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RIGHT INVARIANT RIGHT HEREDITARY RINGS 

H. H. BRUNGS 

Let R be a right hereditary domain in which all right ideals are two-sided 
(i.e., R is right invariant). We show that R is the intersection of generalized 
discrete valuation rings and that every right ideal is the product of prime 
ideals. This class of rings seems comparable with (and contains) the class of 
commutative Dedekind domains, but the rings considered here are in general 
not maximal orders and not Dedekind rings in the terminology of Robson [9]. 
The left order of a right ideal of such a ring is a ring of the same kind and the 
class contains right principal ideal domains in which the maximal right ideals 
are two-sided [6]. Furthermore there is a one-to-one correspondence between 
fundamental sets of prime ideals and torsion theories (see section 4). 

1. We assume in the following that R is a right hereditary domain in which 
all right ideals are two-sided. For any two nonzero elements r and 5 in R, there 
exists an element r' with rs = srf. This implies that R can be embedded in a 
skew field of fractions Q(R) and that for every maximal ideal M the set 
5 = R\M is an Ore system. The ring RM = V of quotients rs - 1 , r £ R, s Ç 5 
exists and is again right hereditary. We define B~l = {q £ Q{R)\qB C R\ for 
a nonzero right ideal B of R and BB~l then contains the unit element 1 of R 
since R is right hereditary (Dual basis Lemma). It follows that both rings R 
and V are right noetherian. We obtain the first lemma: 

LEMMA 1. Let Rbe a right hereditary domain in which the right ideals are two-
sided. Let {Mi} be the set of maximal right ideals of R. Then R = C\ Vu where 
yi — RMÎ are local principal right ideal rings in which the right ideals are in­
versely well-ordered. 

Proof. If q G Q(R) is contained in D AVU A any right ideal of R then 
{r (E R] qr € A} <£ Mi for every maximal right ideal Mt. Therefore A = Pi AVt 

and especially R = fï Vt. The F / s are local, right noetherian, right hereditary 
rings and therefore by Kaplansky's theorem [7] right principal ideal domains. 
I t follows [1] that the right ideals are inversely well-ordered and two-sided. 
(Rings with this property were called generalized discrete valuation rings in 
[1].) 

Let Nt be the maximal right ideal of V\. Define Nt° = Vi} N\a+l = NfNt 
and Nia = C\p<aNf for a limit ordinal a. The ideals Nt

a are called the trans-
finite (right) powers of Nt. Every ideal in Vt is of the form Nf for some a 
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and we can define a mapping vt from V\0 onto Tt = \a\ 0 ^ a < o)Ji} for 
some ordinal jif by vt(a) = aioraVt = Nf. It follows that vt(ab) = vt{a) + 
z>*(&) with the usual addition of ordinals and aVt is a prime ideal if and only if 
Vi(a) is a power of co. We set vt(aVi) = v<(a) as well and it follows that 
Vi(aVi) = vt(bVi) if and only \i aVie = bVt. Every ordinal number a can be 
written as a = weiwi + . . . + we'»* with positive integers ns and ordinals 
ei > e2 > . . . > et. Such a representation corresponds to the factorization 

Nt* = P:J . . . pn
e\ 

of iVf as a product of prime ideals Pej = iVf'-7'; P 0 = Nt. For details see [1] 
or [3]. 

We can define a mapping w from the set of nonzero right ideals of R into 
the direct product V of the I \ by w{A) = (v<(i4 Fz)) for a right ideal 4̂ of R. 
This mapping is one-to-one since A = O A Vt and satisfies w(AB) = w(A) + 
^(_B) for right ideals A, B of R. Examples in section 5 show that this mapping 
is in general neither onto nor is the image contained in the direct sum of the 

r,. 

2. Turning to the factorization of right ideals in R we begin with the follow­
ing remark: A~lA = R for every nonzero right ideal A of R. Otherwise A C 
AA~XA C AM for a maximal ideal M of R which implies A = AM, a contra­
diction since w(A) ^ w(AM). We observed earlier that AA~l D R, but there 
will not be equality in general. 

Now let A be a right ideal in R maximal with the property that it can not be 
factored in prime ideals. A 9e R implies that AVt 9e Vt for some i. Then 

4 7, = / * * ; { . . . P*;{ 7, 

with Pej,i = N?ej different prime ideals in Vt with Pejti 2 Pej_lti. The njti 

are positive integers. The intersection Peiti C\ R = Q\tiis & prime ideal in R 
with Qitt~

lA = Ai^. A and Qi,iA1 = A, a contradiction. That i O i is 
obvious and the strict inequality follows from A i Vt 2 A Vt. The equality 
QitiAi — A is correct since it is locally (i.e., if extended to each Vk) correct 
and is the content of the next lemma: 

LEMMA 2. Let A, Pejti, Qiti and Ai be as above. Then <2i,^4iFfc = A Vk for 
every k. 

For a proof consider two different cases: Let AVk = PkBkVk where Pk is a 
minimal prime ideal of Vk containing A Vk. In the first case: PkC\ R = Qiti 

and it is obvious that Qi,iQi,i~lPkBkVk = AVk. In the second case assume 
Qk = Pk A R y£ Qiti. It follows that Qk + Qiti cannot be contained in any 
maximal ideal of R and is therefore equal to R. We obtain QifiVk = Vk and 
R C Qi . r 1 C 7*. This implies Qi i<Qi,r14 7* = 4 7* as desired. 
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With the notat ion as above and Pejti C\ R = Qjti we obtain the following 
corollary: 

COROLLARY 1. There exists an ideal C in R such that 

A = Qnàl. . . QVi'C. 

So far we proved the existence par t of the following theorem: 

T H E O R E M 1. Let R be a right hereditary right invariant ring. Then every right 
ideal in R is the product of prime ideals. Prime ideals P i , P2 of R with Pi Çt P2 Ç= 
P i commute, and PlP2 = P 2 if F'i 2 FV Let A = P i . . . Pn = Qx . . . Qm be 
two factorizations of a right ideal A of R in prime ideals ^ 0 , 9^R such that for 
i < j neither P * 2 Pj or Qtz^ Qj- Then n = m and the two factorizations are 
equal up to the order of commuting factors. 

Proof. If P i and P 2 are prime ideals with P i $£ P 2 Çt P i , the sum P i + P 2 

is not contained in any maximal ideal of R and w(PiP2) = w(P2Pi) follows. 
This means PiP2 = P2P1. We obtain P i P 2 F * = P2Vk for all k in the case 
P i 2 Pi, which implies P i P 2 = P 2 . Every factorization of A in prime ideals 
can therefore be brought in the s tandard form as described in the theorem. 
Assume A is a counterexample to the uniqueness s t a t ement with n minimal. 
Let P i C Mi for a maximal ideal Mt and Vt = RMi. Then A Vt = P i P i 2 . . . 
PieVt with P i C Pi2 C • • • C Pis C Mt for certain of the P / s and A Vt = 
Qki • • • QktVi with Qkl C • • . C Qjct C Mu ki < k2 < . . . < kt. I t follows 
t h a t t = 5, P\V i = Qkl Vt and therefore P i = Qkl. If ki = 1 consider Pi_1^4 and 
we are finished by induction. Since j < ki j * 1 implies Qj ^ Qki and 
Qki 2 Qj w e have QjQki = QkiQj and induction applies again. 

COROLLARY 2. \{A Vt P\ R] \ < Ko for every right ideal A of R. 

Proof. Let A Vt = Ptl . . . P u Vt for prime ideals PtlC • - • C Pu C Mt of 
R. We set A Vt r\ R = B. Then AVt = BVt and there exists an ideal C in R 
with Ptl. . .Pn CB = Ptl . . . PtlC (Corollary 1). We obtain AViC\R = 
B — Ptl . . . Pit where the Ptj are exactly those prime ideals in a factorization 
of A (in s tandard form) which are contained in Mt. T h e corollary follows now 
immediately from the theorem. 

T h e proper ty proved in the corollary for the family of the Vt's is a generaliza­
tion of the proper ty of being 'of finite character ' which plays an impor tan t role 
in the commuta t ive case. (See for example [4, § 35].) 

3 . T h e above results enable us to determine the left orders of all r ight ideals 
of R. Let i" be any right ideal ^ 0 of R. T h e left order Oi(I) is defined as 
Oi( I ) = W G Q(R); qF CI}. We will show t h a t Ot(l) = Pi a^V^r1 if 
IVi — atVi for af £ I. I t is clear t ha t qatVi C atV\ implies q G atV\a{~1- Bu t 
/ = C\ a{Vi and ql C I if and only if qatVi C cLfVi for all i. 
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LEMMA 3. Let R be a right hereditary right invariant ring and let I be any non­
zero right ideal in R. Then 0i(I) is again a right hereditary right invariant ring. 
Oi(I) = II-' = H aiVial~

1for IV\ = atVt. 

Proof. Every right ideal in Oi(I) is two-sided since this is t rue for the rings 
aiViai~l and hence for their intersection Oi(I). Let / ^ 0 be any right ideal 
in Oi(I) and pu t JI = J0, which is a right ideal in R. We want to show tha t 
JJ~l contains the unit element of Oi(I). But / = JH-1 = JJ~l and J~l D 
IJQ-1, since II~l = 01{I) D R. Therefore JJ~l D J J-11 J,-1 D R contains 
1 and this means tha t J is a projective right 0i(I) ideal. 

Every 0t(I) is an order equivalent to R since R C 0t(I) and Oi(I)a C R 
for a right ideal I ^ 0 in R and a ^ 0 in / . But in general infinite ascending 
chains of equivalent orders will appear. 

As an example consider a generalized discrete vaulat ion domain V of type 
co2 + 1 (see [1] or [3]). Let V Z) xV Z) yV Z) 0 be its prime ideals. Then 
xy = ye for a unit e in V. Every element ^ 0 in F can be writ ten uniquely in 
the form ymxnu for non negative integers n and m and a unit u. We will show 
tha t bV ^ aV implies O i (b V) ^? O t (a V). I t was observed earlier tha t O z (a V) = 
a Va-1 and it is clear tha t Ot(aV) Ç Oi(bV). T o show the strict inequali ty 
consider two cases: First let b = ynxmu with m ^ 1, u a uni t in V. Then 
ynxmyx-my-n is an element in 0i(bV) bu t not in Oi(ynxm~1V). Otherwise 
ynxmyx~my-n = ynxm-1rx-(jn-1)y~n for some r in V. This leads to 

ynxmyx-my-nynxm-1 = ynxm~1r = ykxla 

for a unit a and nonnegative integers k and /. The left hand side is equal to 
yn+1fix~1 and yn+1fi = ykxl+1a with units fi and a follows. This is a contradic­
tion to the uniqueness of such a representation. One shows in a similar fashion 
t ha t ynxy-n is an element in Ot(y

nV) which is not contained in Oi(ymxkV) for 
m < n and arbi t rary k ^ 0. This proves t ha t we get a strictly ascending chain 

V £ O^xV) = xVx-1 £ x2Vx~2 £ . . . ^ xreFx-w £ . . . 3/Fy-1 

Ç: yxFx-1^-1 £ . . . 
of orders equivalent to V. 

We might remark tha t the right orders Or(I) of right ideals I 9^ 0 oi the 
rings considered in this paper are equal to R = J - 1 / . 

4. We now consider idempotent filters of right ideals (see [8] and [11]). 
Again let R be a domain satisfying our general conditions: R is r ight heredi tary 
and the right ideals are two-sided. Say \Pj\ je^ = TT is a fundamental set of prime 
ideals if every P j is a prime ideal in R and Pi G ir, Pj Q P implies P G ir 
for a prime ideal P of R. 

L E M M A 4. There is a one-to-one correspondence between fundamental sets of 
prime ideals of R and idempotent filters of right ideals of R. 

https://doi.org/10.4153/CJM-1974-111-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-111-3


1190 H. H. BRUNGS 

Let r = {P}} be a fundamental set of prime ideals of R. We show that the set 

F, = [A; A =PU ...,Pk;Pj € x} 

is an idempotent filter of right ideals. (The P / ' s are prime ideals). 
If A € J r

7 r, r e R then r~lA D A and r"1^ is contained in J ^ . If 4 Ç &~v 

and a _ 1 5 € J ^ for every a £ A and a right ideal B of i?, then we like to 
conclude that B 6 J ^ . 

Let ai, . . . , aw be a finite generating system of 4̂ as a right ideal. It follows 
that B i — aclB £ J^- for every i and B is in Ĵ "*-, since ABi. . . Bnis contained 
in B. 

Conversely, let Ĵ ~ be any idempotent filter of right ideals of R. Consider 
7T = {Pi} the set of prime ideals in J*~. Obviously ^ C ^"x since every ideal in 
^ is a product of primes contained in 7r; and ^ r C ^ since with A, B Ç ^ 
the product A • B is in *̂ ~ and every right ideal C with A C C. 

If ^ is any idempotent filter of right ideals of R, set tFYi = \AVUA Ç ^ }. 
It can be shown that^"V,- is an idempotent filter of right ideals of Vt deter­
mined by a prime ideal Pt of F*. 

The ring of quotients of Vt with respect to ^ V ; is nothing else but the 
localization ViSc1 of Vt with respect to the Ore system St = V\Pt. The 
ring of quotients of R with respect to ^ is R& = D ViSf1 which in general 
will not be a localization of R with respect to some Ore system (see [2]). 

5. Jategaonkar proved a result similar to Theorem 1 for principal right 
ideal domains in which every maximal right ideal is two-sided. These rings are 
of course right hereditary and we will prove that all right ideals are two-sided. 
We will show that for a maximal right ideal M of a principal right ideal domain 
whose maximal right ideals are two-sided the set R\M = S is an Ore system. 
It then follows as in the proof of Lemma 1 that RM = V is a generalized 
discrete valuation ring, all right ideals of V are two-sided and R as the inter­
section of such rings has the same property. 

Let 5 Ç S, r £ R and we may assume that sR + rR = R. There exist 
elements a, b in R with sa + r b = 1. If b is in M consider sar + rbr = r and 
sar = r ( l — br) follows. This is a multiple of 5 and r of the desired form since 
1 — br (£ M. If b $ M consider sas + rbs = s; rbs = s(l — as) follows and 
our proof is completed since bs $ M. 

We do not know if in a right hereditary domain whose maximal right ideals 
are two-sided all right ideals have to be two-sided. Finally we show by an 
example that the mapping w (defined in section 1) is neither onto nor is it 
sufficient to consider the direct sum of the Tt. Let H e a commutative field 
with a monomorphism <r from k[x] into k, and form the twisted power series 
ring R = k[x][[y, a]] whose multiplication is defined by f(x)y = yfa(x). The 
maximal right ideals Mt of R are generated by the monic irreducible poly­
nomials fi(x) of k[x]. Each Yt is of the form {a; 0 S « < w2} and the value 
w{yR) = (co, co, co, . . . co, . . .) is not contained in the direct sum of the IV 
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On the other hand (<o, 0, 0, . . . , 0, . . .) is not contained in the image of w. 
It is clear from Jategaonkar's examples [5] that for every power of co, say 

o)ej, ej some ordinal, there is a ring of the kind considered in this paper such 
that the image of the mapping w is exactly Tj = {a; 0 S a < coej}. We do not 
know if there are rings such that the image of w is equal to the direct sum of 
arbitrary T/s; and similarly we do not know which subsemigroups of the 
direct product of arbitrary T/s can appear as images of w. One restriction is 
given by: COROLLARY 2. The direct product of infinitely many T/s for example 
can never appear as the image of w. 
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