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CHAIN RECURRENCE AND DISCRETISATION

BARNABAS M. GARAY AND JOSEF HOFBAUER

Upper and lower semicontinuity results for the chain recurrent set are shown to
remain valid in numerical dynamics with constant stepsizes. It is also pointed out
that the chain recurrent set contains numerical w-limit sets for discretisations with
a variable stepsize sequence approaching zero.

1. INTRODUCTION

We consider an autonomous differential equation

(1) * = /(*) , ^ R "

where / is of class C2, / ' bounded: | / ' | ^ 70.

Consider a C2 discretisation method <p of order p ^ 1, which means there exists
a constant K (depending only on / ) such that

(2) \<p(h,x)-*(h,x)\^ Khp+1 for all he[0,h0] and x G R"

where $(t,x) denotes the flow defined by (1).

The differentiability assumption on <p implies that <p(h,-) is a C2 diffeomorphism
of Rn onto itself (it is enough to assume that the mixed partial derivative ip^ is
bounded on [O,ho] x R"; see Garay [8, Remark 2.4]). Hence the map <p(h, •) defines a
discrete time dynamical system on Rn.

A simple application of Gronwall's lemma to the variational equation yields the
estimate

(3) \$x(h,x)\ ^ l+-yh for all h £ [0,h0] and i G R "

where the constant 7 can be chosen arbitrarily close to 70 as ho —> 0.

Assume that fi = {00} is a repeller for the flow <£, that is, the system is 'dissipa-
tive', and there is a dual attractor A. We assume for simplicity, that fi is a repellor
also for the diffeomorphism <p(h, •) for small h. (This assumption could be relaxed by
working on the one point compactification sphere. Everything, we discuss in this paper,
can be done on compact manifolds. The necessary technique needed to lift the results
from Rn to the one point compactification sphere or to general compact manifolds is
described in Garay [9].) For basic concepts of dynamics we use in this paper, see for
example, Irwin [10].
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2. U P P E R SEMICONTINUITY OF THE CHAIN RECURRENT SET

It is well-known, see Stuart [13, section 6] or originally Kloeden and Lorenz [11],
that the iteration of f(h,-) has an attractor .4/, which, as h —» 0, goes to A in an
upper semicontinuous way, that is, limsup.4fc = f] \J AT C A, or equivalently, for

A-»0 fc>0T<fc

all e > 0, Ah Q Me{A), as h —> 0, where Afc(A) denotes the e-neighbourhood of A

in K". In this section we prove that the same holds for the chain recurrent set.

We use the following theorem, which combines a result of Conley with the smooth-

ing method of Wilson, see for example, Akin [1, Theorem 6.12].

THEOREM 1 . Let (A, R) be an attractor-repeller pair for the How. Then there

exists a Liapunov function V : R n -» [0,1] of class C°° such that ^ " ^ 0 ) = A,

(4) V(x) = (gradV(a:),/(a:)) < 0 for all x e U = Rn \ {A U R).

There is no loss of generality in assuming that V is globally Lipschitz with constant

L.

LEMMA 1 . For c e (0,1) there exists an h* - h*(c) such that

V{x)^c=>V(<p(h,x))<c for 0 < h< h*

PROOF: We distinguish two cases according as V(x) ^ c/2 or not. If V(x) ^ c/2
then we show V(p(h,x)) < c. This follows for small h from the estimate

(5) V(V{h,x)) < V(x) + \V(<p(h,z)) - V(*(h,z))\ + V(*(h,x)) - V(x)

< | + LKhp+1 + 0.

If c/2 ̂  V(x) ^ c then we show V(<p(h,x)) < V(x) for sufficiently small h. Note first
that the set {$(r , a;) : r £ [0,h0] and c/2 ̂  V(x) < c} is compact. Then apply (5)
again, by observing that now the last term is equal to

h
V{$(T,x))dr

where the integrand is negative by (4), and hence smaller than some constant —a =

-a(c) < 0 . So (5) is

^ V(x) + LKh?+1 -ah< V(x)

for h sufficiently small. • U
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Lemma 1 imphes the existence (and its upper semicontinuity) of the numerical
attractor Ah, by

A»=f ] U {<pM{h,x):V{x)^c},
N=0M=N

see for example, Stuart [13, Theorem 6.2]. (Observe that Ah = Ah if R = ft = {oo}.)
Since <p(h, •) is a diffeomorphism, we can reverse time, and conclude the existence of
the dual repellor Rh. For the upper semicontinuity of R^ we have to show Rh C {x :
V(x) > 1 — c} for small h, which follows from the next Lemma.

Let UH = Kn \ {Ah U Rh) denote the set of connecting (or transient) orbits.

LEMMA 2 . For c e (0,1/2) there exists an h** = h**(c) such that

UhDV-^l-c] for 0<h<h*.

PROOF: By compactness, there is a uniform time T = T(c), such that

I ^ I J E F 1 ^ ] for all O T and x € V-^O.l - c].

Applying the standard error estimate

(6) \${Nh,x)-<pN(h,x)\ ^K(T)hp for h ^ h0, x G Kn, 0 ̂  Nh ^ T

with K{T) = K(eiT - l ) / 7 , we obtain for N = [(T + ho)/h]

V(<pN(h,x)) ^ V(*{Nh,x)) + \V(<pN(h,x)) - V{*{Nh,x))\ ^ C- + LK{T + hQ)h? < c

for sufficiently small h and x £ V~1[0,1 — c]. Hence the numerical approximation of
orbits through those x enters the region V"1^,*:] and remains there by Lemma 1. u

The chain recurrent set is the intersection of all attractor—repeller pairs

C = f \ { A { URt-.iel}

for the ODE, and C/, = ^ { ^ U i ? ^ : i € /&} for the discretised dynamics. (The indexing

sets / and //, are at most countable.) These are equivalent to the standard definitions

based on (e, T)-chains. The concept of chain recurrence was introduced by Conley [5];

for a recent, comprehensive treatment we recommend Akin [1].

Recall and extend the notation Vi = R n \ (A{ U R{) , U{ = R n \ (A{ U R{) , and

Vi for the Liapunov function from Theorem 1 for the attractor—repeller pair (A1, i?1) .

The geometric meaning of the next result is that discretisation cannot make the
chain recurrent set explode.
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THEOREM 2 . One-step discretisation perturbs the chain recurrent set in an upper
semicontinuous way, that is,

lim sup Cfc C C.
h—0

PROOF: It is enough to prove that any compact subset Q of Kn\C is also contained
in Rn\Ch.

T h e compactness of Q implies Q C |J{f7*fc : k — !,••• ,N} for suitable indices
ik £ I • Applying compactness again, there is a c > 0 such tha t

Q Q U K^! - c ) £ U ̂  = K"\ II (4* u Kk) c R"\cfc,
4=1 *=1 *=1

where we used Lemma 2. D

Elementary examples show that Theorem 2 does not hold for other recurrence
concepts, like the set of Auslander recurrent points, the nonwandering set, the BirkhofF
centre, or the minimal centre of attraction. All these sets can explode by discretisation.

3. LOWER SEMICONTINUITY OF THE CHAIN RECURRENT SET

The survey paper of Stuart [13] contains a structural assumption on (1) under
which Ah goes to A in a lower semicontinuous way, as h —> 0, that is,

limmf Ah = f| |J f| K{AT) D A,
"" > 0 f c > O 0 A

or equivalently, for each e > 0, Mc{Ah) 2 A, as h —» 0. In this section we establish
a lower semicontinuity discretisation result for the chain recurrent set. Note that our
structural assumptions (7) and (8) are independent of that in Stuart [13]: No 'natural'
modification of [13, Assumption 6.29] works for our purpose.

PROBLEM. IS lower semicontinuity of the chain recurrent set under discretisations a
generic property of (1)? (The same question is open for attractors, too.) The corre-
sponding perturbation results in Akin [1, Section 7] for diffeomorphisms and vector
fields suggest that the answer is affirmative. The problem is that the discretised system
is not a perturbation in the traditional sense. Since (7) below is satisfied if $ is Morse—
Smale, see for example, Irwin [10], the answer is affirmative in two dimensions. Note
also that assumption (8) below may be close to genericity: recall the general density
theorem of Pugh [12].

THEOREM 3 . Assume that the chain recurrent set of (1), where f is of class C3,

consists of finitely many hyperbolic equilibria Pq and finitely many hyperbolic periodic

orbits Tp,

(7) C = \J{Tp:p=lt...r}U{Pq:q = l,...a}.
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Tien C is lower semicontinuous with respect to one-step discretisations, that is,

liminf Ch 2 C.
h—»o

PROOF: Consider first a hyperbolic equilibrium P from C. The numerical
Hartman-Grobman lemma of Garay [9] implies the existence of positive constants Q
and ho and of a closed neighbourhood Af of P in Rn, such that for all h £ (O,ho\,
there exists a hyperbolic fixed point Ph £ Af of <p(h, •) with d(P,Ph) ^ Q/ip (which is
the maximal compact <p(h, -)-invariant set in Af). Clearly Ph (zCh-

Now consider the more difficult case of a hyperbolic periodic orbit F in C. By a
result of Beyn [3, Theorem 2.1] (which requires the additional smoothness assumption),
there exist positive constants Q and ho and a closed neighbourhood Af of F in Kn,
such that for all h £ (O,/io]> there exists a <p(h, -)-invariant simple closed curve Th

which is the maximal compact <p(h, •)—invariant set in Af and has Hausdorff distance
^ ( F . r ' ' ) ^ Qhp. As a special case of Garay [7, Theorem 4], Th is of class C2 (this
is important for the Denjoy property), for h £ (0,ho].

Now we use some basic properties of circle diffeomorphisms, see for example, Irwin
[10]. If the rotation number of <p{h, -)|r/i is irrational, then the Denjoy property implies
that Th C Ch since ip(h, -)\rh is conjugate to a rotation with dense orbits. If the rotation
number is rational, then Th C Ch does not hold in general. But in this case Th contains
a periodic point 7Q,, whose (finite) orbit {TT* : fc £ Z} is contained in Ch • From the
estimate

^ Khp+1 + const h

for k £ Z , it follows easily that sup{d(x,Ch) : i £ F } - > 0 ) a s / i - ^ 0 . D

REMARKS.

An application of Theorems 2 and 3 to a problem from population genetics is given

in [4].

COROLLARY. In Theorem 3, assumption (7) can be replaced by:

(8) The set of hyperbolic equilibria and hyperbolic periodic orbits is dense in C.

PROOF: There can be at most countably many hyperbolic equilibria and hyperbolic
periodic orbits. Number them. Let Hn be the union of the first n of these hyperbolic

oo
objects. Since by assumption |J Hn = C, we have dH(Hn,C) —» 0. Hence for each

n=l

e > 0 there is an n , such that dH(Hn,C) < e /2. To the finite union of hyperbolic
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objects Hn we can apply the arguments of the proof of Theorem 3, and get an h0,

such that for each h 6 (O,ho] there is a corresponding <p(h, -)-invariant set H% Q Ch.

with dn(Hn,Hn) < e /2 . Hence dH(H%,C) < e which implies the desired lower

semicontinuity. D

The above condition includes the class of systems for which C has a hyperbolic
structure, or equivalently Axiom A and the 'no cycles' condition holds, see [6]. These
systems satisfy the Testability theorem', or rather 'C-stability theorem', that is, the
flow restricted to C is stable against small C^-perturbations of / . It would be interest-
ing to extend this result (in a somewhat weaker form, see the periodic orbit case above)
to discretisations.

Some structural stability results of (1) with respect to discretisations (2) have been
obtained by Garay [9].

4. VARIABLE STEPSIZE

The discretisation method in (2) gives rise to one with variable stepsize sequence
(/ i j , / i2 , • • • ) by defining inductively <fi(hm, • • • ,h\] x) = <p(hm,<p(hm-i, • • • , hi; x)),

tp(O; x) = x, 0 < hm < h0, m = 1,2, • • • .
oo

We assume that hm hn = 0 and J ] hn — oo. We can extend the sequence
n-»°° n=i

{<p{hmy-- »^iia!)}m=i *° a broken line F , that is, to a piecewise linear function
F : R+ —> R n with kinks at the points ^hit by setting T(hm + ... + fei) =
<p(hm,... ,hi;x). Lemma 3 below shows that F is an asymptotic pseudo-trajectory,
as defined by Benaim and Hirsch [2], that is,

t—>oo

locally uniformly in T > 0. They prove in [2, Theorem 7.2 (i)] that the w-limit set A
of an asymptotic pseudo—trajectory with compact closure is internally chain transitive,

that is, the restriction of $ to A is a chain recurrent flow. (A is obviously nonempty,
compact, connected and ^-invariant.) Hence, A is contained in the chain recurrent set
of the limiting ODE. For the convenience of the reader, we include an alternative proof
below, see Lemma 4.

R e c a l l t h a t K(T) = K(e~'T-l)/j a n d se t , for M = 1 , 2 , - - , hmeLx[1)M] =

M{oT x 6 R"> ° ̂  Yl hk
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P R O O F :

M M

V=m+1 / \i=m+l

Ik.. M . . . I* It. .. A\ . YJ.P+1

m = l

m = l

M M

m = l

k
The remaining sum is the lower sum of an integral, as seen by transforming Sfc = £) hi,

and hence satisfies

M

/ e ^ ds = -
Jom=l " u T

which completes the proof of Lemma 3. D

LEMMA 4 . The limit set of an asymptotic pseudotrajectory with compact closure
is internally chain transitive for the original (timiting) Sow.

PROOF: Let p, q be two points in the limit set A of the asymptotic pseudotrajec-
tory, and e, T > 0 be given. We have to construct an (e, T)-chain from p to q in A.
Let 6 < e/4 be such that d(x,y) < S,y e A,< £ [0,2T] implies |$(<,z) - ${t,y)\ < e/2.

The asymptotic pseudotrajectory (9) provides a (S, T)-chain in Rn, connecting p
and q: p = wo,wi,... ,wpf — z, ti £ [T,2T], such that

Ittfi+i — $(ti,iu,-)| ^ 6.

We may furthermore assume that d(wi,A) < 6. Now pick any g< 6 A with d(wi,qi) < S.
Then

\qi+i - $(U,qi)\ 4: \qi+i -wi+i\ + \wi+i - $(U,Wi)\ -

and (gj) is the required (e,T)-chain from p to q in A. U
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THEOREM 4 . For each x e R n , t ie u-timit set

oo

is internally chain recurrent.

PROOF: Lemma 3, with x = T(t), shows that T satisfies (9). Hence, by Lemma 4,
u>(T) is internally chain recurrent. It is elementary to see that u>(F) = Wi1)/lJi...(a;). D

REMARKS. Observe, that the C2-assumption on ip was not used in this section. The

technique developed in section 2 gives easily, but only, that this w-limit set is contained

in C.

Note, that our dissipativity assumption implies that Uhi,h2,—(x) ' s compact but
does not ensure that it is nonempty. However, there exists a positive constant h(x)

with the property that 0 ^ wiki,*!,-!*) whenever AmM[lr,] ^ h(x). Similarly, given a
compact set Q C Kn, there exists a positive constant h(Q) such that 0 ^ u^ ,h3,--{Q) ~

fl {<p{hM,-- M\Q) • M > N} C A whenever /imax[li...] ^ h(Q).
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