SOME USEFUL MATRIX LEMMAS
IN STATISTICAL ESTIMATION THEORY *
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(received November 6, 1963)

In this note, we present two matrix lemmas (one without
proof) which have interesting applications in statistical estima-
tion theory.

LEMMA 1. Let A be a k Xk positive definite matrix.
Then for any k X1 vector ¢, we have that

(1) (c' A c)(c! A-1 c)> (c! c)2 .

Proof. Since A is assumed positive definite, the
quadratic form y' Ay is non-negative for all y. In particular,

-1
by setting y =c+ @« A ¢, where o is any scalar; we then
have

-1 -1
(c+aA ¢c) A{lc+aA ¢c)>0 for all «a.

This can be written as

2 -1 .
c' Ac+2ac' c+a c' A c>0 for all a.

Hence, (c' C)Zf (c' A c)(c' A—1 c) Q. E.D.

This lemma has an application in statistical estimation
theory. Consider sampling from a population with density

i : ye.e,0 ). , e ey
function p(x,ei,ez k) Let (X1 X2 Xn) be a

random sample of n independent observations. Further, let

"
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v=(t ,t_, 5.
( 12 2
vector for 6' =(6 T 6 PORREE 6 k). We shall denote the covari-

ance matrix of T by V and the covariance matrix of

o] o]
Lnp s ey fnp by I . We make the usual assumption
7] 61 2] ek 0

that Ie is positive definite. It is well known that the matrix

...,t ) where t =t (X ,X .., X ) be an unbiased
k i i1 n

VvV - 1 Iéi is positive semi-definite (see Kendall and Stuart
n

[4] and Box [2]).

Suppose we wish to find an unbiased estimator of a
specific linear combination of 6, say c¢'6. One such
unbiased estimator is W =c' T. This estimator has variance

2 :
¢ =c' Vc and clearly, from the preceeding paragraph,

w
0'2>1c' I_1 Applyi L a1 h
- c. e , we have
w T 0 pplying mm v
2
2 1 -1 !
(2) ¢ =c'"' Vec>—c'1 <:>——[C <]
w —n 0 —nc' IO c

This is an interesting result since the extreme right hand
quantity in (2) has been claimed in Statistical literature as

2
the greatest lower bound for o (see for example Wilks [6]).
w

LEMMA 2. Let A bea k Xk matrix. If B is the

(k-2)-rowed minor obtained from A by deleting the rth ang sth
rows and the ttP and uth columns, then
a a
rt st r+t+s+u
(3) = (-1) IB| |A],
a a
ru su
where o«a,, is the cofactor of the i-jth element in ‘A. For a
proof, see Browne [3].
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Again, this lemma has an interesting application in
Statistics. As before, let X have density p(x;80) and

(Xi’ XZ, cees Xn) be a random sample of n independent
observations on X. Let d= d(Xi’ e, Xn) be an unbiased
estimator of 6, and JEERRE SRR be a set of linearly
independent statistics, where Si = si(Xi, cees Xn), and

cov(d, si) =1, cov{(d, sj) =0, j#1.

Further, denote the covariance matrix of (Si’ C e, sk) by A.

Let

“11
L, =
koAl
this is known as the k'? Bhattacharya bound (see [1] and [5]).
Making use of Lemma (2), we now give a new proof that the set
of Bhattacharya bounds Lk, k=1,2,... is non-decreasing.
That is, we wish to show that

We note, first of all, that

L1 “11|B] _ “11 “xx Bllal

k™ k-1 JA| @

e g Al

where B is the (k-2) X (k-2) matrix obtained by deleting the

15t and k*P rows and columns of A. It follows from Lemma 2)
that
a ozz
a
(4) Lo L, = aik]Akr - “1klAl >0,
kk kk

since akk and ]Af ‘are determinants of covariance matrices

of random variables.
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We remark that this result is useful in estimation theory
when using Bhattacharya bounds for finding the greatest lower

bounds for variances of unbiased estimators of 8. We further
2 2 is th
note that since Lkzo-dpd.s...s , Where pd.s . is the

1 k 1 k
multiple correlation coefficient between d and si. .. sk (see

Lehmann [5]), we have that

Hence, from the result given in (4), we have a somewhat simple
proof of the fact that the set of multiple correlation coefficients
is non-decreasing.
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