One can prove easily that

AU ——=V)y=—=c"y (V ——— U)e 4"(W, > W).

PROPOSITION 3.6. Let &. be a perfect complex of locally free Ow-modules and
det(€.) be its determinant line bundle. Assume that &. is exact off Ws. Then, there
exists a canonical rational section Oy ——— det(€.), and we have

iy (€)= )y (O ——— det(€.) € AW, — W).

Proof. It is enough to prove that for any irreducible scheme X of dimension n and
any perfect complex &£. of locally free Oy-modules which is exact off X, we have

e (Ox ——— det(€)) N[X] = ¢y (E) N[X] € Ay (Xy). (7)

This relation is clearly satisfied if X, = . So, we can assume that X, # ¢.

Let 0 » £ — £@ — £ — 0 be an exact sequence of perfect complexes over
X which are exact off X;. It easily follows from the definitions and the additivity
of localized Chern classes that if (7) holds for £.( and £.7, then it holds for £.?).

Fulton ([7], example 18.3.12, see also [15], chapter 4) proved the following splitting
principle: there exists a proper birational map f: X — X such that f*E. has a
filtration by perfect complexes exact off X,, with quotients of the form
0— L; —> L;_; — 0 where L; and L, ; are invertible sheaves. For such complexes,
relation (7) is obvious.

The referee pointed out a simpler devissage. By normalization, we may assume X
normal. Since the dimension of X is n— 1, equation (7) for X is equivalent to
the analogue equation for any open neighborhood of the generic points of Xj.
We choose a neighborhood U such that £.|;; admits a filtration by perfect complexes
exact off Uy, with quotients of the form Oy -, Oyp. For such complexes, relation (7)
is obvious. [
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COROLLARY 3.7. Letu: £. — G. be a surjective map of perfect complexes of locally
free Oy -modules which induces a quasi-isomorphism over the generic fiber W,. Let F.
be the kernel of uand t: det(£.) ——— det(G.) be the rational map induced by u on the
generic fibers of the determinant line bundles of £. and G.. Then,

CIVT/WS(]:') = —cll’f/Wv(det(S.) ——— det(G.) € A\ (W, — W).
Proof. By Proposition 3.6, we have
A (F) ="y (O ——— det(F.)) € A (W, —> W).

The rational section Oy ——— det(F.) can be obtained from the rational map ¢.
Indeed, there exists a canonical isomorphism det(€.) >~ det(F.) ® det(G.). Combined
with the rational map ¢, this gives a rational map det(F.) ——— Oy . Itsinverse is the
rational section we started with. By the above relation and remark 3.5, we have

o'y (det(€) ——— det(G.) = ¢f’y (det(F.) ——— Ow)
==y (O ——— det(F.))
=—cy(F)ed' (W, > W). O

EXAMPLE 3.8 ([16], Lemma 2). Assume that W = Spec(A4) is the spectrum of a
discrete valuation ring which is finite and flat over R. Let M; and M, be two
invertible 4-modules and ¢t: M; ——— M, be a rational map. Let 7 be a uniformizing
element of R. There exist an integer j > 0 and a map n/M; — M, extending the
isomorphism on the generic fibers. It is injective with a finite length cokernel C.
Define the order of ¢ to be ord(f) = Lengz(C) — dj, where d is the degree of 4 over
R. This definition does not depend on the integer j. Indeed, ord(?) =
deg cf’y, (M| ——— M) N[W].

4. Localized Intersection Product

Let X be a separated scheme of finite type over S, and let S' = &, > ¢S” be a graded
Oy-algebra such that 8" = Oy and S' is coherent and generates S° over Oy. We
assume that S' has finite homological dimension over X and is locally free of rank
d over the generic fiber X, which is assumed to be non-empty. Let ¥ = Spec(S)
be the cone of ', P = Proj(S°[z]) be its projective completion, and ¢ be the projection
P — X. For any &: X’ — X, we will construct a map:

Yy AuProj(h*S[2) — A_go1(X)).

We start by defining . Let ¢ be the kernel of the canonical surjection
3: ¢*(S' ® Ox) — Op(1). Let £. be a resolution of S' by locally free O y-modules
of finite ranks:

0:5,,4_1—)5”_) ...... _)51_>50—E>Sl—>07
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and let L be the kernel of the surjective morphism d o (e ® 1): ¢*(Eg ® Ox) — Op(1).
We denote by F. the complex of locally free Op-modules

F.o=0->q¢€ —>qE_1—> - - g€ - L—N0.

LEMMA 4.1. The complex F. satisfies the conditions (P) relatively to the closed
immersion Py — P.
Proof. The sheaf S' is locally free over X,,. Therefore, the complex

0—>q & — v — ¢*& = ¢ (£ ® Ox) = ¢*(S' ® Ox) = 0

is exact over the generic fiber of P. It follows that for i > 0, H;(F.) is supported on
the closed fiber IP;, and that Ho(F.), P, = ¢p, 1s locally free of rank d over the generic
fiber of P. [

Put

o Ar(P)— Ag_a-1(Xj)
a> g (=D ey p (F) N

LEMMA 4.2. The map \ does not depend on the resolution E. of S' over X.

Proof. Let £ and £.? be two resolutions of S'. Without loss of generality, we
assume that £ dominates £.?. Let G. be the kernel of £ — £.@ it is an exact
complex of locally free Oy-modules. We denote by F.() and F.® the complexes
over [P deduced respectively from £.() and £.?9) as before. The following sequence
of complexes over P

0—¢*(G)—F.V—F @0

is exact. Hence 7.\ and F.? are quasi-isomorphic and define the same localized
Chern classes. ]
For any i: X' — X, we define {4, by

U =y Ap(Proj(h*S [z])— Ak—a—1 (X))
a> g, (D)l p (F) N,

where ¢': Proj(h*S[z]) — X’ is the projection.

DEFINITION 4.3. A closed immersion i: X — Y, defined by an ideal sheafZ on Y,
is said to be a x-closed immersion of codimension d if the conormal sheaf
NyY =T/I? has finite homological dimension over X and is locally free of rank
d over the generic fiber X, which is assumed to be non empty.

Let i: X — Y be a x-closed immersion of codimension ¢ with conormal sheaf
NyY =I/Iz, where 7 is the 1ideal sheaf of X in Y. Denote
SyY = EB,,;OI”/I"+1 and let C = CyY = Spec(SyY) be the normal cone to X
in Y and P = Proj(Sy Y[z]) be its projective completion. Let £. be a resolution
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of N'xY by locally free Ox-modules. We construct F. the complex of locally free
modules over P from the complex £. as before. Let V' be a purely k-dimensional
scheme and f: V' — Y be a morphism. Form the fiber square

W——>V

Tl

X —>v
so W =X xy V. Let J be the ideal sheaf of W in V. There is a surjection over W
Onz0 &L"/I - Sy V =®us0 I/ T — 0.

It determines a closed immersion j which fits in the diagram:

Proj(SwV[z]) —> Proj(g*Sx Y [z]) —— Proj(SxY[z])

pl ql ©)

w X

Since Proj(Sy V[z]) is a purely k-dimensional scheme, it gives a k-cycle on
Proj(g*Sx Y[z]). Define the localized intersection product (X.V),,. to be the image
of this cycle by ¥y,

XV )poe = P (=D ¢l 1 p (F) N [Proj(Sw VD) € Ak—a—1(Wy).

Let V7 ...V, be the irreducible components of " and n; be the multiplicity of V;in V.
Put W;=7V;xx Y, then [Proj(SwVI[z])] = >, n[Proj(Sw,Vilz])]. It follows that
(X V)loc = Zi nl(X Vi)loc'

DEFINITION 4.4. For any Y’ — Y and X' = X xy Y/, define the localized Gysin
homomorphism to be

Bt ZH(Y') = Ap_q1(X))

Zn,-[Vi]H Zni(X. Vidioe-

Remark 4.5. Consider the fiber square (8) where i is a *-closed immersion of
codimension d with conormal sheaf Ny Y and V is a purely k-dimensional scheme.
If W, =@, then

X W ioe =& (N ) NS(W, V)l—aor € Ak—a—1(Ws) = Ai—a—1(W),

where the ¢()* means to multiply the term ¢; by (—1)’, g*(¢(N'x Y)) is a notation for
the total Chern class of the complex g*(£.) for any resolution £. of N'y Y by locally
free Oy modules, and s(W, V) is the total Segre class of the closed immersion
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W — V ([7] chapter 4). Indeed, the cycle defined by Proj(Sy V[z]) is contained in the
special fiber. So, we do not need to localize the Chern classes and the result follows
exactly as in [7] proposition 6.1-a).

PROPOSITION 4.6. Consider a Cartesian diagram

1
X" -y

T

X —y (10)
yl lf
X——vY
with i a x-closed immersion of codimension d.
(@) If his proper, and o € Zi(Y"), then
focha(@) = Ly ) € Ar—a1(X).
(b) If h is flat of relative dimension n, and o € Z;(Y"), then
itoch"(@) = [}l 2) € Apeyn-a-1(X).

Proof. (a) We may assume that o = [Y”] and A(Y"”) = Y’'. Consider the diagram

Proj(Sx»¥"[z]) —> Proj(l*Sx-¥'[z]) —> Proj(I*g*Sx ¥ [#]) > X

|

Proj(Sx+Y’[2]) —— Proj(g*Sx Y [2]) —— X"

Proj(SxY[z]) —— X

(11)

With the same notation as before, we have
.l N d+1 P : /
lloc([Y ]) - qs*((_l) chrl,lP.\ (‘7:) N [PrOJ(SX’ Y [Z])])
The first equality follows from:
L1 [Proj(Sy» Y"[z])] = deg(Y"/ Y")[Proj(Sx Y'[z])].

(b) Wemay assume o = [Y']and 2(Y") = Y'. Ashisflat, Sy» Y" = I*Sx Y’. Hence,
[{[Proj(Sx  Y'[z])] = [Proj(Sx~ Y"[z])], which implies the needed relation. O
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THEOREM 4.7 (Localized Excess Formula). Consider the Cartesian diagram (10)
where i is a *-closed immersion of codimension d. Assume that i is a regular
embedding of codimension d' and let J be the ideal sheaf of X' in Y' and
M =(TJ)T*Y be the normal bundle on X'. Assume that Y" has pure dimension k.
Let &. be a resolution of N'y Y by locally free Ox-modules and let F. be the complex
of locally free Oy-modules

0—>g*&)—>gEic)) = ... g () - F—0,

where F is the kernel of the surjection g*€y — J | J* (called an excess complex ). Then
F. satisfies conditions (P) relatively to the closed immersion X, — X' and we have

d+1
XY Ve = 3 (=1l (F) 0 (el M) O (X, Y iy a € Arar (X)),
Jj=e+l1

where e =d — d', c(I*M) is the total Chern class of the locally free Ox»-module I*M,

and s(X", Y") is the Segre class of the closed immersion X" — Y.
In particular, if ' Y' is a purely k-dimensional scheme, then

XY e = (=D o (FINIX] € Apa1 (X)),

Proof. 1t’s easy to see that F. satisfies the conditions (P) (see also the proof of
Lemma 4.1). Consider the diagram (11), put P = Proj(Sx Y[z]), and define L and
¢ by the exact sequences

0> L— ¢(E®Ox) = Op(l) > 0,
0—¢— ¢"WNxY ®0Ox) - Op(1) — 0.

We denote by G. the complex of locally free Op-modules:

Finally we define a locally free module & over P’ = Proj(Sy Y'[z]) by
0— & — j*"¢*(J)T*® Ox) — Op(l) — 0.

LEMMA 4.8. We have over Proj(Sy Y'[z]) the exact sequence of complexes of locally
free modules

0— j*¢*"F. - j*giG. — & — 0.
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Proof. The only thing to check is the exact sequence in degree 0
0— j*¢"F — j*¢iL — & — 0. (12)
Consider the following diagram on P’

0—¢ — 7 q*(T)T*® Ox) — Op(l) - 0
0 ) I
0—j¢iL - jgiq"(E® Ox) — Op(l)—0

The second vertical morphism is a surjection being a composition of two surjections,
and has the locally free module j*¢*F as a kernel. The snake lemma implies that the
first vertical morphism is surjective with kernel j*¢*F, this finishes the proof of

(12). O
The localized intersection product is given by
XYoo = @t (=) coe(G) N [Proj(Sx» Y7 [])]).

where ¢;,.(G.) = CEH,P,,.(Q-)- Proposition 3.1(b) applied to the exact sequence of
Lemma 4.8 implies

¢ie(G.) 0 [Proj(Sy Y'[2])]
d+1
= > GnF)Ncan(5E) N [Proj(Sy Y [2)]
Jj=e+1
d+1 ,
= > GyF)N{eBE) N Proj(Syr YD j-a-1-

Jj=e+1
On the other hand, we have on P’:

o&) = (¢ M)/ c(Op(1) = e(j*q* M) Y (1) er(Op(1))".

n=0

Let 6 be the projection Proj(Sy~ Y”[z]) — X”. The proper push-forward property of
bivariant classes (C;) gives

d+1

XY Yoo = (=D Y 0 (F) N0 MY N Y (=1)"e1(O))" N [Proj(Sys Y (2D ka1
Jj=e+1 n
d+1
= (=)™ Y FF) N el M) N8, (=1 el (O))" N [Proj(Sxr Y [ZDDhejma—1
Jj=e+1 n
d+1 .,
= Y (=) (F) N M)N 6. er (O N [Proj(Syr Y DD hicsjat-
Jj=e+1 n

In order to pass from the first to the second equality we used the projection formula
for the classical Chern classes. The third equality is only a sign verification. But
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the Segre class of X" — Y” is

S Y = 8. en(O)Y" N [Proj(Sx Y'[2D)]).

n=0
This finishes the proof of the Theorem 4.7. O

COROLLARY 4.9. Let i: X — Y be a x-closed immersion of codimension d. Let V
be a purely k-dimensional scheme and h: V — Y be a morphism. Assume that
W =X xyV — V is an isomorphism. Then

X Woe = (D" ef Ly Wy V)N [V] € Ap—a1(Vy).

As a particular case, we have the localized self-intersection formula: if' X has pure
dimension k, then

(XX = (=Dl y WxY) N [X] € Apg1(X)).

Remark 4.10. The localized Gysin homomorphism does not pass to rational
equivalence. Consider a diagram (10) where i/: X’ — Y’ is a Cartier divisors,
and take Y” =V to be an irreducible and reduced k-dimensional subscheme of
Y’. The localized excess formula gives

X Ve = (=D ¢f  (FIN X VD + (=D ey p(F)N sV N X, Wy,

where (X’.[V]) is the usual intersection with the Cartier divisor X’ on Y’. The first
term of the right hand side in this equation passes to rational equivalence, but
the second does not (the Segre class {s(VV N X', )}, =[V]if V C X’ and vanishes
otherwise).

PROPOSITION 4.11. Let i: X — Y be a x-closed immersion of codimension d. The
localized intersection product i), defined in this section is the unique localized
intersection product compatible with proper push-forward and flat pull-back and
satisfying the localized excess formula in codimension 1 and 0. More precisely, con-
sider a fiber square

J

w Loy
Lol
X 5 v

such that V is a purely k-dimensional scheme and j is either an isomorphism or a
regular embedding of codimension 1 (i.e., W is an effective Cartier divisor on
V). A localized intersection product satisfies the localized excess formula in
codimension 1 and 0 if for any fiber square as above, we have:

XV oo = (DY (FIN W],

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

CYCLES ON ARITHMETIC SURFACES 41

where € = 1 if j is an isomorphism and 0 otherwise, and F. is the excess complex con-
structed over W as in Theorem 4.7.

Proof. Let V be an irreducible and reduced k-dimensional scheme and let
W =X xy V. We will prove that the conditions of the proposition are enough
to compute (X.V),,.. If W is isomorphic to V, the excess formula in codimension
0 gives (X.V),,.. Suppose that W # V' and denote by V the blow-up of V' along
W and by W the exceptional divisor:

W o— v
T Lp
w - V
! !
X — Y

The compatibility with proper push-forward implies that i}, [ V] = (i}, .[V']). But W
is a Cartier divisor on V. Then, the excess formula in codimension 1 gives this
localized product. [

Let X be an arithmetic scheme over S of relative dimension d. The diagonal closed
immersion Ay — X xg X is a *-closed immersion of codimension d. Therefore, we
can associate with any fiber square

W——>V

.

Ax—>X XsX

where V' is a scheme of pure dimension k, the localized intersection product
X WMype € Aj—a—1(Ws). For V = Ay, the self-intersection formula gives:

(Ax-Ax)pe = (D)) 1 Q) 5) N[X] € Ao(X,).

Bloch [3] gives this formula as a Definition of (Ay.Ayx),,. but did not define a general
localized intersection theory.

5. Localized Intersection Over Arithmetic Surfaces

Let X be an arithmetic surface over S. We prove in this section a residual intersection
formula for the localized intersection theory associated with the diagonal closed
immersion Ay — X xg X. Then, we use this formula to write the Lefschetz number
of an automorphism over X as a sum of local contributions supported on the scheme
of fixed points. We begin by recalling some known facts about the dualizing sheaf of
X over S which will be used later.
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5.1. THE DUALIZING SHEAF

1.—Projective resolution onk/S: Fix an embedding of X in a scheme P smooth over
S. As X and P are regular, this embedding is regular. Hence, it induces a resolution
of QL ;s by locally free Ox-modules

0— & =NXP—>50=Q}D/S|X_’Q§(/S_>O'

Indeed, the kernel of £, — & is locally free (as X is a regular surface) of rank 0.

Let wy/S = Hom(det(N x P), det(Q}D/Sl y)) be the dualizing sheaf of X over S.
There exists a canonical map p : Qﬁ( s — wyx/s defined locally as follows: given a
local section t of Q}/S, let T be a lifting of 7 to Q}D/s, then p is given by
T (> o AT).

2.~The semi-stable case: Assume that X is a semi-stable surface over S and let $ be
the set of singular points in X;. Then, the map p is injective because Q}/S is
R-torsion-free, and its cokernel is a skyscraper sheaf:

0— Q)5 > wxs > Pk — 0. (13)

xe$

3.—A differential invariant: Here, we do not assume that X is semi-stable. Let D be a
finite and flat scheme over S and let g: D — X be an S-morphism. Let 7 and y be
respectively the kernel and the cokernel of the map induced by p:

0—>1— g*Qg(/S SLN goxs —y—0.

LEMMA 5.1.

(i) The module t is the R-torsion submodule of g*Q /s
(i1) The modules y and © have the same finite R-length. Put

Ox(D — X) := Lengg(y) = Lengg(7).

If D is a horizontal effective Cartier divisor over X, we denote o x (D) = dx(D — X).

(iii) If X is semi-stable and if D is a horizontal effective Cartier divisor over X, then
O0x(D) is the number of singular points of X contained in D without multiplicity
(i.e. the cardinality of $ N D).

Proof. (1) Let C be the image of pp. We have an exact sequence
0—> 17— g*QlX/S — C— 0. 4s C is a submodule of g*wy/s, it is R-torsion-free.
Therefore, t is the R-torsion submodule ofg*Q}/S.

(ii) By pull-back to D, 0 — g*&; — g*&) — g*Qk/S — 0 is exact and gives a res-
olution of g*Q}(/S by locally free modules. Indeed, the kernel N of g*&; — g*&
is R-torsion-free because it injects in g*&€; and D is flat over R. Hence N is R-locally
free. But N vanishes on the generic fiber of D because Qﬁ(q sk 1s locally free. So
N vanishes. We consider p, as a map of complexes p;: g*€. — g*wy/s, where

the second complex is concentrated in degree 0. It is a quasi-isomorphism on
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the generic fiber D,,. The rational map ¢: g*wy,;s ——— g*wy,s induces by p, is the
identity. Then, by example 3.8, we have Leng(y) — Leng(tr) = ord(¢) = 0.

(iii) One easily proves that the restriction of the exact sequence (13) to the divisor
Dis

0— @ k—)g*QlX/S—>g*wX/S—> @ k— 0. (14)

xe$NDy xe$NDy

4.—Relative differentials: Let f: X — Y be a dominant morphism of arithmetic
surfaces over S. By [3] Lemma 7.2, there exists an exact sequence

0 —>f*QIY/S N Q;/S N Q}(/Y 0.

LEMMA 5.2. Assume that f,: X, — Y, is étale. Then, there exists a canonical
rational map f*wy;s ——— wyx;s, and

Ay (ffoys ——— oxs) = cfX\_(Q}/Y) e A'(X;, > X).

Proof. In [3], Lemma 7.2, Bloch proves that we can find resolutions of length 1
which fit in the exact sequence

0— f*s D%/s /vy 0
1 ]
0—— f*Fo Ey H, >0
0—— f*F E, H, 0
0 0 0
The Lemma follows from Proposition 3.6. O

5.2. A RESIDUAL INTERSECTION FORMULA

Let V be an irreducible scheme of dimension k withamapf: V' — X xs X, and W
be the restriction of V to Ay:

W—m>V

gl lf (15)

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

44 AHMED ABBES

PROPOSITION 5.3. Assume that W # V. Then, the localized intersection product
(Ax.V)jpe € Ai—2(Wy) can be defined as follows:

() If W is a Cartier divisor on V, then diagram (15) induces a surjection
g*Q}/S — Op(=W)|w which is an isomorphism over the generic fiber of W.
Therefore, we get a rational map g*wy;s ——— Oy(=W)ly, and we have

Bx- Wi = ¢y (g 0xs5 === Op(=W)ly) N[W] € Aia(Wy).
(2) Since V£ W, wereduce the general case to the first case by taking the blow—up of V
along W.

Proof. By Proposition 4.6, (2) follows from (1). Let £. be a resolution of Q}/S asin
Section 5.1. Diagram (15) gives a surjective map g*€. — Op(—W)|y, where the
second complex is concentrated in degree 0. Let F. be its kernel. By the localized
excess formula 4.7,

(Ax. Ve = =y (F) N [W] € Ara(Wy).

Corollary 3.7 implies the Proposition. ]

Consider now an irreducible scheme I'" of dimension 2 with a map I’ — X xg¢ X.
Let W be the restriction of I' to Ay, and assume that W # I'. Consider the diagram

w r (16)

AX —>XXSX

where H is a Cartier divisor on I' and V is the residual scheme to H in W, which
means that V is defined by its ideal sheaf Iy = Iy ® Or(H) C Or, where Iy is
the ideal sheaf of W in I', and Or(H) is the invertible sheaf associated with H ([7]
Definition 9.2.1). Let w = g*wyx/s and O(H) = j*Or(H).

PROPOSITION 5.4. Assume that V is vertical (i.e. V;, =@ ). Then, there exists a
canonical rational section  ——— O(—H) over H, and we have:

(Ax. D)y = ¢y (@ ——— O(=H)) N [H]
+{c(@ ® OCH))* N s(V, T)}dim=o € Ao(W5),
where ¢( )" means to multiply ¢; by (—1)" and s(V, ) is the total Segre class of the
closed immersion V— T.

Proof. The existence of the rational section w ——— O(—H) follows from diagram
(16)as V;, =0. Letn: I' — I" be the blow-up of I"along ', and V', H and W be the
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inverse images of V', H and W. Then, the relation W = ¥ + H holds between Cartier
divisors over I'. We have a rational map n*w ——— O(—W)| ~ over W, and by Prop-
osition 5.3,

_ W~ * 0 77 ~ I
Ax.I),. = ns*clyws(n w — O( W)|W) N[w].
Recall that O(—ITI) = n*O(—H). Hence, we get:

el (0 ——— O=W)l5) NIV]

= ol ("0 === 0= W) NH + @0 ——— 0= W)|z) N{V]
= cf;v(n*w ——— T O(=H)|y) N [H]
—a1([o @ OCH)) N [V] - cl(O(V) N[V].

The m-push-forward of this formula gives the Proposition. OJ

5.3. LEFSCHETZ NUMBERS

Let ¢ be an S-automorphism of X and denote by I' C X xg X the graph of ¢. The
scheme of o-fixed points fix(o) is defined by the fiber square

fix(c) ————T

N

Ax———>XXsX

The localized intersection (Ay.I'),,, is a 0O-cycle class in the closed fiber of X.
Therefore, we can take its degree.

DEFINITION 5.5. The Lefschetz number of an S-automorphism ¢ of X is the
degree of the localized intersection (Ax.I'),. € Ao(X;). It is equally denoted
(AX-F)IUC'

Assume from now on that ¢ is non-trivial. Let 7 be the ideal sheaf of fix(¢) in X.
Let x € fix(o) be a closed fixed point and A be the local ring of X at x. Then ¢ induces
an automorphism of 4, and the ideal Z is locally generated at x by o(a) — @ where a
runs over A. For any a,b € 4, we have:

a(ab) — ab = a(a)(a(b) — b) + b(a(a) — a). (18)

Hence, by Nakayama’s lemma, 7, is generated by a(0;) — 0; and a(0,) — 0, for two
local parameters 6; and 6, of 4. Let Y be the Cartier divisor over X defined locally
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by the greatest common divisor of all functions in the ideal sheaf of fix(¢) in X, and
denote by R the residual scheme to Y in fix(o).

LEMMA 5.6. The closed immersion R — T, is a regular embedding. Any point x in ‘R
is a singular point of Xj.

Proof. The ideal sheaf 7 is locally generated by two equations. Therefore, the ideal
sheaf Zg of Rin I is also locally generated by two equations, namely the quotient of
two equations defining fix(¢) by an equation defining the Cartier divisor Y. Since
I' is regular and codim(I", R) = 2, the closed immersion R — I is regular (see [7]
the remark after Corollary 9.2.1). We have a canonical surjection Q}/Smx(g) —
Tlfix(s)» Which induces the surjective map

Qs ® O(V)}y = Twly-

It follows that for any point x of R, dimk(x)(Q}(/S(x)) > dimyy(Zw(x)) = 2. This
proves the second statement in the Lemma. O

Remark 5.7. Let x be a point in R and /(x) be its multiplicity in R. Then, /(x) is also
the algebraic multiplicity of I" along R at x because ‘R is regularly embedded in I ([7]
example 4.3.5-¢)).

PROPOSITION 5.8. Let Y = H + V be the decomposition of Y into a horizontal
Cartier divisor H and a vertical one V. Then, there exists a rational section
oly ——— O(=Y)|y over H, and the following formula holds

(Ax-Dpoe = ety (@l === O(=V)l) N[H]
—(@+H+V.V)+ Y (0[] € 4o(X,).
xeR

Proof. By Proposition 5.4,

(Ax.D)ppe = ¢f y(@ly === O(=Y)ly) N [Y]+ 50(R, T)
=l (@l ——— O(=Y)|y) N[H] — (0 +H+ V.V)+5(R, T).

The relation so(R, I') = > /(x)[x] follows from the remark above. O

6. A Projection Formula

Letf : X — Y be amorphism of finite degree n between two arithmetic surfaces over
S, and ¢ and 7 be non-trivial S-automorphisms, of respectively, X and Y such that
tof =foa. PutI'=1,CX xsX and I'; C Y xg Y the graphs of ¢ and 7, and
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consider the Cartesian diagram

W——>Xxy X —— Ay

T

I—5%XxsX—>Y xgY

where W is the intersection of I" with X x y X. The closed immersions i and j are
x-closed immersions of codimension 1 and conormal sheaves, respectively,
J*Q}(/S and Qly/s. On the one hand, X xy X has pure dimension 2. Its localized
intersection with I' is a cycle class of dimension 0 over W;. On the other hand,
the localized intersection of I with Ay is also a cycle class of dimension 0 over
W,. We expect that these cycle classes are the same:

(I [X xy XDjpe = (Ay.T)spe € Ao(W). (20)
A weaker version of this formula consists in the equality of the degrees of the above
cycles:

(Lo [X Xy XDjpe = 1Ay T)jg,. 21

We used in this equation the same notation for a localized intersection product and
its degree.
Let ¢ and ¢’ be two automorphisms of X such that f oo =fo0¢ =710f. Then,

1 =000 ! is an isomorphism of X over Y:

X——X

N

The automorphism (id x 1): X xg X — X xg X sends I, onto I',; and preserves
X xy X. So, id x 1 induces an isomorphism between W and W’, and we have

(FU'[X Xy X])lac = (Fﬂ'[X Xy X])[uc € AO(WY) = AO(WYI)

Hence, the projection formula does not depend on the choice of the lifting of = to X.
Unfortunately, the proof we have is based on the existence of a good lifting.

Good lifting of an automorphism over curves. We consider here smooth projective
and irreducible curves over 5 = Spec(K). Let f: D — C be a finite morphism
between such curves, and 7 be a non-trivial K-automorphism of C. A lifting ¢
of 7 to D is a K-automorphism of D such that f o =10 f. Denote fix(c) C D
and fix(t) C C the schemes of fixed points. Then, there exists a canonical closed
immersion fix(g) C fix(t) x¢ D.

DEFINITION 6.1. A good lifting of t to D is a lifting ¢ such that fix(s) =
fix(t) x¢ D.
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LEMMA 6.2. Let f: D — C be an étale covering of curves and t be a non-trivial
K-automorphism of C.

(1) Iffix(t) =0, then any lifting of © is a good lifting.
(1) If fix(t) # @, then there exists at most one good lifting of t.

Proof. The first point is clear. For the second, consider two good liftings ¢ and ¢’.
Then fix(o) = fix(¢') = fix(r) x¢ D #¥. Therefore, we can find a point
x € fix(¢) = fix(¢’) C D such that o(x) = ¢/(x) = x and the automorphisms induced
by o and ¢’ over K(x) are equal to the identity. As f is étale, 0 = ¢’ ([12] Corollary
3.13 page 26). [

We consider again a morphism f: X — Y between arithmetic surfaces and a
non-trivial S-automorphism 7 of Y. A lifting ¢ of 7 to X is a good lifting if it induces
a good one over the generic fibers.

THEOREM 6.3. Letf: X — Y beamorphism of finite degree n between arithmetic
surfaces such that f,,: X, — Y, is étale. Let t be a non-trivial S-automorphism of Y
and o be a good lifting of v to X. Assume that W =T N (X xy X) is a Cartier divisor
on I'. Then, the strong projection formula holds for f.

The rest of this section is devoted to a proof of this Theorem.

6.1. PROOF OF THEOREM 6.3

Fix the notation as follows:

a p2

W—Xxy X —>X

N

X

o is the closed immersion of W in X xy X and Z is its ideal sheaf.
p1 and p; are the first and the second projection.
p is the map p; o a. It satisfies o o f = p, o o because of the definition of W.

The map f coincides with the closed immersion W — I" when we identify I" with X
by the composed map '—X x5 X x , which we will do subsequently. Hence,
f is a closed immersion and makes W a Cartier divisor on X. Let J be the ideal
sheaf defining . Diagram (22) leads to the following exact sequence:

J|T*—T|T*— B c*Qy,y—0.

Let P = Proj(6p, 20I”/I”“) and g: P — W be the canonical projection. Then, P
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has pure dimension 1. Let s = ¢,[P] € Z,(W) be the first Segre class of the closed
immersion a. As W, is a Cartier divisor on (X xy X),, the cycle ([W]—ys) is
supported on the closed fiber of W. The morphisms over P:

qT/T* = ¢T/T* — O(1) = Op(1)

induce isomorphisms on the generic fiber of P. So, the complex ¢*J/J> — O(1) is
exact off P, and we can consider its Chern classes localized in P;. We now state
a proposition which implies Theorem 6.3.

PROPOSITION 6.4. With the above notation, we have:
qslel p (" T T* — O() N [P}
= e}, (" QY y) N BIW I+
+(1(T)T?) — ci(fra*wx)s) N (W] —s) € Ao(Wy).

First, we prove that Proposition 6.4 implies Theorem 6.3. We extend diagram (19):

W— X xy X

Ll

W—>X xy X — Ay (23)

Lk

F—i>XxsX—>Y><sY

where X Xy X is the blow-up of X xy X along W and W is the exceptional divisor.
Notice that 7 is birational and that W is canonically isomorphic to P with conormal
sheafin X X y X the sheaf O(1). We subsequently identify W and P, and also denote
by ¢: W — W the projection. Diagram (23) induces two rational maps:

(i) g*f'c*wxs —— O(1) over P = W,
(i) B*o*f*oys ——— JT/J* over W.

By Proposition 5.3, we have:
Ay D)jpe = ey, (B0 wy)s —=— T/ T) N [W] € Af(Wo). (24)

As 7 is birational, Proposition 5.3 (more precisely, its analogue for the closed immer-
sion I' > X xg X) implies:

(CLX Xy XDy = gkl p (4" B 0" 0x)5 === O() N[P]} € Ao(Wy). (25)
By Lemma 5.2, f induces a rational map f*wy;s ——— wy,s, and we have

oy (@ wys ——— ot wxy) = cf X‘_(U*Q}r/y) e A(X, > X). (26)
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By substituting equations (24), (25) and (26) in the formula of Proposition 6.4, we get
the projection formula (I'.[X Xy X]),,. = (Ay.]),, O

The next step is a reformulation of Proposition 6.4. Denote B = X xy X and con-
sider it as an X-scheme by the first projection. Consider a scheme C smooth over X
with an X-closed immersion of B in C:

B——C

X
We will prove the existence of such a factorization in the proof of Lemma 6.6. As X is
regular, then C is regular. And as Bis an l.c.i. scheme, the closed immersion of Bin C

isregular (EGA 1V 19.3.2). Let E = QIC/XlB, and U = N 3C be the conormal sheaf to
B in C. We have an exact sequence over B:

U—>E—>p;Q£(/Y—>O,

where p,: B— X is the second projection. As X, is étale over Y,, the complex
U — Eis exact off By. It defines a bivariant class ¢/’ = CﬁBv(U — E) e A'(B; — B).

LEMMA 6.5. The bivariant class cll"" € AY(B; — B)doesnot depend on the scheme C.
Proof. Consider two schemes C; and C, as above and the diagram

B——C1 xx (2

N

X

Let U — E, U; — E; and U, — E; be the complexes associated to C; x y C5, C; and
C,. Then E = E| @ E,, and we have an exact sequence 0 - U; - U — E; — 0,
which follows from the diagram

B——C1 xx Oy

Y

G
Therefore, ¢f , (U — E) = ¢}y (Uy — E)), and the Lemma follows. O

LEMMA 6.6. With the above notation, we have:

KN = ey (0" Qg yy) N BIW] € Ao(W).
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Proof. There exists a Y-closed immersion of X in a scheme Z which is smooth over
Y. Then, Z is regular and the closed immersion of X in Z is l.c.i. (EGA IV 19.3.2).
Let Ey = QIZ/Y|X and E; = N yZ be the conormal sheaf of X in Z. We have an exact
sequence

0—>E1—>E0—>Q;,/Y—>0.

Indeed, the kernel of E; — Ej is torsion-free with a generic rank 0. Therefore,
Lemma 6.6 is equivalent to
N = cf y (6" Ey — 6" Eo) N B[]

= ¢y (B0 Er — B0 Ey) N [W] € Ao(W)).
Consider now the diagram

B=XxyX—>C=Xxy Z

\ lm

X

The map p; is smooth and i is a closed immersion. So, this diagram can be used to
compute the localized Chern class . Let U = N5C be the conormal sheaf to
Bin C and E = Qg/xh&- It is easily seen that E = p5E;, where p»: B — X is the
second projection. Furthermore, we have a surjective map p5E; — U which is
an isomorphism as E; and U are locally free of the same rank. Hence,

=l (U— E)=cly (03E — PiEy).
We then apply this relation to W and use the equation p; o o = ¢ o f§ in diagram (22),
to get relation (27). O

By Lemmas 6.5 and 6.6, Proposition 6.4 is equivalent to the following:

gsdel p(q" T/ T* — O() N [P])
= N+ (T /T — (B wxs)) N (W] —s) € Ao(Wy). (28)
Taken in Ayg(W), equation (28) will follow from the commutativity of Fulton’s
intersection theory for well chosen regular closed immersions. For this purpose,

we need to leave the category of schemes and work with formal schemes. Equation
(28) taken in Ay(W;) turns out to be a refined version of Fulton’s commutativity.

6.2 REGULAR IMMERSIONS OF FORMAL SCHEMES

DEFINITION 6.7. (i) A closed immersion of formal schemes %) — 3 defined by a
coherent ideal sheaf J is a regular immersion if for any point y € 9, there exists
an open neighborhood U of y in 3 such that 3|, is generated by a regular sequence
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of elements of I'(U, O3). One can prove that 9 — 3 is regular if and only if for any
point y of ), the kernel 3, of O3, — Oy, is generated by a regular sequence of
elements of O3 ,.

(i) A formal scheme 9) is local complete intersection if for any point y of 9 , the
local ring Oy, is a local complete intersection ring (i.e. the completion of Oy,
is isomorphic to a quotient of a complete local regular ring by a regular sequence
of elements).

LEMMA 6.8. (1) Let Z' be a closed subscheme of a scheme Z and let 3 be the formal
completion of Z along Z'. If Z is l.c.i. then 3 is l.c.i..

(2) Let i : Y — 3 be a closed immersion of formal schemes and assume that 3 is
regular. Then, i is a regular immersion if and only if 9 is [.c.i.

Proof. (1) Being l.c.i. is a local property. Therefore, we can assume that
Z = Spec(4) and Z' is given by an ideal I. Let A be the I-adic completion of A.
The formal scheme 3 is isomorphic to Spf (,:1). Let P be a prime ideal of 4 containing
I, denote by x the associated point either in Z’ or in 3 and by P = PA. The local ring
of 3 at x is given by:

O3, =lim A(f7,
[P
where ;1( /1y is the I-adic completion of Izlf (this is the localization of A at
{f",n e Z}). Then, we get canonical morphisms:

Ag = Oz~ A((A—P)7") = (49)",

where ;11; is the localization of A4 at P and 21((;1 — i]3)*1> is canonically isomorphic to
the /-adic completion of ;LB. It follows that the /-adic completion of Og . is
canonically isomorphic to the 7-adic completion of ,211; On the one hand, the /-adic
completion of ;1“13 is canonically isomorphic to the /-adic completion of Ap. On
the other hand the P-adic completion of 4p is canonically isomorphic to the P-adic
completion of the /-adic completion of Ap. The same remark applies for O3 ..
So, the completions of the local rings O3, and O, at their maximal ideals are
isomorphic.

(2) Follows from EGA VI 19.3.2. O

We return to our problem and consider the Cartesian diagram:

|4 w r

S

Ax—>XXyX——>XXsX

where V' is the scheme of o-fixed points over X. Let .4 be the formal completion of
X xs X alongI', B be the formal completion of X' x y X along W and C be the formal
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completion of Ay along V. Then, we have canonical embeddings C C B c A. We
consider C, B and A as X-formal schemes by means of the first projection
X xs X — X.

LEMMA 6.9. The closed immersions V C W and C C B induce isomorphisms
V, =~ W, and C, >~ B, on the generic fibers.

Proof. Notice first that W = fix(t) xpr I'¥ and V = fix(s). As ¢ is a good lifting of
T, V,=W, Themap f,: X, = Y, is étale. So, (Ax), is a connected component of
(X xy X),. Taking completions along V;, >~ W,, we get an isomorphism C, >~ B,.[]

LEMMA 6.10 ([3] Lemma 7.5). There exist a formal scheme Z over X, locally
isomorphic to A’ x X, and an X-closed immersion of Ain Z.

Proof. We give the construction only for ¢ = id since it is similar for any . Let Z
be the ideal sheaf of the closed immersion X — A induced by the diagonal closed
immersion. Since X is regular, Q}( s=7 /Z? is locally generated by two sections.
One can lift these generators to get a local surjection Ox[[x, y]] = O 4. Hence, locally
such a Z exists. For the globalization of this construction, we proceed as follows.
There exists a covering of X by two affine open subschemes X; and X, such that
Q} sslx, is generated by two sections over X;. To construct X; and X, fix in each
component of Xy a closed point. The sheaf Qﬁ( /s 1s generated by two sections over
the associated semi-local ring. Choose any open affine neighborhood X; of these
points over which Qﬁ( /s 1s generated by two sections. There exist only finitely many
closed points of X which are not in X;. Over the corresponding semi-local ring,
the sheaf Qﬁ( /s 1s generated by two sections. Lift these to an open affine
neighborhood X>.

Let A; = A xx X; for i =1, 2. These are affine formal schemes. Indeed, consider
for example A;. It is canonically isomorphic to the formal completion of
X| xs X along X; diagonally embedded. But X; is affine and so are all its
infinitesimal neighborhoods, because they are finite over X;. Put A; = Spf(4;).
Let I; be the associated ideals of A4;. Let o, «; be two elements of I; lifting generators
of I/I? = Qk,/SIXi. We get a map ¢;: Ox,[[x, y]] = A;. It is a surjective map. Indeed,
for any integer n, ¢!: Oyl[x, y]/(x,»)" — A4;/I!' is surjective. The last statement
follows by induction from the following diagram:

00— (.'L‘, y)n/(x, y)n+1 - OXi [IL‘, y]/(w, y)n+1 —_— OXi [.’L', y]/(.'L‘, y)n —0

l l l

0—> I > A > A I} —————> 0

because the left vertical map is surjective.

I claim that there exists an automorphism ¢ of Ox,nxl[[x,»]] such that
¢ =1d mod (x,y) and @, o ¢ = ¢, over X; N X,. Then, we can glue ¢, and ¢, to
get the formal scheme Z. We prove the claim in two steps.
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Step 1: We construct a homomorphism ¢ satisfying the needed properties. There
exist a, b, ¢,d € Ox,nyx, such that the relations

% =am + by, @ = +dg, (29)

hold in Z/Z? over X; N X». Hence, the differences o, — ao; — boy and oy — coy — dot]
are in Z2. As @, 1is surjective, we find two formal series f(x,y) and f'(x,y) in
(x, y)* mapping by ¢, to these differences. Put

g(x,y) = ax+by + f(x,),
g, y)=cx+dy+f(x,),

and define

@ OX]ﬁXg[[xt y]] g OXlﬂXz[[xv y]]
x;y > gx, »); g'(x, ).

The only point is to check that we can take ¢ to be an isomorphism. It suffices to take
@ to be an isomorphism mod (x, y) (i.e. tofinda, b, ¢, d € Ox,nx, such that ad — bcis
invertible).

Step 2: We can choose a, b, ¢, d such that ad — bc does not vanish at all the generic
points of (X7 N X3),. Let k1, ... k, be the generic points of (X; N X3), and let Py, ... P,
be different closed points of X; N X> such that P; is in the closure of x;. If ad — be
does not vanish at P; then it does not vanish at x;. So, we are reduced to find
a,b,c,d satisfying this property. For each j=1,...,r, we can find
aj, bj, ¢j, di € Ox,ny, such that:

% = ad + b,

(1) the relations {_,

% — o + da) hold at P;, and

(2) a;d; — bjc; does not vanish at P;.

Statement (1) implies the existence of f;,g; in the maximal ideal of P; and

aj’., b]’-, cj/., dj’ € Oyx,nx, such that the relations

% = it + by +filam + i), % = ¢+ digy + gi(Go + djo
hold over X1 N X>. As the P; are distinct closed points, there exist elements ;; with

> h; =1 such that &; belongs to the maximal ideal of any P; except P;. Take
a, b, c,d to be:

(a b)_zh((aj-i-ﬁa}) (bj+f9b}>>
¢ d) T T\ (GHge) ([d+gd) )

Relations (29) are trivially satisfied and ad — bc does not vanish at any point P; and
therefore at any point x;. As a consequence, ad — bc fails to be invertible at only
finitely many closed points of X7 N X,. Let m; be maximal ideals of Oy, correspond-
ing to these closed points. Let n; be the maximal ideals of Oy, corresponding to
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the finite set of closed points of X, which are not contained in X;. Take any element f
of Oy, which is in any ny;, but which is not in any of the n;. Replace X> by its
localization at f. Clearly X; and X, continue to cover X. This finishes the con-
struction of ¢ and gives the formal scheme Z. O

The formal scheme Z constructed in Lemma 6.10 fits in the Cartesian diagram:
(30)

The scheme X x y X is l.c.i., hence so is the formal scheme /5 by Lemma 6.8. By the
same Lemma, the closed immersions C — Z, B— Z and I' = Z are l.ci. of
codimension 2. Put H = N1 Z the conormal sheaf to I in Z, Y/ = N gZ the conormal
sheaf to Bin Z, F = N¢Z the conormal sheaf to Cin Z and € = le/X the sheaf of
relative differentials of Z over X. Then, we have canonical isomorphisms
H >~ &|r and F ~ £|q, and an exact sequence over B:

U—>E|g—> Q—>0, (31)

where Q is the formal completion of pﬁﬁk/y along W. Put U=U|y and
E=E¢ly = Hly.

The scheme P defined in the previous subsection is canonically isomorphic to
Proj(SwB). We have denoted ¢: P — W the projection. We consider also
Q = Proj(SyC). Then, there exists a canonical closed immersion Q C P which
induces an isomorphism on the generic fibers (by Lemma 6.9). Thus, the cycle
[P] —[Q] is supported over the closed fiber of P. We define the invertible sheaf
K; over P by the exact sequence

0— Ki—¢*E -2 O(1)—0, (32)

where 6 is the composed map ¢*E — ¢*Z/Z> — O(1) and the map E — Z/Z° is
induced by diagram (30). We denote K, the excess bundle relative to the diagram

W——T

|

B—2Z
In other words, K5 is the invertible sheaf over W defined by the exact sequence:

0—> Kr—> U—>J | T*—>0. (33)
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These sheaves are related by the commutative diagram over P:

0 'K U *(J/T?* —0
I &
0 K, TE o) 0

where the second vertical map is induced by the exact sequence (31), and the third
one was defined in Subsection 6.1 (we leave to the reader to check the commutativity
of this diagram). All the vertical maps are isomorphisms off P;. The following Prop-
osition states the refined commutativity (I'.[B] —[C]) = (B]—[C].I') of the
intersection products in Z.

PROPOSITION 6.11. We have the relation:

gs-fe1(K)) N ([P] - [QD)}
= c1(K) N{{W] = s1(V. D)} — qoudc] p. (6" Kz — K) N[Q]} € Ao(Wy),  (35)

where s\(V, ) is the first Segre class of the closed immersion of V in I (notice that
{IW]—s1(V,D)} is a cycle over Wy, by Lemma 6.9).

We postpone the proof of (35) to the next subsection, and we continue the proof of
Equation (28).

LEMMA 6.12. Let D be an irreducible reduced component of W appearing with
a non-vanishing multiplicity in (W] —s). Then, T/I% is locally free of rank 2
over D.

Proof. Notice first that Z/Z2 is locally generated over W by two sections, namely
the pull-back of two local sections generating a*Qﬁ( ;s over I'. Let k be the generic
point of D. It is enough to see that the stalk (Z /Iz)K is generated by two sections.
If (7 /Iz)K is generated by one section, then we have an isomorphism Oy [T] —
(@, >0T"/T"Y),. Tt follows that P, = Proj[(®,s0Z"/Z"""). ]~ Spec(Ow.). We
deduce that D does not appear in the cycle (W] —s). The Lemma is proved. []

PROPOSITION 6.13. We have the relation:
cl(E)yN (W] —=5) = ci(fa’wxs) N([(W]—s) € Ao(Wy).

Proof. Let D be an irreducible component of W as in Lemma 6.12 (notice that D is
vertical). The surjective map E|p — Z/Z°|p, induced by diagram (30), is an
isomorphism because both sheaves are locally free of rank 2. Also, the surjective
map B*J*Q}/Sb — I/7?|p, induced by diagram (23), is an isomorphism because
Qﬁ(/s is locally generated over X by two sections. Therefore, E|p =~ ﬁ*a*QlX/Sb.
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Hence,
c(E)N[D] = ci(Elp) N[D]
= Cl(ﬂ*a*gk/sb) N[D]
= ¢1(6"Qy) N B.[D]  (by [3] lemma 7.4)
= ci(c*wx;s) N ,[D]
= ci(f*c"wyys) N[D].
Proposition 6.13 is proved. O

Now, we prove relation (28). From diagram (34), we get

qsdel p (" T)T* — O() N [P}
= qslcl p(¢°U > ¢*E) N [P} — gulc] p.(¢" K2 — K1) N[P]}
= ¢!y (U= E)Ns — gufci(¢" Ky — K) N ([P] - [Q])}
— qulel p (" Ky — K1) N[Q]}
= ¢y (U — E)Ns+ci(K2) N (s — s1(V, T))
— gslc1(K1) N ([P] = [QD} — quudet p (q" K2 — K1) N[Q]} € Ao(W).
In the last equation, we used that ¢,[Q] = s;(V,T). Indeed, ¢.[Q] =s1(V,C) =
s1(V, Ay) where s; denotes the first Segre class of a closed immersion. As V' is
the scheme of o-fixed point, s;(V,I') = s51(V, Ay). We deduce, using Proposition
6.11, that:
gulcl p(@* T/ T* — O NP = ¢y, (U — E)N[W]+
+aU — E)N(s— W]+ a(Ka) N (s — [W]) € Ao(Wy).

I claim that CK/W‘_(U - E)n[W]= c’l"" N[W] € Ao(W). Indeed, the diagram of for-
mal schemes

B——

.

can be used to compute the class ¢ (see Lemma 6.5). Therefore,

dslel p (" T/ T* = O() N[P])
=N W]+ (c1(Ka) + ci(E) — ei(U)) N (s — [W])
=N+ (c1(E) — (T /T?) N (s — [W]) (by the sequence (33))
=N [W]+ (e1(f*c*wy,s) — ei(T/T*) N (s — [W]) (by Proposition 6.13).

NN

Equation (28) is proved. [
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6.3. REFINED COMMUTATIVITY OF FULTON’S INTERSECTION THEORY

Using the commutativity of Fulton’s intersection theory, we get relation (35) only in
Ao(W). Proposition 6.11 is a refined version of this commutativity. Consider the
Cartesian diagram

V’/ W// 1-"/
V'/ W'/ r’ /
c'/ B’/ z'/
e h 4
|4 W T
C B zZ

where

(i) Z is obtained from Z by a sequence of two blow-ups, the first along B, and the
second along the inverse image of C. Hence, C' and B/, the inverse images of
C and B, are Cartier divisors over Z'. Put £ = Oz (—B)|g and G = Oz (-C)|c.

(ii) T, W’ and V" are the inverse images of I', W and V respectively in Z’, B and C'.

(iii) T is the blow-up of T'along ¥ and W” and V" are the inverse images of W and V'
in I'”. They are Cartier divisors over I'”. By the universal property of blowing-up,
there exists a canonical closed immersion of I'” in Z’ such that B and C’ restrict
respectively to W” and V”. This closed immersion factors into I —
I" — Z'. Notice that V" is canonically isomorphic to Q.

The residual formal scheme to C' in B’, denoted 7, is the Cartier divisor over Z’
associated to the ideal sheaf Oz (—B +C) C Oz. As C;, = 81/1’ 7T is supported over
B.. We label the closed immersions which appear in the diagram as follows

() i:T'-Zb:B—>Zandc:C— Z,
Q2 vV:B—-Z,¢:C—Zandt:T - Z.

Remark 6.14. We use the notion of Gysin map associated to a regular closed
immersion as defined by Fulton in [7] chapter 6.2. Moreover, we have to consider
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the following situation

X' —)

L

where r is a regular closed immersion of formal schemes and ) is a formal scheme. If
X’ is a scheme, then we can consider ([))]) as a cycle class over X’. It is defined
exactly as in [7] chapter 6. Indeed, the normal cones needed to define this class
are schemes because X’ is a scheme. The same remark applies for other bivariant
classes like Chern classes or localized Chern classes. For example, if X is a formal
scheme, £ is a locally free sheaf of X , and X — X’ is a morphism from a scheme
X to X, then we can consider ¢;(€) as an operator on cycles of X.

As usual, we introduce the excess bundles K; over C' and K, over B’ defined by the
exact sequences:

0> K, > g'U— L0,
0— Ky — &) > G—0.

We get the commutative diagram over C:

0 Kale: f*Ule) — Llce —0
l l l (36)
0 K1 f*(&le) G 0

4

We denote in the following ¢/ for the localized Chern classes ¢, .

LEMMA 6.15. The vertical maps in diagram (36) are exact off C and the following
relation holds between localized Chern classes over C':

()" (Lle = G) + e (ale = Ki)ei(G)
= G Ule) = [*El) + 7 (f*Ule) = [*(Eler(f*Ule)

Proof. Given two invertible sheaves U and V over C' and a morphism U — V
which is an isomorphism on the generic fiber of C', one can prove that:

XU - V)= —c(U)(U - 7).
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We apply this remark to the complexes 2| — Ky and L] — G. Then, using the
exact sequences (36) and the relation c;( f*(U|c)) = c1(Kzle)ei1(Lle), we get:

KL Ul = fHELR) + (S Ule) = [ ElNa(f*Ule)
= (Kale > K1)+ &E(Lle > G) + ¢ (Kale > K)e“(Lle — G+
+[e1(Kale) + e (LI (Kale — K1) + c(Lle — )]
=[e1(Lle) + (Ll = PIef“(Kale — K1) + e1(Kale) ™ (Lle — G)
= (G (Kale — K1) + e1(Kale)d? (Ll — ).

The last equality follows from the fact that a product of two localized bivariant
classes is the product of one of them by the other class taken without localization.[]

LEMMA 6.16. Let o =i'([Z]) € Ay(I"). Then, there exist two cycle classes
y € A2y(V') and 6 € Ax(W)) such that o —[I'"] =y + 06 € A(I").

Proof. 1 claim that o — [I""] is in the image of A,(W') — A>(I"). Let Q=T — W
and Q' =T’ — W’. The map = induces an isomorphism Q' ~ Q. Consider the com-
mutative diagram

Ap(W)) —> Ao (W') —> A4 (W) —>0

|

Az(T5) — A (I') —— A7) —0

Az(8%) Ay ()

0 0

where the vertical and horizontal sequences are localization sequences. Since Q >~ Q;
is an open subscheme of Ty, its dimension is at most one, so A4>(Q,) = 0. Therefore,
any class in 4,(I") which image vanishes in Al(Q;1), is the image of a class in
A>(W'). The image of o —[I'"] in 4,(€)) coincides with the image of (o — [T"])
in 4,(Q,) via the isomorphism Q' >~ Q. But n,(x — [I""]) = 0 € A»(I') by compatiblity
of intersection product with push-forward. The claim follows. The irreducible com-
ponents of W’ are either contained in V'’ or in the closed fiber W;. Then we have
a surjection A>(V') @ A2(W))—> A>(W'). The Lemma follows. OJ

The commutativity of Fulton’s intersection theory ([7] Theorem 6.4) implies
H(TD = (@) € 4i(W)), (37)
H(C]) = (@) € (V). (38)
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Indeed, the first relation is localized in the closed fiber of W’ because 7 is vertical.
From these relations, we get:

(K ([T]) — “(Kye — KDI(CT)

39
= () = Ky = K1) € Ao(W)). 9

LEMMA 6.17. We have the following relation between cycle classes over Wi:
hsd(e1 ()t = ¢ (Kale — K1)e)(@))
= hp{(c1(K)f — 7 (KCale — K1) )T'D) € Ao(Wy).

Proof. By Lemma 6.16, it is enough to prove:
hsd(c1 (K = e (Kale — KDeH2)) = 0 € Ao(Vs), (40)
hsd(c1(K)E = ¢ (Kale — K1)e)(0)) = 0 € Ag(W). (41)
Restricted to cycles over V7, the bivariant class ¢ coincides with the localized Chern

class cllo"(£|c/ — G), and the bivariant class ¢! coincides with the Chern class
—c1(G). Therefore,

(1K)t = c(Koale — KneED)
= (1K) (Ll — G) + c(Cale — K)ei(@)() € Ao(V)).

Then, by Lemma 6.15,

hed(c1(Ko)t = ¢ (ale — K1)}
= (FUle — Ele) + Ul — Ele)erU) N (ex))
=0¢ AO(Vs)a

because e,(y) = 0 € A5(V). The proof of relation (40) is finished. This method cannot
apply to the cycle class 0, as it is not supported over V. But ¢ is already localized in
the closed fiber of W’. Then,

(c1(Ko)t — (Kale — K1)e")(0)
= (c1(K) (" = ") = (c1(K1) — e1(K2)")(S)
= (c1(K)b" — e (K1) (0) € Ao(W)).

By Fulton’s excess formula ([7] Theorem 6.3), we have:
(1 (Kt = e (Kale = Ki)e")(0) = —(b' = ¢)(0) € (W)
Taking the push-forward by A, we get
hal(e1 (Kt — e “(Kale = K)e)0)} = =(b' — ) (hsu(0)) € Ao(W).

Relation (41) follows because /., (0) = 0 € Ax(Wy). O
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LEMMA 6.18. We have the following relation between cycle classes over Wi:
hyle1(IC2)i (IT]) = ¢ (Kale = KDI(CD) = g fer(K) N ([P] = [QD)} € Ao(W).
Proof. The Lemma follows from the two equations:

hyle1 (2P ((T]) — ¢ (Kale — KD (CD} = —([B] - [C]) € Ao(W,), (42)

(8] = [C]) = —gsfer(Ki) N ([P] = [QD} € Ao(Wy). (43)

Equation (43) is a consequence of Fulton’s excess formula ([7] Theorem 6.3). The
first equation is harder. Let A’ and B’ be the projective completions of the normal
cones respectively to V' in €' and to W’ in B'. They have pure dimension 3. There
exists a canonical closed immersion 4" C B' which induces an isomorphism over
the generic fibers. Let p’: B — W’ be the canonical projection. Let & be the
invertible sheaf over B’ defined by the exact sequence

0— & — p*"(WE® Oy) — Op(l) = 0.
By [7] proposition 6.1,

'[T] = pifea(@) N ([B] - [4]D} € 41(W),

C = pldea @) N[AT € (V).

Let 4 and B be the projective completions of the normal cones respectively to V' in C
and to W in B. They have pure dimension 2. There exists a canonical closed immer-
sion 4 C B which induces an isomorphism over the generic fibers. Let
p . B— W be the canonical projection. Let & be the invertible sheaf over B defined
by the exact sequence

0—>¢— p"(E®Ow)— Op(l) - 0.

Again by [7] proposition 6.1,

(Bl = [C]) = poctea(&) N ([B] = [A]) € Ao(Wy).

There exists a canonical closed immersion B' C B x W’. Therefore, we get a map
n: B — B which extends the map h: W' — W. It is easily seen that n*¢é = ¢&.
Therefore, equation (42) is reduced to the following equation:

T {c1(02) N (B = [A]) = ¢ (Kale — K1) N[A']) = =((B] = [4]) € Ax(By).

The scheme B has pure dimension 2. Therefore, A>(B) = Z,(B) and A,(By) = Z»(B,).
As Z,(B,) injects in Z,(B), A>(B,) injects in A,(B). Hence, the equality of two cycles in
A>(By) is equivalent to their equality in A,(B). Therefore, it is enough to prove the
relation above in 4,(B). Hence, we are reduced to prove the following:

() 7m(c1(K) N[B]) = —[B] € A2(B),
(ii) 7 (c1(Kp) N[A]) = —[A4] € Ax(A).
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We will prove (i), (ii) is similar. Consider the Cartesian diagram:

Wl___)BIﬁZI

N

Wy — B, — 2

R

W—B—>2Z

63

where Z is the blow-up of Z along 5 and 5; and W are the inverse images of 5 and
W in Z;. Let B; be the projective completion of the normal cone to W) in B;. We can
factor 7 into B —> By = B. Let E be the excess bundle relative to the diagram

Bl —-——)Z]_

L

B——2Z2

Clearly K5 is the pull back of E. On the other hand, p,([B']) = [B;] because B and B

are birational. So, by the projection formula, (i) is reduced to the following:

m(c1(E) N [B1]) = —[B] € Ax(B).

The map B; — B is flat. Then the diagram

By = Proj(Sw, Bi[z]) — W

I

B = Proj(SwB|z]) —— W

(44)

is fiber square. But W; = Proj;(Sym(U)). Hence, B; = Projz(Sym(U)). With this
identification, the restriction to W) of the ideal sheaf of B; in Z; is the sheaf
O(1). Then, El|y, is isomorphic to the kernel of the canonical surjection

hi(U) — O(1). Relation (44) follows.

O

We give now the proof of Equation (35). As V" and W” are Cartier divisors over

I'”, we have

AT =W = [V € AV,
MY =1 € ().
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Therefore, Lemma 6.17 becomes

hsl(e1 ()t = ¢ (Kale = K)e)(@)
= hafer(Ko) N (W] =V = e (Kale = K) N[V} € Ao(W).

Observe that KC|;» = K; under the identification V" >~ Q, and 5|y is isomorphic
to the pull-back of the line bundle K, over W. Hence,

he{(c1 (Kot — (sl — K1) )(o)}
= c1(K) N (W] = s1:(V. D) — gl (" Kz > K1) N [Q]} € Ao(W).

Taking the push-forward of Equation (39) by /&, we get (35) as a consequence of
Lemma 6.18 and the above relation. O

7. The Weak Projection Formula for Birational Morphisms

In this Section we focus on the weak projection formula for birational morphisms.
The first part is devoted to the proof of a key formula giving the behavior of
the Lefschetz numbers under blowing-up. The second part deals with the vertical
contribution to the projection formula. In the last part, we prove the weak projection
formula for birational morphisms and for morphisms obtained from an arithmetic
surface by extending the base ring and resolving singularities, called simply base
changes. The latter are central in the proof of the Lefschetz fixed point formula,
precisely in reducing to semi-stable arithmetic surfaces. In this section, we make
heavy use of Theorem 6.3 and the following key formula.

7.1. THE KEY FORMULA

THEOREM 7.1. Let n: X' — X be a birational morphism between two arithmetic
surfaces and o be a non-trivial automorphism of X which can be lifted to an
automorphism of X' denoted ¢'. Let T’ C X xs X and I' C X' xg X’ be the graphs
of ¢ and o'. Then,

(AX“F/)I(JC = (AX'F)Z()(,’ + tr(o’)|H:[(XS’, Ql) - tI‘(O’)|H:I Xw Q/)

Proof. Any birational morphism between arithmetic surfaces is obtained by a
sequence of blow-ups at closed points [11]. Moreover, if ¢ can be lifted from X
to X’, then = is obtained by a sequence of birational maps of two types, namely
a blow-up at a fixed point and blow-ups along the (reduced) orbit of a non-fixed
point. It is enough to prove the above formula for each type.

The second type: Let x be a closed non-fixed point of X and O(x) be its orbit. Let
n: X’ — X be the blow-up of X along O(x). Put U = X — O(x), then = induces
an isomorphism between U and its inverse image U’ = n~'(U). The schemes of fixed
points fix(c¢) and fix(¢’) are, respectively, closed subschemes of U and U’. Using
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Proposition 5.8, we see that all the terms appearing there are the same for the
intersections (Ayx.I'),,, and (Ax..I"),,.. Therefore, (Ax.I);,, = (Ax.T"),,.-

LEMMA 7.2. Let t: X' — X be the blow-up of an arithmetic surface X along a finite
set F of closed reduced points. Then,

H! (X!, Q) ~ H!(X;, Q) fori#?2,
0 — H(X,, Q) — H(X/, Q) - PO — 0.

xeF
Proof. By the proper base change theorem, H},(X,, Q) = H} (X, Q;). Hence, we
are reduced to compare the étale cohnomology groups of X and X’. We use the Leray
spectral sequence for 7:

HP(X, Ri1,Q;) = HPM(X', Q)).

For any x € F, leti,: Spec(k) — X be the canonical closed immersion. As the excep-
tional fibers of 7 are isomorphic to P,L, one gets by the proper base change theorem
that Rim,Q; = Qy, 0, ®rerivQy, 0, respectively, for i=0,1,2, = 3. Hence, the
E, terms are

Hr(X, Q) for g=0,

B =1 @0 for (.9 =0.2),
0 otherwise.

The Lemma follows. O

If in the above Lemma we take F = O(x), we get tr(o")|H:(X], Q) =
tr(o)| H},(X;, Q;). The theorem is now proved for morphisms of the second type.

The first type: We consider a blow-up n: X’ — X of X at a closed fixed point x. As
in Section 5.3, let Y (resp. Y’) be the Cartier divisor of X (resp. X”) defined locally by
the greatest common divisor of all functions in the ideal sheaf of fix(¢) (resp. fix(d")),
and R (resp. R') be its residual scheme in fix(c) (resp. fix(¢’)). Denote E = (77 (x)),.g
the exceptional fiber of 7, which is isomorphic to P} with self-intersection —1.

LEMMA 7.3. Under the above conditions, we have Y' = n*Y + oE where o is an
integer such that

o+ 1) +degR —degR =1,
and deg R and deg R’ are the sums of the multiplicities of all closed points in R and R’

respectively.

Remark 7.4. The scheme of fixed points of an automorphism ¢ over a scheme X
was defined globally by the fiber square (17). We can also define it locally as follows.
Let 7 be its ideal sheaf in X. If X = Spec(A4) then 7 is generated by a(a) — a where a
runs over A. In general, let U = Spec(4) and V' = Spec(B) be two affine open
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subschemes of X such that U Cc V' N a(V). Denote ¢, : B— A the maps induced
respectively by the scheme morphisms U — V and U — a(V) = V. Then, T is gen-
erated over U by y(b) — ¢(b) where b runs over B.

Proofof Lemma1.3. Let A be the local ring of X at x, m be its maximal ideal, and ¢
and u be two local parameters of 4. The automorphism ¢ over 4 is given by

o(t) = at + bu, o(u) = ct + du,

wherea, b, c,d € A. Leth = o(t) — tand g = o(u) — u be the generators of the ideal of
fixed points at x. Let F be the greatest common divisor of / and g. It is a local
equation defining the Cartier divisor Y at x. The residual scheme R is defined at
x by the ideal (h/F,g/F). Its degree is the local intersection at x of the Cartier
divisors defined by i/F and g/F. Let n be the order of #/F and m be the order
of g/F at x. We assume that 0 < n < m.

All the computations we will do are local. So, we can replace X by Spec(A4). The
blow-up of X at xis X’ = Proj(A[T, U]/(tU — uT)), and the automorphism ¢’ lifting
o to X' is given by

¢(T)=aT +bU, d(U)=cT +dU.

The scheme of ¢'-fixed points over X’ is covered by the open affine subschemes
Q =D, (U)ND,(¢(U)) and Q, = D (T)N D, (¢'(T)). As we will remark in the
following, the computation depends on the order of (uh — tg)/F at x. This order
is always greater or equal than n + 1.

Assume first that ord,{(uh — tg)/F} = n+ 1. The scheme Q; is isomorphic to the
spectrum of the algebra:

A[T)/(t —uT .
(ALT)/(t = u )}[c”d]
The exceptional divisor E is defined there by the equation u=0. We have
o(u)/u = cT + d, and is therefore invertible over Q. Using remark 7.4, we get that
fix(¢’) is defined over Q; by the equations g = a(u) — u and

_al' +b _a(t) t _ uh—1g

T cT+d  ow u  uo(u)

We leave to the reader the exercise of writing ¢ and y in this case. The greatest
common divisor of g and H is Fu""'. Hence, « = n — 1 and the residual scheme
R’ is defined over Q, by the ideal (g/Fu"~", (uh — tg)/Fu' o(u)).

In the same way, Q, is isomorphic to the spectrum of the algebra:

{A[U]/(u - Ul)}[aerU}.

The exceptional divisor E is defined there by the equation r=0. We have
a(t)/t = a+ bU, and is therefore invertible over Q,. The scheme of fixed points

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

CYCLES ON ARITHMETIC SURFACES 67

is defined over Q, by & = a(f) — t and

_c+dU _M u_tg—uh

Ta+bU ety t to(t)

The greatest common divisor of # and G is F#"~' and %’ is defined over Q, by the ideal
(h/Ft"=', (tg — uh)/Ft"a(t)). 1 claim that:

degR = (n* (%) —nE.n* (%) — nE) + (n* <uh; tg) —(n+ l)E.E).

The first intersection number (n*(h/F) — nE.n*(g/F) — nE) is defined as the sum,
over all closed points of E, of the local intersection of the effective Cartier divisors
n*(h/F) — nE and n*(g/F) —nE. These meet properly. The second intersection
number can be defined in the same way. We can also use [6] exposé X to define
it because one of the factors is £. To prove the claim, choose a closed fixed point
y of E. Assume that y € Q;. Then, using Lemma B.1,

, g uh—1tg ug uh—tg
deg R =|——. = —_—
egy <Fun—l Ful1+1 )y <Fun Fu)1+1 >y
g uh—tg uh —tg g h uh —tg
= —2) Hu—2) = . Hu—2) .
Fu"” Fut! ) Furt! , \Fu'Fu) Furt! )

This proves the claim. By the classical projection formula, the claim implies

deg W = (ﬁﬁ) (1) =degR—n(n—1)+1,
F'F).

which is the needed relation.

Assume now that ord,(uh — tg)/F > n+ 1. In this case, n = m > 1 and there exists
o € m"~! such that h/F — to € m"*! and g/F — uox € m"*!. First, over Q; the greatest
common divisor of g and H is Fu". Hence, o = n and R’ is defined there by the ideal
(g/Fu", (uh — tg)/Fu"'6(u)). Second, over Q, the greatest common divisor of A
and G is Fr". So, the residual scheme R 1is defined there by the ideal
(h/Ft", (tg — uh)/Ft"*'6(1)). 1 claim that:

deg®R = (n* (%) —nE.n* <%) - nE> —(E.n*o — (n — 1)E).

Choose a closed fixed point y of E. Assume that y € Q;. Then, using Lemma B.1,
, g uh—1tg g uh—1tg g
dogy 0 = (£ M) (8 whote) (g
egy (Fu FM’H_IO'(Z/I))}, (Fun Funtl )y u Fu y

= (f 1), (v 70) = (- 72m) ()
R R, Ry \Fut Fur) Nty

S
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Indeed,

g o 1

Fu" u— 1 u"

n+1

and is therefore a multiple of u over Q;. This proves the claim. The lemma follows
from the claim using the projection formula. O

LEMMA 7.5. With the same notation as above, we have
(AX/'F,)/()C - (Ax'r)loc = O((O( + 1) + deg m/ - deg R.

Proof. Let w and ' be the dualizing sheaves of X and X’. These sheaves are related
by o =n*0w ® Ox/(E). The Cartier divisors Y over X and Y’ over X' are
decomposed into vertical and horizontal parts Y = H 4+ Vand Y' = H' + V’. Then,
neH = Handn,V’' = V,and by Lemma 7.3, Y’ = n*Y + «E. Using Proposition 5.8,
we see that (Ay..I"),. — (Ax.I),,, is a sum of three differences:

(i) The horizontal term:

A (@' === O(=Y)p) N[H'] = ey (0l g ——— O(=Y)|y) N [H]
= —(u+ 1)(E.H).

(i) The vertical term:

—(@+ Y. V)+(w+ Y.V
= —(+ 1)EV)=—(a+ D)P*Y +uE — H .E)
=o(a+ 1)+ (x+ 1)(E.H).

(iii) The 0-dimensional term: deg R’ — deg R.
Lemma 7.5 is now proved. O

Finally by Lemma 7.2, tr(¢")|H(X], Q)) — tr(o)|H},(X;, Q;) = 1. Then, Theorem
7.1 is a consequence of Lemmas 7.3 et 7.5. O

Remark 7.6 (Lefschetz numbers over normal surfaces). Let X be a normal surface
over S (i.e. a normal integral scheme of dimension 2 proper and flat over S) and let ¢
be a non-trivial S-automorphism of X. Fix a resolution X” of X to which o lifts. The
existence of such an X’ is a consequence of the theory of minimal resolutions in
dimension 2 [11]. The lifting of ¢, when it exists, is unique (denoted ¢’). Define
the Lefschetz number of ¢ over X by the formula:

L(X, 0) = (Ax Lo — tr(0) Hy(X(, Q) + tr(o) | H (X5, Q).

By Theorem 7.1, this definition does not depend on the desingularisation we choose.
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7.2. SOME COMBINATORICS ON GRAPHS

We consider a birational S-morphism f: X — Y from a normal surface X to a reg-
ular surface Y. Let V be the cycle of X xy X given by its irreducible components
different from the diagonal. The latter are isomorphic to products of two irreducible
components of X; which collapse to the same point in Y. We write
[X xy X]=[Ax]+ V and decompose

V=Y"eilE xi Ej,
()

where the E; are the irreducible components of X which collapse to a pointin Y, and
the sum above is taken over all couples (i, j) such that E; and E; collapse to the same
point of Y. Assume, moreover, that we are given an S-automorphism ¢ of Y which
can be lifted to an automorphism of X (also denoted by o).

THEOREM 7.7. Let f: X — Y be as above, then

> eij(o(E).E) = tr(0)| H;(Yy, Q) — tr(o)| H} (X, Q). (45)
(i)

The numbers on the left-hand side are the intersection numbers over the normal sur-

face X defined by Mumford [14] and summarized in Appendix A.

This theorem was proved by Bloch [3] for ¢ = id. We begin by giving his proof in
more details. Then, we deduce the result for any automorphism.

Reduction step: Let f: X — Y be a dominant map between arithmetic surfaces
over S (i.e. X and Y are assumed to be regular!). Then, f is local complete
intersection. This means that f* factors into

X—>p

DN

Y

where g is smooth and i is a regular closed immersion. Put f* = i'g* € A%(X — Y).
Fulton proved that f* does not depend on the factorization of f ([7] proposition
6.6). Consider the following diagram

Xxs X 2> PxgP

FxF lgxg
Y Xs Y

As g x g is smooth and i x i is a regular closed immersion (it is the composition of
X xsX —> XxgP and X xgP —> PxgP which are both regular closed
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immersions), then fxf is lci. and defines a bivariant class
(f xf) e A%X xs X — Y xg Y). Consider the following Cartesian diagram

XXyX—>X><5X

T

Ay—>Y><sY

I claim that

(f <) TAY] =[X xy X] € A2(X xy X). (46)

Proof of the Claim. We consider the previous factorization of f x f. Then,

(f x ) [Ay] = (i x i)(g x &) ([Ay])
= (i x i)'([P xy P]) (because g x g is flat).

Consider the fiber square

XXyX—>PXyP

L

XXSXWPXSP

Let d be the dimension of P. As P xy P is regular and X xy X is an l.c.i. scheme,
then the closed immersion X xy X — P xy P is regular (EGA 1V 19.3.2) of
codimension 2d — 4, which is the same codimension as i x i. Therefore,

(i x i)([Pxy P]) =[X xy X] € A>(X xy X).
The claim is proved. O

Consider now two effective vertical divisors E and F over Y. I claim that

(i) f~'E is a Cartier divisor over X of associated sheaf f*Oy(E), and
S(E) =[f"E] € Ai(f'E).
(ll) (f Xf)*[E Xs F] = [f_lE XSf_lF] e Az(f—lE XSf'—lF)‘

Proof. (i) The closed subscheme f~'E is locally defined by one equation in X (the
pull-back of a local equation defining £ in Y ). It is not a zero divisor because
the map is dominant. We have, f*([E]) = i'([g"'E]) because g is flat. Consider

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

CYCLES ON ARITHMETIC SURFACES 71

the diagram

flE g 'E E
R
X———>P——>Y

As g is flat, j is a regular closed immersion of codimension 1. The commutativity of
intersection products ([7] theorem 6.4) implies that i([g"'E]) =/[X]. But
J'[X]=[f""E] because f~'E is a Cartier divisor over X.

(ii) The bivariant class /* maps 4;(Y;) to A1(X;), and (f x /)" maps 4»(Y; xx Y)
to A,(X; x; X). Moreover, the following diagram commutes:

A(Ys) @ A1 (Ys) — A(Ys Xk Ys)
f'®f‘l l(fxf)'
Al(Xs) ® AI(XS) —— A2(Xs Xk Xs)

Notice that [E] and [F] are in the image of 4,(Y;) —> A4;(Y), and [E x F] is in the
image of Ay(Yy xx Yy) > Ax(Y xg Y). It is enough to prove relation (i)
in  A>(X; x; X;). Indeed, by dimension argument, A(f"'E xgsf 'F)=
Ax((f7VE) eq ¥k (f 71F),oq) injects in A(X; xx X;). In A>(X; x4 X;), the relation is
a consequence of (i) and the commutativity of the previous diagram. O

Assume that we are given two birational maps f : X, — X; and g: X — Xo
between arithmetic surfaces over S. Define the cycles V(X>/X)) over X, xy, Xa,
V(X2/Xo) over X xx, X> and V(X;/X)) over X7 xx, X; as before : they are made
of the irreducible components of these schemes different from the diagonals.
Write

V(X1/X0) =) ei[Ei x Ej],
(.))

where the E; are the irreducible components of X; which collapse to a point in Xj,
and the sum is taken over all couples (i, j) such that E; and E; collapse to the same
point in Xj. I claim that

V(X2/Xo) = V(X2/X1) + Zei,j[f_lEi x fE] € A:(Xa xx, Xa). (47)
(i.))

Moreover, this relation holds between cycles because X> x x, X> has dimension 2.
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Proof of the claim. Put h = g o f and consider the Cartesian diagram

X2 XX, X2—>X2 XX0X2———>X2 Xst

l l |-

Ax, — X1 Xx, X1 —> X1 x5 X3

By Equation (46),

[X2 xx, Xo] = (h x h)*[Ax,] = (f x/)*(g x &)*[Ax,] ([7] theorem 6.5)
= (f x N)*[X1 xx, X1]
=(/ x /) (Ax]+ Y eilE x E))
(W)
=[X2 xx, X2]+ Zei.j[filEi x [T1E] € A2(Xz xx, Xa).
(i)

The claim follows by subtracting [Ay,] from this relation. O

Remark 7.8. Equation (47) implies very easily Theorem 7.7 for a regular X.
Indeed, it implies that, like the right-hand side, the left-hand side of Equation (45)
is additive for the composition of birational maps between arithmetic surfaces.
So, it is enough to prove (45) for the two types of birational maps introduced in
the proof of Theorem 7.1. For these maps, (45) is obvious.

We come to the general situation of Theorem 7.7 where X is just a normal surface.
Fix a resolution Z of X to which ¢ extends. The composed map g: Z — Y is
birational and therefore is obtained by a sequence of blow-ups at closed points [11].
The map Z — X is obtained by contracting some of the exceptional curves in
Z. Denote @ the dual graph of the exceptional fibers of g. It is the graph labeled
by one vertex for each irreducible component in an exceptional fiber of Z/Y
and one edge between intersecting curves. Each vertex is labeled with the
self-intersection number of the corresponding curve and each edge with the
intersection number of its vertices. We denote 7 the set of vertices which are con-
tracted in Z — X and ¢ the automorphism induced by ¢ on this graph. Notice that
ol)=1.

LEMMA 7.9. The only datum which determines the left and right-hand sides of
equation (45) is (®,1,0). The way that they depend on (®,1,0) is the same in
the pure and in the mixed characteristic situation.

Proof. The right-hand side of (45) is minus the number of ¢ -fixed vertices in ® — 1.
To prove this statement, write

tr(o)| H;, (Y5, Qp) — tr(o) | Hy (Xs, Q)
= tr(a)lH:[( Yx’ Ql) - tr(6)|H:1(ZVa Ql) + tr(0)|H:;(Zm Ql) - '[I‘(O')|H:Z(XY, Ql)
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As Z — Y is a sequence of blow-ups, Lemma 7.2 implies that the first difference is
minus the number of g-fixed vertices in ®. The second difference is the number
of o-fixed vertices in /. Indeed, one can factor Z — X into a sequence of birational
maps each of them is a contraction of a disjoint union of curves isomorphic to
P! and making an orbit under ¢ of one of them. Then, the proof of Lemma 7.2
applies in this case. The details are given in Lemma 7.11.

We prove now the lemma for the left hand side of (45). Denote E the strict trans-
form in Z of the irreducible component E;. First, the E] are exactly the vertices
of ® which are not in /. Second, the intersection number (¢(E;).E;) over X is com-
pletely determined by (®,7,0) as explained in Appendix A. Finally, consider
two such components E; and E; over X and E and E] their strict transform in
Z. We will prove that the ¢;; depends only on ®. Let ¢;; be the multiplicity of
E{x E; in ZxyZ. The map Z — X is an isomorphism in a neighborhood of
the generic points of E; and E;, then ¢;; = e;j. Therefore, it is enough to consider
the case of I = @. In this case, the proof is by induction on the number # of blow-ups
giving the map Z — Y.

If n = 1, then there is only one exceptional fiber E of self-intersection —1 and the
multiplicity of £ X E in Z xy Z is 1. Assume the result for any sequence of
(n — 1) blow-ups and factor themap Z — Yintop: Z — Z' and n: Z' — Y, where
the number of blow-ups in p is (n — 1), and = is a blow-up at a closed point with
exceptional fiber E. Let @ be the graph associated with Z — Z'. It is the subgraph
of @ obtained by removing the vertex corresponding to the strict transform of E
in Z. By the reduction step (equation (47)), the following relation holds between
cycles over Z xy Z:

V(Z)Y) = V(Z/Z) + [p*E x p*E].

By the induction hypothesis, the cycle V(Z/Z') is completely determined by @' C ®.
The pull-back p*FE is also the pull-back as a Cartier divisor of E and therefore,
is determined by the graph ©. O

DEFINITION 7.10. An admissible triple is a triple (®, /, 0) made of

e an admissible graph ®: the dual graph of a birational map between regular
surfaces labeled as explained before (where a regular surface means an
irreducible regular scheme of dimension 2 proper and flat over a base which
can be either a field or the spectrum of a discrete valuation ring),

e a set of vertices I on D,

e an automorphism ¢ of the labeled graph @ (i.e. an automorphism which
preserves the intersection numbers), such that o(/) = 1.

The arithmetic situation we begin with provides us with an admissible triple.
Moreover, any admissible triple of the form (®, 7, id) can be realized in this way.
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LEMMA 7.11. (i) Let @ be an admissible graph and Y be a regular surface (in the
sense of the previous definition). Then, there exist a regular surface Z and a birational
map Z — Y with dual graph ®.

(i1) Assume that Y is either defined over an algebraic closure of a finite field, or over
a complete discrete valuation ring. Let I be a set of vertices of ®. Then, one can con-
tract in Z the curves corresponding to I, to get a normal surface X and a birational
morphism X — Y. Moreover, y(X) — y(Y) = #{® — I].

Proof. (i) Obvious.

(i1) For each i eI, let F; be the associated exceptional curve of Z/Y. The
intersection form over the divisors supported over the exceptional curves of
Z/Y is definite negative. Therefore, its restriction to the divisors supported over
the F; is also definite negative. This is a necessary and sufficient condition for
contractability under the hypothesis of the Lemma ([1] theorem 2.9 for the geo-
metric case, and [13] corollary 4.4 for the arithmetic case). This means that there
exists a normal surface X and a birational projective morphism ¢ : Z — X such
that

(1) @(UjerFy) 1s a finite set of points, and
2) ¢ : Z — (UierF))— X — o(Uier Fy) is an isomorphism.

A contraction when it exists is unique up to isomorphism ([11] section 27). It is
universal in the following sense: Let A be a normal surface with a birational projective
morphism \y : Z — A such that (Ui F;) is a finite set of points. Then, there exists a
map ¢ : X — A such that y = ¢ o ¢. For this, consider the following diagram

z—X'

<&l

Ax X

where X is the normalization of the image of Z (we use here that Z is regular in order
the get the factorization of (, ¢) ). Obviously, X’ satisfies properties (1) and (2).
Then, X’ is isomorphic to X. The map ¢ : X — A is obtained by composing with
the first projection.

Choose a bijection I ~~ {1, ...n}. For each 0 < j < n, let X; be the normal surface
obtained by contracting in Z the curves (F; | 1 <i <)), and ¢; : Z — X; be the con-
traction (hence, X, = X ). By the universal property of X;, there exists a proper
morphism ¢; : X; — Xji; such that ¢;,; = ¢; o ¢;. The map ¢; is an isomorphism
outside a single point of Xj;. Its fiber over this point is C; = ¢;(Fj41). I claim that
¢; induces an isomorphism Fj; =~ P! — C;. Let x be a point of C;. Its inverse image
(pj_l(x) C Z 1is either a point or a connected curve C, supported over the
(F; | 1 <i<j). Assume that it is a connected curve. It is enough to see that
Fiy1 N Cy is a unique point. If it is more than one point, one can construct a
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non-trivial loop with curves among the (F; | 1 <i<j+1). This is not possible
because ® is an admissible graph.
It follows from the Leray spectral sequence of ¢, that (see Lemma 7.2),

H!(X;, Q) ~ H! (Xj11, Qp) for i #2,
0 — H2(Xj11, Q) — HZ(X;, Q) — Q; — 0,

for a prime number / # p. The last statement in the Lemma is proved. O

Fix an admissible triple (®, 7, ¢), and let E and F be two vertices of ® — I. Define
the rational numbers (o;),c; and (f,);c; by the equations

<E+ Za,-E,-.Ej> =0 Vjel; (F + Zﬁ@-.b}) =0 Vjel.

iel iel

These numbers are well defined because det(E;.E)); ez # 0. Put

(E.F); = (E +> wmEF+) ﬁ,-Ei).

iel iel

Let Z — Y be a realization of @, and X be the surface obtained by contracting the
curves in / as in Lemma 7.11. Let E” and F’ be the images of E and F in X. Then,
(E.F); is the intersection number of ' and F’ over X defined by Mumford.

We associate to @, as in the proof of Lemma 7.9, non-negative integers (e;),; cq?
such that ¢;; = 0 if and only if i and j are not in the same connected component of ®.
Namely, we define them by induction on the number of vertices of @, using equation
(47). Finally, we put

(O, 1.0)= Y ej0(E)E), (48)
(i)elo-1T
r®,1,0) = —#{xe®—-1; o(x)=x}. (49)

By Lemma 7.9, Theorem 7.7 is reduced to the combinatorial equation:
(D, 1,0)=r®,1,0), (50)

for any admissible triple. The latter will be proved in two steps. Following Bloch [3],
the case ¢ = id is proved by taking a geometric realization of the triple (®, 7, id) as in
Lemma 7.11, and applying the Poincaré duality (Lemma 7.13). For a non-trivial
automorphism, it is not clear if one can realize gecometrically any admissible triple
(@, 1, 0). Lacking such an elegant proof, we will give a combinatorial one : thanks
to some elementary operations on admissible graphs, equation (50) for any o is
reduced to the same equation for ¢ = id.
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EXAMPLE 7.12. Consider the graph

and take I ={—2} and ¢ =id. The geometric (or if you want the arithmetic)
realization of this graph is

X
Xi Y’
Y
where Y is a regular surface, X is the blow-up of Y at a closed point with exceptional
fiber E1, and X; is the blow-up of X; at a closed point of E|. Denote E, the excep-
tional fiber of X,/X; and E| the strict transform of E; in X,. Then,
(Er.Er) = -1, (E|.E]) = =2 and (E».E}) = 1. Finally, Y’ is obtained by contracting

E} in X>. Therefore, it is not regular. Let E} be the image of E, in Y’. Then,
(E.E}) = —1/2. By Equation (47), we have:

! "/ ! /A
X X>] = [Ay, E x E'T+[E E,] +[E E]+2[E F>].
[X2 xy Xo] = [Ax,] + [E] x E|] +[E] x Eb] +[E x EY] [E> x E5]

So, [Y' xyY]=[Ay]+2[E, x E}]. Thus, [(®,1,id)=—-1=r(®,1,id). This
example shows also that Equation (45) does not hold if the target surface is not
regular!

LEMMA 7.13. Let ® be an admissible graph and I be a set of vertices of ®. Then,
(D, 1,id) = r(®, I, 1d).

Proof. Let k be an algebraic closure of the finite field IF,. Take ¥ = I’} and con-
struct a regular surface Z and a birational map Z — Y with dual graph ®. By
Lemma 7.11, one can contract the curves in Z corresponding the vertices of I to
get a normal surface X. Put g: Z — X and f : X — Y. The idea now is to invert
the previous computation over X x; X. Namely, we first prove the projection for-
mula and then deduce the above equation. The computation cannot be done in
the Chow group A4.(X x; X) because we lack an intersection product. Instead,
we work with the ring of étale cohomology H*(X x; X, Q,) for a prime / # p.
For any proper variety V' over k of dimension d, we have a canonical isomorphism
H*(V, Q) ~ Q; given by the trace isomorphism H*(V,, Q) ~ Q,;, where V is
the smooth locus in V. It induces a cup product which will be denoted U.
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Claim: X satisfies Poincaré duality, i.e.,

H'(X, Q) x HY(X, Q) = Q

is a perfect pairing.

Proof. We factor g:Z — X as in the proof of Lemma 7.11-(ii) into
Z=Xo—> X1 —...— X, =X. Eachmapqu : X; = Xjy1is acontraction of a curve
C; ~ P,. We have seen that

H'(X;, Q) ~ H'(Xj31, Q) fori#2,
0 — H*(Xj11, Q) — H*(X;, Q) — Q; — 0.

We will prove that if Poincaré duality holds for Xj, then it holds for Xj;;. As ¢]’-k
preserves cup products, the statement is clear for i # 2.
The closed immersion C; — X; induces the morphism

H*(X;, Q) - HX(C;, Q) ~ Q.

By Poincaré duality over X;, this map defines a class denoted [C;] € H(X;, Q)).
Obviously, for any o € HZ(XjH, Qp, (;5]’-‘0( U[Cj] = 0. Therefore, the map

H*(X;11, Q) @ Q, — H*(X;, Q)
(2, X)>¢pfo + x[C}]

is an isomorphism and gives an orthogonal decomposition of H*(X;, );). Then, we
get the Poincaré duality for Xj,. By induction, Poincaré duality holds for X because
it holds for the regular surface Z. O

Let (E,), be the irreducible curves of X collapsing to a pointin Y. For any /2, define
the class [E;] € H*(X, Q) by the map

H*(X, Q) - H*(E;, Q) ~ Q,

under Poincaré duality. By the Kiinneth formula, we have:

H'X x X, Q)= @ H'((X,Q)eH"(X,0).

0<i<4
Now, we define the needed classes. First, for any (4,/), put [E, x Ej] =
[E/] ® [E] € HY(X x X, Q). Second, for any 0<i<4, fix a basis (a;); of
H(X, Q). Let a;; be the dual basis of H*~/(X, Q)), and put

[Ax]=) a;®a;; € H(X x X, Q).
i.j

Third, define [X x y X] to be the inverse image of [Ay] € H*(Y x Y, Q). Let ¢, be
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the integers associated to @ as before. Then

[X xy X]=[Ax]+ ) _enilEr x E] € HY(X x X, Q). (1)
(h.1)

Proof. Let h=f og:Z — Y and denote F; the exceptional curves in Z. Define in
the same way the classes [Az],[Z xy Z] and [F; x Fj] € HYZ x Z,Q)). As Z is
regular, we have a class map 4,(Z x Z) — H*(Z x Z, Q). Notice that the classes
previously defined are the images by the cycle map of the usual cycles over
Z x Z. Therefore, the following relation

[Z xy Z)=[Az]+ ) _eilFi x F] € HY(Z x Z, Q) (52)
(i)
holds (as the image of the same relation in 4,(Z x Z) by the cycle map).
Define

€exg.= P &g H(ZxZ 0)—> H(X xX,0Q),

0<i<4

where g, : H(Z, Q;) — H'(X, QQ))is the adjoint of g* under Poincaré duality. I claim
that:

() (gx8LlZ xy Z] =[X xy X],

(i) (g x &),[Az] = [Ax],
(i) (g x 8).[Fi x Fj] = [g(F}) x g(F})] if g(F;) and g(F;) are curves, and 0 otherwise.

The equalities (i) and (ii)) are purely formal. We have injections
H*(Y,Q) — H*(X,Q,) - H*(Z,Q)). One takes bases of these spaces by taking
a basis of the subspace and a basis of its orthogonal relatively to Poincaré duality,
and notices that the push-forward maps the orthogonal part to zero. Equality (iii)
is a consequence of the functoriality of pull-back and Poincaré duality. Finally,
relation (51) is the image by (g x g), of Equation (52). OJ

The following cup products are computed over X x X:

(1) [Ax]U[Ax] = (X),

(2) [Ax]JULX xy X] = x(Y),

(3) [Ax]UI[E, x E;] is Mumford’s intersection number (E}j.E;) over the normal sur-
face X.

As before, (1) and (2) are purely formal. But (3) needs some details : from the defi-
nition of the diagonal, [Ax]U[E; x Ej] = [E;]U[E;] where the cup product is
now over X. We have [E,] U [E]] = g*[E,] U g*[Ej]. Let E), be the strict transform
of E, in Z. We have seen that for any exceptional curve F of Z/X,
g [Es]U [F] = 0. Moreover, g*[E;] — [E}] is the image by the class map of an excep-
tional divisor. Then, the pull-back g*[E;] is the class of the divisor g*E; defined
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in Appendix A. As Z is regular, [E;] U[E;] is the intersection number (g*E).g*E))
which is the claim.

Now, we deduce the lemma: take the cup product of Equation (51) with [Ax]. By
Lemma 7.11, y(Y) — y(X) = r(®, 1, 1d), and by (3),

[Ax1U ) enilEn x E) = (@, 1,id). O
(h.1)

We introduce some basic operations on admissible graphs:

(i) If @ is the admissible graph associated to a birational map Z — Y, then the
connected components of ® correspond to the exceptional fibers of Z/Y.

(i) The subgraph made of some connected components of an admissible graph is an
admissible graph. Indeed, by (i) one can contract the exceptional curves in the
other connected components to get a regular surface which realizes the new graph
over the base surface.

(iii) Let @ be an admissible graph. Take any realization Z — Y of ®, and let Z’ be the
regular surface obtained from Z by contracting all the special curves of
self-intersection —1. Denote ®[1] the dual graph of Z’/Y. The graph ®[1] can
be directly computed from ® without any geometric realization. Indeed, as a
set @[1] is obtained by removing the vertices of self-intersection —1. The
intersection numbers are computed by the rules introduced in appendix A.
Finally, we put an edge between two different vertices if their intersection number
is non—zero. Moreover, an automorphism of ® induces an automorphism of

@[1].

(iv) The number of connected components of ®[1] is less or equal than the number of
connected components of @ (this is a consequence of (i)).

(v) Let ® be an admissible connected graph. By (iv), ®[1] is either connected or
empty. Define the admissible connected graphs ®[1], ®[2], ®[3], .. . by induction
as in (iii). There exists an integer #n such that ®[n] = @ and ®[n — 1] # @. Then,
®[n — 1] contains only vertices of self-intersection —1. But over an admissible
graph, two vertices of self-intersection —1 cannot be connected. Therefore
®[n — 1] is a single vertex. Define the base vertex E; of ® to be the strict trans-
form of ®[n — 1] in ®. A base vertex of a connected graph is fixed by any
automorphism. To give a geometric picture, fix any realization Z — Y of ®
and let y be the unique point of Y with an exceptional fiber. Then, we can
factor the map Z/Y into Z — Y’ — Y, where Y’ is a blow-up of Y at y.
Let E be the exceptional fiber in Y’. The strict transform of £ in Z is the base
vertex Ej.

We come to the proof of Equation (50) for an admissible triple (®, I, o). The action of
o on the connected components of @ induces the decomposition ® = | |, ®;, where
the @; are the orbits of the connected components of ®. Denote I; = ®; N 1. By (ii),
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the triples (®;, I;, o) are admissible. Moreover,

[(D,1,0) = Xn: [(®;, I;, 0), (53)
i=1
r®,1,0) = Zn:r((l)[, I;, 0). (54)

i=1

Indeed, (54) follows directly from Definition (49). Equation (53) follows from Defi-
nition (48) if we notice that for any (i,j) in the same connected component of
®, ¢;; depends only on the connected component of ® which contains them.

By (53) and (54), we are reduced to consider two cases:

(I) The graph ® has no fixed connected component by o. First, r(®, I, o) = 0 because
there are no fixed vertices. Second, /(®, I, o) is defined as the sum over couples
(Ei, E;) in the same connected component of @ of e; j(6(E;).E;). By hypotheses
on O, if E; and E; are in the same connected component, then ¢(E;) and E;
are not in the same one. Hence, their intersection number is 0. The equality
[(®,1,6) =0=r(D,1,0) follows.

(2) The graph @ is connected. Let E| be its base vertex and ® = ® — {E}. The graph
@’ is admissible. Indeed, if Z — Y is a realization of ® and Z — Y| — Y isits
factorization as in (iv), then Z — Y realizes the graph @'. Finally, ¢ fixes E|
and therefore induces an automorphism of @'. There are two cases, either
Eielor E\ &1

2-() If Ey €I, put I' =1 — {E;}. Remark that #(®, I, o) = r(®', I’, ¢). By formula

(43),
(0, 1,o)= Y eo(E)E),
(i.j)elo—I7
(V.1 0)= Y &o(E).E).
(i.j)el@ -7

We consider @' as a subgraph of ®@, then [® — I] = [® — I']. First, we compare the
integers ¢;; and ¢;;. Let E be the exceptional fiber of Y;/Y (its strict transform

in Z is E}). Define the integers (%);cq_(1) by the relations
<E1 + ociE,-.Ej> =0 Vj#1.
ied—{1)
Then, by Equation (47),

V(Z/Y) =V(Z/ Y1) +[(Er + Y oE) x (Er + Y Ey)).
i#1 i#1

It follows that for i,j#1, e,-,j:e;,j—i—ociocj. Second, I claim that for any
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(i.j) € [@—1IT,

(o(Ey).EV)p(E;.Er)p
(E1.ED)p

(o(E)-E); = (a(ED)-E))p —

This is an easy computation if we remark that ¢(E;) = E|. Therefore,

l((D, I, U) _ [(q)/’ I/, G) — _ Z ei,j (O-(El)(EE‘ll)gl()EI‘fE] )1’

(i-))e[®—1T
=+ Z d[di(O'(E,‘).E]')I/
(i j)elo—1T1
_ Z e”(O'(Ez‘)-El)I'(Ej-El)p_i_
Y (E1.E)p

(i.j)el@—17

+(O’( Z O(jEl'). Z OCjE}') .
I

ie[®—1] jelo—n
Using again o(E|) = E;, we get that o, = o; and (o(E;).E\), = (E;.E1);. Hence,

(D, 1,0) — (@, I', o) = (@, 1,id) — (@, I, id)

H®, I,id) — (@, I',id) (by Lemma 7.13)
=0

=r(D,1,0)—rd, TI,o0).

2-(i)IfE, & I,putl =1TI.First, (®,1I,0)=rd, I, 0)— 1 because E is fixed by a.
Second, [® —[]=[®" — I'|u{E\}, and for any i,j & I U{E\}, (E.E); = (E.E));.
Therefore,

(D, 1,0)— (D, T, 0)
= Z eri(0(E1).E); + ei(a(Ey).E1); + e 1(a(E).Er)+
i@ 1]
+ > aun(o(E).E),
(i j)ele’—1'7

= Y e io(E).E); + e (0(E).E); + e (o(E).Ey)+
ie[® -1

+ 0( Z oc,»E,»). Z OCjE}'
] ]

ie[® -1 jelo'—r ,
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Again because o(E}) = Ej, we get

(D, 1,0) =D, 06)=I1D,I1,id) — (@, I, id)
=pr®,1,id) — (@', I',id) (by Lemma 7.13)
=1
=r®,1,0)—rd,1I,o0).

In both cases, we conclude that equation (50) holds for (®, I, ¢) if and only if it holds
for (@®,1’,5). But @ has less vertices than ®. Then, by induction /(®, 1, c) =
r®,1,0). O

7.3. THE WEAK PROJECTION FORMULAS

We prove the weak projection formulas announced in the introduction of this
section.

LEMMA 7.14. Let X be an arithmetic surface over S and o be an S -automorphism of
X. Denote I C X x5 X its graph and fix E and F two irreducible components of Xi.
Then (I'.[E x F]);,, = (6(E).F).

Proof. Consider the automorphism 6 :=(id xs0): X xs X — X xg X. Then,
O(Ax) =T and O(E x 6~ '(F)) = E x F. We deduce that

(T.[E x F1)jpe = (Ax.[E X 67 (F)])jpe-

Therefore, the lemma is equivalent to the relation (Ay.[E x F]),,. = (E.F). AsE x F
is vertical, this relation is a consequence of remark 4.5. O

PROPOSITION 7.15. The weak projection formula holds for any birational
morphism of arithmetic surfaces.

Proof. Letf : X — Y be a birational morphism between arithmetic surfaces over
S, and let ¢ be a non-trivial S-automorphism of Y which can be lifted to an
automorphism of X. Put ' =Y ¢ X xg XandT'Y C Y x; Y the graphs of ¢ acting
respectively, on X and Y. Define, as in the Ilast section, the cycle
V= Z(i,j) eij[Ei x Ej]. The weak projection formula to be shown is
(T.[X xy X])jpe = (Ay.T)),,.. By Theorem 7.7 and Lemma 7.14, it is equivalent to:

(AY'F;l)loc = (F-AX)loc + (F-V)loc

= (AxD)ye + Y eij(T[E; x E})y,
(M)

= (Ax- Dy + Y €ij(0(E).E)
(i)
= (Ax D)y + tr(@)[ H (Y, Q) — tr(o) Hi( Xy, Q).

This is the key formula of Theorem 7.1. O
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We need to extend this result to the following situation. Let L be a finite Galois
extension of K of degree n and Galois group G, B be the integral closure of R
in L, and T = Spec(B). Let Y be an arithmetic surface over S and ¢ be a non-trivial
S-automorphism of Y.

DEFINITION 7.16. A T-base change of (Y, ¢)isan S -morphism f : X — Y, where
X is an arithmetic surface over T, such that:

(1) its generic fiber over T is isomorphic to Yg xg L,

(i1) the canonical action of G over Yx Xx L extends to an action on X (if such an
action exists then it is unique),

(iii) there exists a T-automorphism of X lifting ¢ over Y.

Remark 7.17. By (i), there exists only one possibility to lift ¢ over the generic fibers
to an L-automorphism. It is the L-automorphism (¢ x id) of Yx xx L. Therefore, the
lifting of ¢ to a T-automorphism of X, if it exists, is unique (denoted by o). It is
clearly a good lifting of ¢ over Y (Definition 6.1).

Fix a T-base change f : X — Y and let V be the cycle of X xy X given by its
irreducible components which are not of finite degree over Y. Write

V= Zei,j[Ei x Ej],
()

where the E; are the irreducible components of X which collapse to a point in Y, and
the sum is taken over all pairs of such components which collapse to the same point.

LEMMA 7.18. With the above notation, we have

> eij(o(E).Ey) = ntr(e)| H(Ys, Q) = Y tr(on)| Hj(Xy, Q).

(%) 1eG

Proof. Let Y’ be the quotient of X by G. It is a normal surface over S, birational to
Y. Moreover, o descends to Y’. Indeed, for any t € G, 6t = 10 over X. The reason is
that 1 !ot is a T-automorphism of X which lifts ¢ over Y , by Remark 7.17, it is
equal to 0. We factor f: X — Y into the quotient map = : X — Y’ followed by
Y - Y.

Let V' be the cycle of Y’ xy Y’ given by all its irreducible components except the
diagonal. Write

V' =" aplFy x F,
(h,0)

where the F, are the irreducible components of Y which collapse to a pointin Y, and
the sum is taken over such components which collapse to the same pointin Y. I claim
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that

V=Y e,lE x E]=)_ apn*F, x n"F] € Ay(X xy X), (55)
() (h.))

where 7*Fj, is the cycle of X defined in Appendix A. Notice that the above relation
holds on the cycle level because X x y X has dimension 2.
Proof. Choose V and W two arithmetic surfaces which fit in the following diagram

W—X

| N

V—>Y —>Y

such that p and k are birational, the action of G over X extends to an action over W,
and this action satisfies gt = g for any v € G. Let F} be the strict transform of F, in V.
In the proof of Lemma 7.9, we have seen that

V(V/Y) =" ap[F x Fl+ Dy € Zy(V xy V).
(h,0)

The cycle Dy is a sum of cycles [G] x G;] where G| and G, are irreducible curves over
V such that at least one of them collapse to a point in Y’. Using the definition of
Appendix A, the above relation implies:

V(V/Y) =Y anlp*Fy x p*Fl + D2 € Zo(V xy V), (56)
(h,D)

where the cycle D; has the same property as Dy. The morphisms g and g x garel.c.i..
They induce refined Gysin maps g* and (g x g)*, and we have:

[W xy WI=[W xy W+ (g xg)"V(V/Y)

=[W xy W1+ anlg*p*Fy x g"p*F)]
7

+(g x @)Dy € Ar(W xy W).

The first equation follows from the reduction step in the previous Subsection. The
second equation follows from (56) and the same reduction step. Let FTW be the graph
of an automorphism 7 € G. By subtracting ZTGG[FTW ] from the previous equation, we
find

V(W/Y)=V(W/V)+ Y anlgp*Fy x g p*Fl + (g x 8)*Dy € (W xy W),
(h,1)

where the cycles V(—/—) are defined in the obvious way. Taking the push-forward by
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(x x x), we get
VX/Y) =k x 1), V(W/Y)

=Y aniling p Fy x 1.8"p" Fil+
(h,0)

+ (e x 1), (V(W/V) + (g x §)"D2) € Ar(X xy X).

The cycles V(W /V) and (g x g)* D are sums of cycles [C} x C;], where C) and C; are
curves over W such that at least one of them (for instance C; ) collapses to a point in
Y'. As = is finite, C| collapses to a point in X. We deduce that

(1 x 1K), V(W V) = (1 x K),(¢ x §)*D2 = 0 € Ax(X xy X).
The claim is now proved because n* = k,g*p*. O
We deduce from (55) that
> eij(o(E)-E) = Y ani(x*o(Fi).n (ED).
()] (h.1)
Using relation (8) of Appendix A, we find that
> eif(o(E).E) =nY_ ayo(Fy).Fy).
()] (h.1)

The canonical morphism X red/G — Y| 4 is purely inseparable. So, H(Y{, Q) =
H (X, Q))¢. We deduce that

ntr(0)| Hy (Y], Q) = ) tr(on)| H}, (X;, O)).

1€G
By the last two relations, Lemma 7.18 is reduced to the following equation:
> " an(o(Fy).Fy) = tr(0) H(Yy, Q) — tr(0) H; (Y, Q).
)

This is the statement of Theorem 7.7. Thus, Lemma 7.18 is proved. O

LEMMA 7.19. Letf : X — Y be a T-base change. The weak projection formula for f
is equivalent to the following relation:

nAy T e = Y (AxT X = D tr(e0)| Hy(Xy, Q) + ntr(o) | Hyy (Y, Q)
1eG 1eG

(57

where 1"5 C Y xs Y and l"fT C X X5 X denote the graphs of, respectively, a over Y
and ot over X.

Proof. The weak projection formula for f is n(Ay.T'Y),,. = (TX.[X xy X]),.. Put
I, = l"f and T'; = l"f(. From the definitions, the relation [X xy X]=73"__[I"]
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+V holds between cycles over X xgs X. Then

(FJ~[X Xy X])loc = Z(FJ'FT)IM + (FU'V)IOC = Z(AX'FUT)IOC + (rG'V)lac'
1€G 1€G

To prove the last equation, consider the automorphism

0: X xs X — XxsX

(x, ) = (r,o(x).
It maps Ay to I'; and ', to I';. Indeed, tot~! = ¢ by Remark 7.17. Therefore,
Ts.T)pe = (Ax.T 4e-1),0., Wwhich implies the needed equation. Finally, by Lemmas

7.14 and 7.18,
CoVige = Y _ €1 j(0(E).Ey) = ntr(o) H}(Y;. Q) = Y tr(on) | Hiy (X, Q).
(i) €G
Lemma 7.19 is proved. O

PROPOSITION 7.20. The weak projection formula (21) , or equivalently equation
(57), holds for any base change.

Proof. Let f: X — Y be a T-base change. Assume first that we can find
g: X' — X a birational map of arithmetic surfaces such that:

(i) the automorphism ¢ and the action of G over X can be lifted to X’. Hence,

fog: X' — Y is a T-base change.
(i1) the projection formula holds for fog: X' — Y.

By (ii) and Lemma 7.19,

nAy T e = (A T — Y tr(00)| H(X,, Q) + ntr(o)| H (Y, Q).
1€G 1€G

By Theorem 7.1,
Ay LX) = (@D HE(X], Q) = (Ax T — tr(o0) [ H (X, Q).
Hence, we get

n(AY'Fg—Y)loc = Z(AX'rfr)/oc - Z tr(O'T)|H:[(Xg, Ql) + ntr(a)|H:,( YA‘a Ql)1
1€G 1€G

which is relation (57) for the morphism f.

In order to prove the existence of X’ as above, we use Theorem 6.3. By remark
7.17, the hypotheses of this theorem, except the hypothesis on the dimension of
W =T N[X xy X], are satisfied. I claim that the latter can be satisfied after a
sequence of blow-ups. Indeed, W 1is isomorphic to the inverse image of
fix(e) € Y in X. If it is not a Cartier divisor, we blow-up X at closed points until
this condition will be satisfied. We can do these blow-ups in such a way that ¢
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and the action of G lift to the final step X”. Then, the scheme W’ associated with X’
has dimension 1. O

8. Lefschetz Formula: The Semi—Stable Case

Let X be a semi-stable arithmetic surface over S and ¢ be a non-trivial
S-automorphism of X. Denote by $ the set of singular points in X,. Let
I' C X xs X be the graph of o, fix(¢) be the scheme of o-fixed points, and Z be
its ideal sheaf in I'. Let Y be the Cartier divisor on X defined locally by the greatest
common divisor of all functions in the ideal Z, and let F be the residual scheme
to Y in fix(s). We decompose Y as D + Z, where D is a horizontal Cartier divisor
over S and Z is a vertical one.

By Lemma 5.6, any closed point x in F is singular in X;. The following lemma
describes the points of F among the singular points in Xj.

LEMMA 8.1. Let x be a closed fixed point of X that is singular in X.

(i) If o stabilizes the branches of X, through x , then x € F and its multiplicity in F is 1.
(i1) If o switches the branches through x, then x ¢ F and x is contained in the horizontal
Cartier divisor D.

Proof. The completion of the local ring of X at x is isomorphic to
A = R[[t, €]]/(te — ), where © denotes a uniformizing element of R. Let m be its
maximal ideal. The branches of X; through x are defined by ¢ and ¢. The
automorphism ¢ is given over 4 by

a(t) = ut + ve, ole) =u't +Ve.
Using a(t¢) = o(n) = 7, one finds uu/t* + vv'* 4+ (uv' + vu')n = n. Hence uu/ € ¢4 and
v € tA.

e If uis a unit in 4, then «' € 4. As (uv' —w/') € A*, then v € A*. Therefore,
v € tA. We conclude that ¢ is given by

a(t) = at, a(e) = Pe,
where o and f§ are in A* with off =1 and « # 1. In this case, ¢ stabilizes the
branches.
o Ifu¢g A* then v € A* because (uv' — vi') € A*. Therefore, v' € t4A*. Again this
implies that #' € 4*, hence u € e4. We conclude that ¢ is given by
a(t) = ae, a(e) = pt,
where « and f are in 4* with off = 1. In this case o switches the branches.

(1) In the first case, I, = ((« — 1)¢, (f — 1)¢) = (o — 1)m. So, the Cartier divisor Y is
locally defined at x by « — 1, and F by m. Therefore, x € F and /(x) = 1.

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

88 AHMED ABBES

(i) Inthesecond case, I, = (x¢ — t). So, the Cartier divisor Y is defined by ac — £ and
x € F. The equation ae — ¢ defines a horizontal divisor. O

For a singular point x in X;, we put

1 if o fixes x and stabilizes the branches through it,
Iy =1 —1 ifo fixes x and switches the branches through it, (58)
0 otherwise.

Lemma 8.1 implies the following relation:

he=>1- > L (59)

xe$ xeF xeD,N($—F)

Indeed, by Lemma 8.1, the set of fixed points of § is a disjoint union of F and
Dy;N($ — F). The first subset corresponds to points with /., = 1, and the second
to points with /, = —1.

PROPOSITION 8.2. With these notation,(Ax.I),,, = —(0 +D+Z.Z) + Y sl
Proof. This Proposition is a consequence of the residual intersection formula and
equation (59). We need first to prove a slightly different version of the residual for-
mula given in Proposition 5.8. Let T be the blow-up of T along F. As any point
of F has multiplicity 1, r can also be obtained from I" by blowing-up successively
the points of F. In particular, Tis regular. For any x € F, let E, be the inverse 1mage
of x. Let W = fix(o) be the scheme of fixed points, and W be its inverse image in r.

(60)

@

Denote by D, Z and F the inverse images in TofD,ZandF. Then, the relations
W=D+Z7 +F and F = >_er Ex_hold between Cartler divisors over T. As p is
birational, deg(Ay.I'),,. = deg(Ax. F),m Let £. be a resolution of Q} /s @s in Section
5.1-1). Diagram (60) induces a surjection of complexes g*(£.) — OX( W)|~ where
the second complex is concentrated in degree 0. Let F. be the kernel of this
surjection. The localized excess formula (Theorem 4.7) implies:

(Ax.To)e = —cff;\ (F)Nn[W] = _CT,VVV‘ (F)N[D] — CIVT/’V?/S (F)N[Z+ F].
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As Z+F is vertical,

~

CIWVNV (F)N[Z+Fl=c(F)N[Z+F]

=c1@E)NZ + Fl+ c(OW) N [Z + F],

w ~ T — —
degclﬁ(f) N[Z+Fl=(w+Z+D.Z) ; 1.

We compute now the contribution of D. Let D be the strict transform of D in T (i.e.
the blow-up of D along FN D). Then, D = D+ Y it (D)[Ey] as Cartier divisors,
where (D) is the multiplicity of D at x. Therefore,

~

= (FIND) = ¢ (F)N D+ a(F) 0 (L m(DIED

xeF

=5 (F)NIDI =Y u(D).

xeF

The divisor D is finite and flat over R. Let i : D — W be its inclusion in f/f/, and
consider the exact sequence:

0—> i* F.—> i*§*(£.)—> O(— W) | 5—>0.

The surjective map y is a quasi-isomorphism on the generic fiber of D. Therefore, it
defines a rational map 7 : i*g*wy;s ——— O(=W)|3. Corollary 3.7. implies:

degcP (F) N [D] = —ord().

LEMMA 8.3. ord(t) = — ) .cp (D) — erDm(SS—F) 1.

Proof. Leth : D — D be the blow-up of D along D N F, and consider the diagram:

" Qs —L> 5" (wx/s) —> h*(@zesnp, k) —> 0

\ . 1)
Y

O(-W)ls

where the top sequence is obtained by taking the A-pull-back of the exact sequence
(14) and « is the surjective map induced by diagram (60). The kernel of f is R-torsion.
Hence, it maps to zero by o because D is flat over R. Therefore, « factors through the
image C of f in i*g*wy,s. Denote by f: C — O(— I/NV)|5 the induced map. First, f is
surjective because « is surjective. Second, f§ is an isomorphism over the generic fiber
of D. Then, its kernel is R-torsion. But C is R-torsion-free as a sub—bundle of
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i*g*wy,s. Then, B is injective, and hence bijective. We have now the diagram
0 —> C — i*§*wx/s —> h* (®ze@np,)k) —> 0
.t
PNy
O(-W)lp
from which we deduce that

ord(t) = —dim¢ /(P k==Y ud)- > 1 O

xe$NDy xeF xeD;N($—F)

We proved the relation:

degAy.Dype = —(@+D+Z2)+Y 1- Y L
xeF xeD,N($—F)

Proposition 8.2 follows from the above equation and Equation (59). O

PROPOSITION 8.4. With the above notation, (w+ D+ Z.Z) = 0.

Proof. Let C be an irreducible reduced component of X; which appears in Z with
multiplicity i > 1. Denote by J and Z the ideal sheaves of, respectively, C and
fix(c) in ' (Z ¢ J' ). For any integer n > 0, (¢ — 1) induces a map O,c — O,c.

Claim 1. (6 — 1) : O,¢c — O,¢ vanishes if and only if n < i.

Indeed (¢ — 1)(Ox) = T is contained in 7' but not in J*!.
Consider the diagram

0— T/ T —— Oy — Oic —> 0

0— J¢/ Tt —— Opiy1yc —> Oic —> 0

Claim 1 implies that the composed map O+1)c = O,c vanishes. Then, we get a map
(6 —1): Opsiyc = T TH = Oc(—iC).
Claim 2. (¢ — 1) vanishes on J /7.

This is a local question. Let y be a point of C and let 4 be the completion of the local
ring of X at y. Let ¢ be an equation defining the Cartier divisor C. We should prove
that o(f) —t € #*14,, where A, is the localization of 4 at t4. We can write
n = vt where v is a t-unit in 4. Hence, by (18):

0=0(vt) —vt =a()(a(t) — 1) + t(a(v) — V),
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and the fact that ¢(v) —veZ C J', we find that o(f) — t € ' 4,. The claim is
proved.
By Claim 2, we get a map D, ¢ : Oc = Oc(—iC).

Claim 3. D, ¢ is a k-derivation.

It follows from the formula g(ab) — ab = o(a)(a(b) — b) + b(o(a) — a) if we remark
that o(a) = a modulo Z C J.
We denote also by D, ¢ the Oc¢-linear map Qlc/k — O¢(—iC) induced by Dy c.

LEMMA 8.5. The cokernel x of D; ¢ : Qlc/k — Oc(—iC) is supported over a finite set
of points in C. Its total length is

Lengy (k) = (C.D) +(C.Z —iC) — (C.C) + 0,

where 0 is the number of nodes of C, and (C.*) is the intersection number with C.

Proof. Let y be a closed point of C and let 4 be the completion of Oy ,. We denote
K, the stalk of «x at y.

If y is smooth in Xj, then A = R[[f]], and C is defined in 4 by = a uniformizing
element of R. The ideal sheaf of fix(s) is generated by o(f) —t. Put
o(f) — t = n'f, where f is a local equation defining the horizontal Cartier divisor
D, and i the multiplicity of C in Z. Therefore

Leng, ()) = Leng,[4/((a(r) — 1)/n', m)] = Leng,[4/(f, m)] = (C.D),,

where (C.D), is the local intersection of C and D at y.

If y is singular in Xj, then 4 = R[[t, €]]/(te — ). Let m be its maximal ideal. We
have two cases:

(1) y is a smooth point of C. Then C is defined by the equation ¢ = 0. The equation
¢ = 0 defines C’, the other component of X through x. As C is fixed by g, C' is
stabilized by ¢, and we have o(f) = ot , o(¢) = feand aff = 1 (see the proof of Lemma
8.1). The ideal defining Y is generated by o — 1. Write o — 1 = #¢f, where i is the
multiplicity of C, and j is the multiplicity of C’ in Y, and f is an equation defining
D. On the other hand, ¢ gives a local parameter of C at y. Therefore,

Lengy, (k) = Leng[A4/((a(€) — ©)/1', 1)]
= Leng,[A/((B — 1)¢/1', 1)]
= Leng,[4/(dM'f, )] = (j + D(C.C'), +(C.D),.

(2) yis a singular point in C (a node). Then C is defined in 4 by the equation f¢ = 0.
As o fixes the branches through x , we have the same description of the action of ¢ on
A, and the Cartier divisor Y is defined by o — 1. Write « — 1 = #'¢’f where f defines D.
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Therefore,

Lengo,.(k,) = Leng,[4/((a(1) — 1)/1'¢', (a(e) — €)/1'€, t€)]
= Leng,[4/(1f . ¢f , e1)]
= Leng[A4/(fm, ef)]
= Leng,[A4/(f, te)] + Leng[A4/(m, te)] (by Lemma B.1)
=(C.D), + 1.

The Lemma follows by adding all these contributions. O

LEMMA 8.6. Lengp (k) = —i(C.C) — (2gc — 2) + 0.
Proof. Let wcyx be the dualizing sheaf of C over &, and Sing be the set of singular
points of C. We have an exact sequence

0—>,/\/—>Qlc/k N wck— @ k—0,

xeSing

where A is torsion. Since O¢(—iC) is torsion-free, then D, c maps N to zero. Hence,
it factors through the image H of p. Moreover, the kernel of the induced map
H — Oc(—iC) is torsion, and H is torsion free (as a subsheaf of w¢y ). Therefore,
we have an exact sequence 0 - H — O¢(—iC) — k — 0. The lemma follows by
observing that degc wcj = 2g¢ — 2. O

Lemmas 8.5 and 8.6 imply that (2gc—2)—(C.C)=—(C.Z+ D). So
(w + D+ Z.C) = 0 by the adjunction formula. This finishes the proof of Proposition
8.4. ]

COROLLARY 8.7. Let X be a semi-stable arithmetic surface over S, and o be a
non-trivial S-automorphism of X. Then,

(AX~FU)106 = tr(0)|H:[(XS? Ql) - tr(o-)|H:[(Xﬁ? Ql)

Proof. Propositions 8.2 and 8.4 imply that (Ay.I';),, = > s/x. Therefore,
Corollary 8.7 is equivalent to the following relation:

tr(o) | Hy( Xy, Q) — tr(o) | Hy (X7, Q) = > L. (62)

xe$
Let M be the Q;-vector space with generators 6; , and 6, , for x € §, and relations

01x + 02 = 0. The automorphism ¢ acts over M and tr(o)|M =} /.. Let S
be the spectrum of the integral closure of Rin K, X = X x5S, and a: X7 —> X.
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By [6], we have

B M m=0,n=1,
H"(X, R"a,Q)) = { H"(X;, Q) n=0, (63)
0 otherwise.
Then, the Leray spectral sequence for a implies Equation (62). OJ

9. Base Change

By the semi-stable reduction theorem and the projection formula proved in Prop-
osition 7.20, the proof of the Lefschetz fixed point formula in Theorem 1.1 is reduced
to computing Lefschetz numbers on a semi-stable arithmetic surface. This is the aim
of this section.

Let L be a finite Galois extension of K of degree n and Galois group G(L/K). Let B
be the integral closure of R in L. Put T'= Spec(B), and denote ¢ its closed point, g its
generic point, and g a geometric generic point. We choose g such that the induced
geometric point of S is 7. Let dr;s be the discriminant of 7'/S.

Let X be a semi-stable arithmetic surface over 7T, and ¢ be a non-trivial
automorphism of X lifting an automorphism t € G(L/K) of T. In particular, o
is an S-automorphism of X. Then, one can form the fiber square

fix(c) ——T',

L

A X —> X x S X
and compute the intersection product (Ay.I';),,. relatively to this diagram.

THEOREM 9.1. If t = 1, then

(Ax.To)pe = tr(o)[H (X, Qp) — (swr/k(1) + n)tr(o)| H;,(Xz, Q)). (64)
If Tt # 1, then
(Ax.To)pe = tr(o) [ H(X1, Qp) — swi k(1) tr(o)| Hy(Xg, Q). (65)

Remark 9.2. The automorphism ¢ acts canonically over X, and X,, but it acts
canonically over Xz = X x7 Spec(K) only if = 1. However, tr(c)| HZ (Xz, Q) is well
defined for any t as it will be explained at the end of the proof of formula (65).

Proof of formula (64). As t =1, ¢ is a T—automorphism of X. Hence, one can
compute the localized intersection product relatively to the fiber square:

fix(c) — T,

L

Ax———*XXTX
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Denote this product (and its degree) by (A X.FG)ICC in order to distinguish it from the
previous one referred by (AX.FJ)?;C. The first step compares these numbers.

LEMMA 9.3. Let V be a scheme of pure dimension 2 withamap h: V — X x7 X.
Then

deg(Ax.[V]);. — deg(Ax [V}, = drs (Xz.V5),

where (Xz.V3) is the geometric intersection number of Vg with Xz diagonally embedded
in Xz x Xz.

Proof. Let f: X — T be the structural map. We have an exact sequence ([3]
corollary 1.2)

0= [*Qp5 > Qg > Qy)r — 0. (66)

Fix resolutions F., £. and G. of, respectively,f*(QlT/S), Q}/S and Qg,/T by locally free
Oyx-modules extending the exact sequence (66). Let W be the scheme given by the
fiber square

w v

o J»

AX'—>X XTX

Then, the diagram

W—™mV

] |»

Ax —> X xg X

is also Cartesian. Let P = P(Sy V[z]) and ¢ : P — W be the canonical projection.
Define the complexes £'. and G'. of locally free Op-modules by

0— & — ¢"g"(Eo ® Ox) — Op(1) — 0,
0— Gy — ¢*g"(Go ® Ox) = Op(l) = 0,

and & = ¢*¢g*(&;) and G; = ¢*g*(G,) for i > 0. Then, by definition
(Ax Ve = qulcs p (E) NP € Ao(Wy) = Ao(W)),
Ax. N} = quley p (G ) N[PY) € Ao(W)).

From the definition of £'., G ., the snake lemma and the exact sequence (66), we get
the exact sequence

0— ¢ g"(F)—E. - G. -0,
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from which we deduce:

ApE)=cp (G )+ p (@ g F) + (G et p (8" F.

Therefore, by g-push-forward,

Ax-WVipe = Ax Ve + 3y (€ F ) N qu(PD) + ¢y (€°F ) N qu(er(G) N [PD).

Hence,

deg(Ay. V), = deg(Ax. V)], +deg e (" QY s) N guq ((PD+
+ deg Cf(,)([(f*QIT/S) n g*Q*(Cl(g/-) N [P])

On the other hand, as f is flat, we have:

f;'*(cé{X’(f'*QIT/Ag) N g«q+[P]) = CZT,(QIT/S) N £:8xq:«[P1 = 0 € Ao(2),

Sslel y, (7 Q) N g4qu(e1(G) N [P])
= ol 1.(Q}5) N fig:q:(c1(G) N[P]) € A(0).
Write f,g.q+(c1(G' ) N[P]) = o[T] € 4;(T). Hence,
deg(Ax.V)p. — deg(Axy. V)], = drys a.

In order to compute o, we work over the geometric generic fibers. Denote by an
gver-line the geometric generic fibers. Then, £,2,7,(c1(G.) N [P]) = a[g] € Zy(g). Over
P, G'. is a resolution of the locally free sheaf & given by the exact sequence

0—> ¢ > q*(Qly/f ® O3) — O=(1) — 0.
Furthermore, the usual intersection theory [7] for the regular embedding
X — X x X implies that

7.(c1E)N[P]) = (X.V) € Ay(W).
This finishes the proof. O

Formula (64) follows from Lemma 9.3, Corollary 8.7 and the relation
1 +dr/s =n+swrk(l).

Proof of formula (65). We assume now that 7 # 1. Denote $ the set of singular
points in X;. Decompose fix(¢) into Y U F, where Y is a Cartier divisor over I';
defined locally by the greatest common divisor of all functions in the ideal of
fix(o), and F is the residual scheme to Y in fix(¢). The main difference with Section §
is that Y is a vertical divisor. Indeed, the ideal sheaf of fix(s) in I', contains
o(nr) —m =1(n) — n = yn/, where 7 is a uniformizing element of B, j = (1) =
v(t(n) — m), and y € B* (see Section 2). Therefore, fix(c) is a scheme over Spec(B/m).

Lemma 5.6 implies that F is regularly embedded in I';. For any closed point x of
X, let I(x) be the multiplicity of F at x. It is also the algebraic multiplicity of I';
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along F at x ([7] example 4.3.5-c)). We will compute the multiplicity /(x) of any
closed point of X fixed by o.

LEMMA 9.4. All components of Y occur with multiplicity i <j. Moreover, no two
components of multiplicity j meet.

Proof. Let C be a component of Y of multiplicity i. Let Z and J be the ideal
sheaves of Y and C in I',. Then (6(n) — n) = (7/) € Z C J'. Choose a smooth point
x of X; contained in C. The equation of C at the local ring of X at xis 7, so i <.

For the second point, let x be a closed point of X that is singular in X,. The
completion of the local ring of X at x is isomorphic to 4 = BJ[t, €]]/(te — n), and
t and ¢ give the branches of X; through x. If these branches occur in Y with
multiplicity j each, then (a(f) —t,o(c) —¢) C (/¢) = (/). Therefore, from the
relation

o(n) — =y = a(e)(a(f) — 1) + t(a(c) — ©),

we get that y/ € 7/m, where m is the maximal ideal of 4. Contradiction. O

Let C be a component of Y which occurs with multiplicity i < j — 1. Recall from
the last section that (¢ — 1) defines a map O, — O, ¢ which vanishes if and only
if n < i. Therefore, we get a map

(6 —1): Oppiyc = T /TH = Oc(—iC),

where J is the ideal sheaf of C in X. Let Z be the ideal sheaf of fix(¢) in X. Under the
condition i <j — 1, we still have Claim 2: (¢ — 1) vanishes on 7/ J"*! (cf. [3] lemma
(3.5)). We get a k-derivation D;¢:O¢ — Oc(—iC). We denote also by
Dsc: Qé/k — Oc(—iC) the induced Oc-linear map and « its cokernel. For any
closed point x of C, define ord,(Ds,c) = Lengp,. (k).

LEMMA 9.5. Let x be a closed point of X fixed by o.

(1) If xis smoothin X,, then x can be on Y. In this case, let C be the component of Y
containing x and let i be its multiplicity in Y. Put i = 0 if x doesn’t belong to Y.

jm if i =0,
I(x) =14 (G—dordy(Dsc) if0<i<j,
0 if i =,

where if i =0, m is the multiplicity of x as a fixed point of ¢ acting on X,.
(1) If x is singular in X; and o switches the branches of X, through x. Then, x doesn’t
belong to Y, and I(x) = 2j — 1.
(ii1) If x is singular in X, and o fixes the branches of X, through x. We have two cases:
(@) The branches of X, through x are contained in two different components Cy and
Cy of X, Let iy and iy be their multiplicities in Y. We choose Cy and C, such that
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0<iy <ip Then ,iy <j—1 by Lemma 94, and
Jis1+s2—2)+1 ifiy=i=0,

Js1—i =D+ 1+(¢ —i)ord«(Dsc,) = 1)  if 0=i < </,

1(X)= j(sl_i2_1)+1 if iIZOsi2 :j’
( —i)ordy(Ds.c,) — i — D+
+(] — l'z)(Ordx(Da,Cz) — i — 1) +1 f0<i;i<ip <],
(G —i)(ordy(Dg,c,) —ip — 1)+ 1 if0<ip<ih=j,

where s| and s, are the multiplicities of x as a fixed point of o acting respectively
on Cy and C, (defined when iy =0 or i, =0 ).

(b) The branches of X, through x are contained in the same component C of X,. Let i
be its multiplicity in Y. Then, 0 <i <j—1 by Lemma 9. 4, and

Js—1)+1 ifi=0,
I(x) =
G — i)ordy(Dy.c) — 1)+ 1 if 0 <i <],

where if i =0, s is the multiplicity of x as a fixed point of ¢ acting on C.

Proof. Lemma B.1 will be frequently used in this proof without any indication.
(i) Assume that x is smooth in X;. The completion of the local ring of X at x is
isomorphic to B[[f]]. The ideal of fix(c) at x is given by

(o(n) — 7, o(t) — t) = (2(n) — 7, o(t) — 1) = (7, o (£) — 1).

The local equation defining the divisor Y is the greatest common divisor of 7/ and
o(f) —t. It is n/ with i <j. If i > 0, then x belongs to Y. Let C be the component
of Y on which x lies. Its multiplicity in Y is i. The ideal of F at x is generated
by /= and (o(t) — £)/n’. If i =, then /(x) =0. If 0 < i < j, then

I(x) = Leng(BI[l/(W'~", (a(1) — 1)/n")) = ( — i)Leng(BI[])/((a(2) — /7', m).

On the other hand, we can define in this case the derivation D, ¢, and we have

ordy(Dy ¢) = Leng(B[[l]]/(n, o(h) — ’))

7l

Finally, if i = 0, then
I(x) = Leng(B[[1]]/(7, (o(1) — 1)) = jLeng(k[[]]/(o(1) — 1)) = jm.

Assume that x is singular in X;. The completion of the local ring of X at x is
isomorphic to A = BJ[t, ¢]]/(tc — ©). Let m be its maximal ideal. The automorphism
¢ induces an automorphism on A4 also denoted ¢. As in the proof of Lemma 8.1,
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one proves that there exist two units o and f in A4, with aff = 1 4+ yn/~!, such that

- o) =
(i1) if o fixes the branches through x, then { o) = e
o(t) = we

o) = Bt

(i1) The ideal of fix(o) at xis I = (ao(t) — ¢, a(¢) — €) = (ac — ¢, ft — €), which is also
the ideal generated by (xc—1) and (aft—oac) = (t—ac+yn~'f). Then,
I = (e — t, ¥~ '¢). The greatest common divisor of ac — ¢ and 7/~'¢ is 1, because
o is invertible in A. It follows that x cannot be on Y and

(iii) if o switches the branches through x, then {

I(x) = Leng(A /(e — t, ¥~ '1))
=1+ Leng(4/(oe — t, ™))
=14+ (G — 1)Leng(4/(ce — t, 7))

(ii1) The ideal I is generated by (o — 1)t and (f — 1)c. Define

n; = ord,(f — 1),
ny, = ord. (o — 1).

Put ged(#(x — 1), e(f — 1)) = ¢, and assume that i; < i, (otherwise exchange ¢ and
€).

(a) The local equation of C; at x is t = 0, and the one of C; is ¢ = 0.
Claim: iy = n; and i, = inf(ny, j).
Proof. We have the relation:
—D=a—af+y ' =a(l — p)+y . (67)

Then, ord, (o« — 1) = ny if ny <j— 1, and ord,(« — 1) = j — 1 otherwise. The first case
gives i; = n;. The second implies that i; = j. But i; < i, hence i; <j— 1 by Lemma
9.4. This case cannot occur. For the second relation, use the relation:

B—1=pB1—o)+yn/". (68)
O
With these notation,

o—1 -1
I(x) = Leng<A/ (ml/je?»

We distinguish the following cases:
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[ ] il =0= i22

I(x) = Leng(A4/(t(o — 1), e(f — 1))
=1+ Leng(A4/(t, § — 1)) + Leng(A /(e — 1, €)) + Leng(A/(e — 1, § — 1))
=1+@1—1)+(@2— 1)+ Leng(4/(x — 1, f —1)).

From (67), we get (0 — 1, —1)=(f —1,7~"). Hence,

Leng(4/(x— 1, — 1)) = Leng(4/(B — 1, @ "))
= (j — 1)(Leng(4/(z, B — 1)) + Leng(4/(c, f — 1))
=(-—Ds1—1+s-1.

We explain the last equality: there is nothing to be proved if j = 1. Assume thatj > 1,
then from (67) and (68), we get (¢, f — 1) = (¢, « — 1). Hence,

Leng(A/(¢, p — 1)) = Leng(4/(c, 0 — 1)) = s, — 1.

On the other hand, we have Leng(A4/(¢,f —1)) =s; — 1.

e /; =0and 0 < i <: from the Claim, i, = n; and ¢ divides (f — 1) by (68).
Therefore,

I(x) = Leng(A/(ta : ! ,eﬁ — 1))
€n €n
— 1+ Leng(A/(e,%)) + Leng(A/(%, z>)+
+ Leng(A/(ﬁ ; ! , - 1))
€ 2
Using (67), we get
I(x)=1+ Leng(A/(e,%)) + Leng(A/(%, t>)+
+ Leng(A/(ﬁén_zl, tjlejl’”))
=1+ Leng(A/(e, oc;z 1)) —l—jLeng(A/(%, t>)+
+(G—-1- nz)Leng<A/<e, ﬁ;z 1))

. n2>Leng<A/<e, i 1)) +j(Leng(A/ (B — 1. 1)) — m).

n
We explain the last equality. If j — 1 —n, =0, there is nothing to be proved.
Otherwise, using (67) and (68), (¢, (f — 1)/¢™) = (¢, (o« — 1)/€™). The Lemma follows
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because of the relations n, = i and

ordy(Ds.c,) — 1 = Leng(A/(e, x _2 1)) and sy — 1 = Leng(4/(t, f —1)).

En

e ii =0 and i, =: from the Claim, n, > and ¢/~ divides (8 — 1) by (68).
Therefore,

-1 -1
I(x) = Leng(A/(tOC 5 ﬁe/—1>>

-1 -1 p-1
= Leng(A/(t, ﬁe/——l>> +Leng<A/<OC o ,ﬁej_l ))

Using the relation (68), we get (o« —1)/¢/, (B —1)/e/™1) = ((« = 1)//, /71).

Then,
I(x) = Leng(A/(t, b ;1)) + Leng(A/(t-/_l,g)>
J 12
= Leng(A/(t, j_ll>> + Leng(A/(tj_l, OL;})) —-G-1

:jLeng(A/(t, 1)) -(-D=js—j—-1D+1L

(s

=

(o)

e/~1

The last relation follows from (67) and (68).

e 0 < i <i <j:fromthe Claim, n; = i1, ny = i», and by (67) and (68), ¢ divides
(. —1) and € divides (B — 1). Therefore,

a—1 p-—1
-1 -1
=14 Leng(A/(t, ﬁ—)) + Leng(A/(e,L>)+
tl]elz tl]elz
a—1 p—1
+ Leng(A/(ﬂ.lei2 ek ))

Using (67) and (68), we get that

a—1 -1\ _ pmi=1 =il p—1
tirgl 7 firgh | T T thel )
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Therefore,

Leng (A/ (ii;izl ’ [iil_c’?l))
(- — 1)Leng(A/ (” ﬁti‘_eizl)> i

Y (—ir— 1)Leng<A/(E’ [ifl_e’fl))

I

)

=(—i— 1)Leng(A/(t, ﬂfl))
e

. o—1
+(G—i— 1)Leng(A/(e, e )

The second equality follows from (67) and (68). The result follows from:

the

Leng(A/(e, oc_—l)) =ordy(Ds.c,) — 1 — 1.
e

Leng(A/(t, b _21)) =ord(Ds.c,) — 1 — iz,

e 0 < i <iy=j:from the Claim, n; = i{ , n, > j, and by (67) and (68), "' divides
(o« — 1) and ¢/~! divides (B — 1). Therefore,

I(x) = Leng <A/ (ta__lel, , fg,j))
= Leng(A/(t, %)) - Leng(A/(a tﬁil;_ll))Jr
+ Leng<A/<:l€;jll’£€—;11>>
= Leng<A/<z, %)) - Leng<A/<e, ﬁ;_11)>+
+ Leng<A /<z/—1—"l,ﬁ€;jll>.

The last equality follows from (67), which implies that

a—1 B—1 — (10 B—1
ti]ejfl’tilejfl - ’[ilejfl :

.. —1 .
As ¢ divides :leﬁ’ and using (68), we deduce that

B—1 o
(C’ fici—1 = (c, /7171,

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001822419774

102 AHMED ABBES

We conclude that
I(x)=—(—1—1i1)+ (¢ —i)(ordx(Ds.c,) — J)-

(b) In this case, ij = iy = i < j, and the local equation of C at x is ¢z = 0. We get
from the Claim that n; =n, =i, and from (67) and (68) that # divides (x — 1)
and ¢ divides (f — 1) because i < j. Then,

Leng(A/(l(at;. 1)’6(/;; 1)’%))
veng{ (0= 0)) g, =)
—Leng(A/( C(ﬁte )>)+Leng<A/<(“_61), ))
e (O )) e (0. )) .

The left-hand side of this equation is s if i =0, and ord,(D, ) if 0 <i <j. The
Lemma follows from this relation and the formula

o120 ol ) 2

proved previously. O

LEMMA 9.6. Let [Y] =) ic[C] be the decomposition of Y into its irreducible
components. Then,

(Ax To)ppe = Z ic((C.C) +21(Oc) = (Y.Y) + > I(x).

xeF

Proof. Let w be the dualizing sheaf of X over S. By Proposition 5.8., we have

Ay To)pe = —(@+ Y.Y)+ Y I(x)

xeF
= —ch(w O)—(Y.Y)+ ) I(x)
xeF
= Z ic((C.0)+27(0c) — (Y.Y) + Y I(%).

xeF

O

Let C be an irreducible component of X; stabilized by . Define 6(C) to be the
number of o-fixed nodes of C with o-fixed branches. If ic = 0, then ¢ induces a
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non-trivial automorphism over C. Define, for any point x in C, the number m¢(x) to
be

e the multiplicity of x as a fixed point of ¢ acting on C, if x is smooth in C or a
node and o fixes the branches of C through it,
e 0 otherwise.

LEMMA 9.7. We have:

<Ax.ra)m:j( > [Zmdx)w(@} +2 ) [x(oc)+5<cn>

Ciic=0 L xeC Ciic>0
- Q=D
xe$

where Z denotes the sum over all components C of X, stabilized by ¢, and I, for x € $
is defined in (58).
Proof. A painful computation based on Lemma 9.5 gives:

DM=j Yy, Y omc)+ Y (—ic)Y orddDsc)

xeX; Ciic=0 xeC Ciic>0 xeC
—Q=DY L+ (G+DHC)+ Y ic(i—1)(C.0) (69)
xe$ C C
+ > icic(C.C)).
C£C'

For any C with 0 < i¢c <j, Lemma 8.6 gives:

3" 0rdy(Dy.c) = —ic(C.C) +27(0c) +5/(O),
xeC

where §'(C) is the total number of nodes in C. Remark that as ic > 0, then
0(C) = §'(C). Therefore, (69) becomes:

Zl(x)=j( 3 [ch(mé(o}z 3 [X(Oc)+5(C)]>

xeX; Ciic=0 xeC Ciic>0
—2) icx(Oc) = Y ic(C.O+ (Y. V) =2 =D L.
C C xe$
The Lemma follows from this equation and Lemma 9.6. O

Let X be the normalization of X;, and ¢ be the automorphisms of X extending o
over X,. Let G, be the graph of ¢ in X x; X.
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LEMMA 9.8. The geometric intersection number of G, with the diagonalin X x; X is
given by:

Ar.Go)= Y [ch(x)w(c‘)}ﬂ > x(Oc) +3(C)).

Ciic=0 L xeC Ciic>0

Proof. Let C be a component of X; and C be the connected (smooth) component of
X above it. By the self-intersection formula for curves, we have:

1 2
(Ax.Go) =D D me(x)+23 /(0.

C xeC C

where Zl is the sum over all connected components of A stabilized by ¢ but not
fixed, and Zz is the sum over all components fixed (point by point) of X. For
any component C with ic > 0, we have X(OE) = x(O¢) + 6(C). Indeed, C has only
nodes as singularities and 6(C) is the total number of this nodes. Let C be a stabilized
component such that ic = 0, and let x be a fixed node of C, and x; and x; be the
points of C above it. If ¢ does not fix the branches through x, then ¢ exchanges
x1 and x; and by definition m¢(x) = 0. If ¢ fixes the branches through x, then, with
the notation of the proof of Lemma 9.5,

mc(x) = Leng(k[[z, ]]/(#(o — 1), (B — 1), 1¢))
= Leng(k[[z, ]I/ (¢, e(B — 1)) + Leng(k[[z, €]]/(c, o0 — 1))
= m(x1) +m=(x2) — .

The Lemma follows. O

Proofof formula (65): Lemmas 9.7 and 9.8, and the geometric Lefschetz fixed point
formula for X imply that

Ax.To)ppe = jtr(@H (X, Q) = (2 = 1) Y L. (70)

xe$

On the other hand, we have

tr(0)| H (X, Q) = tr(0) [ H}(X,, Q) + Y Ly (71)
xe$

Ifj=1(.e. 7 & P(L/K)), Equations (70) and (71) are enough to get (65). In general,
we need a third relation. For this purpose, we introduce the notation M, T,
X =X xrT and a: Xz — X as in the proof of (62). We fix a lifting 7 € G(K/K)
of 7,and let @ = ¢ x, T acts over Xz and X. Then & acts over the cohomology groups
H"(X, R"a,Q,). The latter are given by Equation (63), and the action of & turns to be
the same as the one of ¢ over respectively M and H"(X,, QQ;). Therefore, the Leray
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spectral sequence for « implies that

tr(o)| H},(X,, Q) = tr(@)| H}y(Xz. Q) + ) L.

xe$

Hence, tr(G)|H} (X3, ;) does not depend on the choice of the lifting 7, and the above
formula can be written as

tr(0)| H}(X;, Q) = tr(0)| Hy (X, Q) + L. (72)
xe$
Formula (65) is a consequence of (70), (71) and (72). O

10. Lefschetz Formula: The General Case

Let X be an arithmetic surface over S and ¢ be a non-trivial S-automorphism of X
Step (1). Let C be the generic fiber of X. By the semi-stable reduction theorem [2],
we can find a finite Galois extension L of K of degree n and Galois group G such that:

() C xg L admits a semi-stable regular model V" over T' = Spec(B) (where B is the
integral closure of R in L);

(2) the automorphism ¢ over C x g L extends to a T-automorphism over V' equally
denoted o;

(3) the G-action over C x g L extends to an action of G over V' by S-automorphisms.

There exists an arithmetic surface W over T, equipped with two birational
morphisms 7 and p

T——S

such that the automorphism ¢ and the group action of G over V lift to W. In other
words, the morphism W — X is a base change (see Definition 7.16).

Step (2). We consider all surfaces over S. By Proposition 7.20, the base change
W — X satisfies the weak projection formula:

nAx.IT5),. = Z(AW-FZ)IOC - Ztr(JTNH:f(Wm Q) + ntr(o)| H}, (X5, Q).

1eG 1eG
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Theorem 7.1, applied to the birational map p, gives:

Aw I = ATV — tr(o0) | HE(Vy, Q) + tr(o0) [ HE (W5, Q).

Let ¢ be the closed point of 7. As V, and V; have the same reduced scheme structure,
we get from the last two relations:

n(AX~rg)-()loc = Z(AV'F;/-:)IO(’ - Z tI'(O"E)|H:r(Vt, Q[) + I’ltl'(O')|H:t(Xy, Ql)
1eG 1€G

By equations (64) and (65), we get:

n(Ax-TE)e = ntr(@) HE(Xe, Qp) = (swi k(1) + m)te(@) | H, (X, Q)
- Z swi/k(D)tr(at) | Hy, (X5, Q)

1€, 1#l

= — Z swy g (Dtr(ot)| H}, (X5, Q) + n(tr(o)| H (X, Q)
1eG

— tr(o)| H (X5, Q).

Theorem 1.1 follows using equation (5). O

Remark 10.1. K. Kato, S. Saito and T. Saito conjectured the Lefschetz fixed point
formula in a different formulation ([10] conjecture (1.5)). As they have already
noticed (loc. cit. second paragraph in page 53), their conjecture can be reformulated,
in their notation, as follows:

(X7, Li*QY g — T/T%) = tr(0)|dY(RT (X, ROQ))). (73)

where X = fix(o) is the scheme of fixed points, i is defined in the diagram below and

7 is the ideal sheaf of the closed immersion X° — I';. The morphism
Li*Q; s> T /Z? induces a quasi-isomorphism on the generic fiber of X7. So,
the left hand side of formula (73) is well defined.

Clearly, the right-hand sides of equations (1) and (73) are opposite. We prove the
same property for the left hand sides as follows. By a sequence of blow-ups of
I'; at closed points, we get a regular surface ﬁ, such that the inverse image X°
of X7 is a Cartier divisor.

Xe T,

P

WX ——T,

L

Ax-—>X XsX

Let J be the ideal sheaf of the closed immersion X¢ — IN"g. I claim that
Rh*(’)}za = Oy. and Rh,J/J? = I/T*. These relations are proved by considering
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a blow—up of a regular surface at a closed point. We deduce that
KX L Qs — T/ T?) = 1(X7, Li'Qy s — /).

Since the rank of the complex Lj*Q} s> JIT 2 over the curve X is zero, the refined
Riemann—Roch formula ([7] example 18.3.12) gives

1X° L Qs — T/ T%) = deg(c™ (Lj* Qs = T/T) N XD
= —deg(Ay.T,) = — deg(Ay.Ty).

We used the excess formula of Theorem 4.7.

Remark 10.2. The Lefschetz fixed point formula (1) holds for a normal surface and
a non-trivial automorphism, if we define the Lefschetz number as in remark 7.6. This
follows from the definition and the Lefschetz fixed point formula for a
desingularisation of the normal surface.

Finally, we give the proof of Lemma 1.2 and Corollary 1.3. Lemma 1.2 is a conse-
quence of Proposition 5.8. Then, by Theorem 1.1,

aG(0) = —(Ax.T'g)p = tr(0)|sw(H; (X7, Q) — tr(o) | Hp (X5, Q)
+ tr(o) | H (X5, Q)); Yo e G—{l}.

Therefore,

ag(o) = tr(o)|sw(H, (X5, Q) — tr(o)|H}(Xs, Q) + tr(o)| H}, (X7, Q)
+ nrg(o); Vo € G,

for some integer n, where r¢ is the character of the regular representation of G. But
we know by [19] proposition 7, that |G|ag is the character of a linear representation
of G. Therefore, ag is the character of a Q;-rational representation of G.

A. Intersection Numbers Over Normal Surfaces

Let X be a normal surface over S (i.e. an integral normal scheme of dimension 2,
proper and flat over S). The object of this appendix is to recall Mumford’s definition
of the intersection number of a vertical Weil divisor with any Weil divisor over X
([14] IT (b)).

Assume first that X is regular. By [6] (Exposé X, example 1.1.), one can define the
intersection number of any divisor D with a vertical divisor E.

Let X be a normal surface. Fix © : X’ — X a resolution of singularities of X, and
let (E;); <;<, be the irreducible reduced components of the exceptional fibers of
n. Let 4 be an irreducible effective Weil divisor over X. Mumford define the
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pull-back of 4 by the formula
"4 = A, + ZV[E,‘,
i=1

where A’ is the strict transform of 4 in X’, and the r; are the rationals defined by the
equations (n*A4.E;) = Ofori =1, ..., r. In other words, the r; are defined by the linear
system:

r

ZFI(E/EZ) = —(A/.E,').

J=1

As det(E;.E)) # 0, the r; are well defined. We extend this definition by linearity to any
divisor.

(1) If A4 is the divisor of a rational function f over X, then n* A is the divisor of the
same function over X’. Indeed, (divy/(f).E;) = 0 for any i. Therefore, n* passes to
rational equivalence.

(2) Let A and B be two Weil divisors over X such that one of them is vertical. Then,
we can compute the rational number (7*A.7* B). It does not depend on the resolution
we choose. Indeed, it is enough to compare these numbers for two resolutions X’ and
X” such that X" is obtained by blowing-up a closed point in X’. The computation is
easy in this case. We define the intersection number of 4 and B by (4.B) = (n*A.7*B).

These intersection numbers have the same properties as in the regular case.
Namely, let A , B and C be Weil divisors over X such that A4 is vertical.

(3) If B s the divisor of a rational function, then (4.B) = 0. This follows from (1).

(4) (4.B+ C) =(A.B)+ (A4.C).

(5) If B is also vertical then, (4.B) = (B.A).

(6) For any Weil divisor D over X’, we have the projection formula

(n*A.D)y, = (A.m.D)y.

Indeed, the divisor D — n*n, D is supported over the exceptional fibers.
Let f: X — Y be a dominant map between normal surfaces over S. Choose
resolutions X’ of X and Y’ of Y over which f lifts:

X’—"LY/

l l”

X—f—)Y

Define the pull-back map f* : Z;(Y) — Z(X) by the formula f* = n.f"™p*, where
f"* is the refined Gysin associated to the l.c.i. map f’ : X’ — Y’ (see Subsection 7.2).
Notice that f7* is defined on the cycle level because it is refined and f” is dominant.
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(7) The pull-back f* passes to rational equivalence. This follows from the same
statement for p* proved in (1). It is clear that /* coincides with the flat pull-back
(defined in [7]) if f is flat.

(8) Assume that 1 is finite of degree d, and let 4 and B be two Weil divisors over Y
with one vertical. Then

(f*Af*B) = d(A.B).
Indeed,
(f*Af*B) — (n*f/*p*An*f/*p*B) — (f/*p*A.TE*TC*f/*p*B) — (,D*Af*/TE*TC*f/*p*B)

Remark that n*n,f™p*B = f™*p*B + D, where D is supported over the exceptional
fibers of ©. Then, f/n*n,f™*p*B = f.f*p*B + f.D. As f” is finite over the complement
of the exceptional fibers of p, then f/f*p*B = dp*B + C, where C is supported over
the exceptional fibers of p. Hence, fn*n.f™p*B = dp*B+ C + f,D. Finally, f/D
is supported over the exceptional fibers of p because p,f,D = f.n.D = 0. Therefore,
(p* A fm*nf " p*B) = (p* A.dp*B) = d(A.B).

B. Additivity of Colength

Let 4 be a Noetherian commutative ring. An ideal 7 of A has finite colength col(7) if
A/I has finite length, and col(/) = Leng4(A4/I). If I is generated by ay, .. ., a, , we say
that the sequence (ay, .. ., a,) has finite colength if the ideal I has finite colength, and
we define col(ay, ..., a,) = col(J).

LEMMA B.1 let a and b be two elements of A such that a is not a zero-divisor in A/(b),
andlet I be anideal. If two of col(al 4+ bA), col({ + bA) and col(a, b) are finite, then so
is the third and

col(al + bA) = col(a, b) + col(I + bA).

In particular, let ay, a; and b be elements of A such that ay or a, is not a zero-divisor in
A/(b). If two of col(ay, b) , col(az, b) and col(ajaz, b) are finite, then so is the third and

col(ajay, b) = col(ay, b) + col(as, b).

Proof. Let A = A/(b) and T = (I + bA)/(b). The Lemma is a consequence of the
exact sequence

0—>A/T -5 A/al—>A/(a)—>0.

The multiplication by « is injective because @ in not a zero-divisor in A. O

If 4 is alocal regular ring of dimension 2, then (a, b) is of finite colength if and only
if (a, b) is a system of parameters. As A4 is regular, a system of parameters is a regular
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sequence and conversely. Therefore, a is not a zero-divisor in A/(b) if and only if
col(a, b) is finite.
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