
COMPACTNESS IN Hom(G, H) 

H. H. CORSON AND I. GLICKSBERG 

Let G be a locally compact abelian group with Bohr compactification Ga. 
Then [3, Theorem 1.2] any subset F of G compact in Ga is necessarily compact 
in G\ alternatively, any closed non-compact subset F of G has its closure F~ 
in Ga 7^ F; hence F~\F ^ 0. One of our aims in the present note is to give 
a result (Corollary 6) which asserts that F~\F has no points which are G^s, 
so that F~\F is a perfect set. Another aim is to give an extension of a cited 
result of [3] in which commutativity and local compactness are essentially 
irrelevant, and to unify the proofs. 

For any topological space G, let Gd be the discrete version of G. Also, for 
any topological groups G, H, let Hom(G, H) be the space formed from the 
continuous homomorphisms from G to H by using the compact open topology. 
Then we have a continuous injection 

Hom(G, H) Ç Horn (Gd, H) 

while the topology in the image is that of pointwise convergence on G; 
evidently, any compact subset F of Hom(G, H) is compact in Hom(Gdl H). 
Our first result is the following partial converse. 

THEOREM 1. Suppose that G and H are topological groups and every closed 
subgroup of G is a Baire space.] Then F C Hom(G, H) and compact in 
Hom(Gd, H) is necessarily compact in Hom(C7, H). 

If G is locally compact abelian and H is the circle group, then this is precisely 
the assertion of [3, Theorem 1.2] for the character group of G. 

Our proof of Theorem 1 has two sides: compactness arguments (which yield 
sequential compactness of F in Hom(Gd, H), and centre mainly about a 
simple argument of Grothendieck [4] also used in [3]), and a category result, 
quite possibly known and reminiscent of results of Baire (see [1, § 5, 
Exercise 23]), with which we shall begin, after giving some notation and 
a remark. 

For topological spaces X and F, C(X, F) denotes the continuous functions 
from X to F in the compact open topology; if F = R, the reals, we write C{X). 
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fThat is, the Baire category theorem holds for each open subset U: U is not a countable 
union of nowhere dense sets. Note that some such hypothesis is needed; for example, take G 
a Hilbert space in the weak topology and H the reals. 
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Remark. W e shall use two simple and well-known facts about equicontinuous 
functions: (1) Suppose t h a t F is compact in C(Xd, Y) and t h a t x0 G X. 
Then F is equicontinuous a t x0 for one uniform s t ructure on Y consistent with 
the topology of Y if and only if the same is t rue for any such uniformity. 
(2) Suppose t h a t F is as above and t ha t D is a dense subset of F which is 
contained in C(Xy Y). If the restriction of D to each compact subset L of X 
is equicontinuous, as a set of functions from L to F, then the closureff of D 
in the compact open topology is F, and F is compact in this topology. 

Proof of (1) and (2). (1) Follows easily from observing t h a t F is 
equicontinuous a t x0 if and only if the map ( # , / ) —»/(#) is cont inuous a t 
(#o,/o) f ° r e ach /o G F. (Use compactness of T7 for the "if" par t . ) 

(2) T h e usual proof of Ascoli's Theorem actually proves this slight 
generalization. 

L E M M A 2. Let X be a Baire space, Y a separable metric space, and F a compact 
metric subspace of C(Xd, Y). Assume that there is a dense subspace D of F 
contained in C(X, Y). Then F is equicontinuous at each point of a dense GÔ in X. 

Proof. By hypothesis, Y is topologized by a countable collection of real 
functions {gi\. Note t h a t {giOfif G F} is a subset of C(Xd) satisfying our 
hypotheses on F. T h u s if we can establish the theorem for Y = R, the more 
general version will follow by the above Remark, using {gi\ to define a metric 
on Y. 

Hence we assume t h a t F C C(Xd). This defines a map e from X into C(F) 
by evaluation. Le t C (F) denote C(F), b u t under the topology of pointwise 
convergence on D. I t is easy to check t h a t the ident i ty map i from C (F) to 
C(F) has the proper ty t h a t the inverse image of each closed ball in C(F) 
is closed in C(F). 

Now let Bi, B2, . . . be a cover of C(F) by closed balls of radius less than 1/n. 
Then {i~1(Bs)\ forms a closed cover for C'(F). However, from our hypotheses, 
e is cont inuous from X into C'(F). Hence {(i o e)~1(Bs)} forms a closed 
cover for X. I t follows t h a t there is a dense open subset Un of X such t h a t 
each point of Un has a neighbourhood which is mapped into some Bs by 
i o e. Consequently, C\ Un is a dense Gt in X, and i o e is cont inuous a t each 
point of H Un. Since F is compact , C(F) has the topology of uniform 
convergence; hence this means t h a t for each x Ç O Un and e > 0 there is a 
neighbourhood V of x for which \f(x) — f(y)\ < e, a l l / G F, y G V, i.e., t h a t 
F is equicontinuous a t x. 

COROLLARY 3. Let G be a topological group each of whose closed subgroups 
is a Baire space, and let H be any topological group. Suppose that F is a compact 
metric subset of Hom(G d , H) with a dense subset D contained in Hom(G :, H). 
Then F is compact in the compact open topology. 

ffThe closure is in the space of all maps from X to Y whose restrictions to compacta are 
continuous. 
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Proof. By the above Remark (2), we need only show that D\K is 
equicontinuous on any compact K C G. Since any neighbourhood of the 
identity in H is the inverse image of a corresponding neighbourhood in a 
metric quotient of H, it suffices to show equicontinuity of the corresponding 
set of mappings from X into the metric quotient. Let {fn} be a countable 
dense subset of D. 

Let Go be the closed subgroup K generates in G. Since fn(K) is compact 
metric, \Jnfn(K) is necessarily separable in H, and so the closed subgroup 
Ho generated by \Jmfm(K) is separable, and contains D(Go). If we give H0 

a metric consistent with its topology, then D\G0, as a subset of Horn (Go, H0), 
is equicontinuous at some Xo G GQ by Lemma 2. By the Remark (1) above, 
we see that D\Go is equicontinuous at Xo using the group uniformity on H0. 
Therefore, D\Go is equicontinuous at each point of Go by translation. 

As was noted there, [3, Theorem 1.2] gave an analogue of the uniform 
boundedness principle for locally compact abelian groups, and the same can 
be said for Theorem 1. But here the Banach space result follows from the 
same derivation: specifically, Corollary 3 contains the Banach-Steinhaus 
theorem, which easily yields uniform boundedness. 

Our other ingredient in the proof of Theorem 1 is given by the following 
lemma of Grothendieck [4] related to a result of Smulian [2] and its argument. 

LEMMA 4. Let K be compact and Y metric and let F be any compact subset 
of C(Kd, Y). If F is contained in C(K, F), then any sequence {fn\ in F has a 
compact metric closure in C(Kd, Y). 

Proof. Let K0 be the compact quotient space of K formed by identifying 
points not separated by elements of {fn}~ and K± that obtained using only 
{fn}. Evidently, Kx is a metric space and we have a continuous map of K0 

onto Ki. But since points separated by {fn}~ must in fact be separated by 
{fn} itself, the map is one-to-one and K0 and Ki are homeomorphic; thus K0 

is compact metric. Now let {xi} be a countable dense set in K0. It follows 
as above that the topology of pointwise convergence in {fn}~ is the same as 
the topology of pointwise convergence on {xt}. Hence {fn}~ is compact metric. 

Proof of Theorem 1. By the Remark (2) above, it suffices to show that 
F\K is equicontinuous on each compact K C G. 

To see that F\K is equicontinuous we can assume that H is metric (exactly 
as in the proof of Corollary 3, replacing H by a metric quotient H0 and F 
by its image in Hom(G, H0), evidently a compact subset of Hom(Gd, H0)). 
Now conditional compactness in the metric space C(K, H) is equivalent to 
conditional countable compactness; thus, if F\K is not conditionally compact 
in C{K,H), i.e., not equicontinuous, we have a sequence {fn\K}, fn Ç F, 
which has no cluster point in C(K,H). But F\K is compact in C(KPJ H) 
since F is compact in Hom(Gp, H), and thus by Lemma 4 we have {fn\K}~ 
compact metric in the topology of pointwise convergence on K. If G0 is the 
closed subgroup of G generated by K, then since points of F separated by 
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Go are already separated by K, we conclude, by exactly the argument used in 
the proof of Lemma 4, that the topology of pointwise convergence on Go 
and that of pointwise convergence on K coincide on F. Thus {/w|Go}~~ is compact 
metric under pointwise convergence on Go, and hence by Corollary 3, \fn\Go}~ 
is compact in Hom(G0, H). Consequently, {fn\K} has a cluster point in C(K, H) 
after all, a contradiction showing that F\K is conditionally compact in C(K, H) 
and completing our proof of Theorem 1. 

One immediate consequence of Theorem 1 is that if F is a closed but a 
non-compact subset of Hom(G, H), its closure F~ in Hom(Gd, H), if compact, 
is distinct from F, i.e. F~\F ^ 0. But more can be said. 

THEOREM 5. Suppose that G and H are topological groups and every closed 
subgroup of G is a Baire space. Suppose that every element of Horn (Gd, H) 
which is continuous on all compact subsets of G is continuous (as is the case if 
G is locally compact or metric). Then if F is a closed subset of Hom(G, H) 
whose closure F~ in Horn (Gd, H) is compact, the subspace F~\F of Horn (Gd, H) 
has no points which are G^s {and hence, is a perfect set). 

Proof. Suppose tha t / 0 € F~\F is a G s in F~\F; thus 

nunr\ (F-\F) = i/o}, 
n 

where { Un\ is a decreasing sequence of compact neighbourhoods of f0 in F~. 
If C\n Un (^ F = 0, our proof is complete since by choosing fn Ç Un (^ F we 
obtain a sequence any of whose cluster points lie in 

nunnF-= nunn (F-\F) = {/0} ; 
n n 

hence fn —>/o in Hom(Gd, H) by compactness of F~. By Corollary 3, fn —>/o 
inf f f Hom(G, iJ) , and fo £ F since F is closed in Hom(G, H), a contradiction. 

Thus, we can assume that E = C\n Un C\ F ^ 0. If E = E~, its closure 
in Horn (Gd,H), then E is compact in F~, f0 € E, and we can replace Un 

by a compact subneighbourhood Vn of /o missing E, and hence obtain 
C\n Vn r\ F = 0, yielding a contradiction as before. Thus 

E^E-cnunr\F- = E\j (r\unr\ (F~\F)) = E U {/0}f 
n 

hence E~ = E\J {/0} ^ E. 
Now any compact subset of the compact subspace E~ of Hom(Gd, H) which 

lies in E is contained in Hom(G, H), and hence is compact in the compact open 
topology by Theorem 1. Each / Ç E has a compact neighbourhood V in 
E~ avoiding /0, hence compact in Horn (G, H), and since Hom(G, H) ~> 
Hom(Gd, H) is continuous, F is a neighbourhood of/ in the subspace E of 
Hom(G, H). Thus £ is a locally compact subspace of Hom(G, H). 

t t t / n ~^/o in the compact open topology; thus / 0 is continuous on compacta, hence in 
Hom(G, H) by hypothesis. 
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Moreover, the obvious one-to-one map of the one-point compactification 
Eœ of E into E~ = E\J {/0} sending co on to / 0 is continuous at co since then 
if U is an open neighbourhood of / 0 in E~, E~\U = E\U is compact in 
Hom(Gd, H) and lies in Hom(G, H), hence is compact there, i.e., 
(E C\ U) \J {00} is a neighbourhood of 00. Continuity elsewhere is evident 
so we have a homeomorphism: E~ is the one-point compactification of E. 

Now E is not compact in Horn (G, H) (otherwise E is compact in 
Horn (Gd,H), hence equals E~). As a consequence, E cannot be countably 
compact in Horn (G,H): for then it would be equicontinuous on compacta 
as we saw in the proof of Theorem 1, so that by the Remark (2) above, / 0 

would be in the closure of E in the compact open topology, whence /o is 
continuous on compacta and therefore in Hom(G, H) by our final hypothesis. 
But now by Theorem 1, since E~ C Hom(G, H), E~ is compact in Hom(G, H), 
as is its closed (in Hom(G, H)) subset E, while E is not compact there, as 
we have seen. 

Thus we have a sequence {fn} in E with no cluster point in Hom(G, H). 
Hence fn —» 00 in its locally compact subspace E, and therefore fn —»/0 in E~, 
i.e., pointwise. By Corollary 3, we have/w —>/o uniformly on compacta, hence 
/o G Horn (G, H) as before, and now we arrive again at the conclusion that 
E is compact in Hom(G, H), a contradiction, completing our proof. 

COROLLARY 6. If G is a locally compact abelian group and F is a closed 
non-compact subset with closure F~ in Ga, then F~\F has no points which are 
GBS and is a non-void perfect set. 

We need apply Theorem 5 to F as a subset of Hom(G, H), H the circle 
group. 

Some of the results of [3] also extend to the present context; we shall point 
out two specifically, which follow from Theorem 1. 

COROLLARY 7. Suppose that X is a locally compact or metric space and 
f:X—> Hom(G, H) when followed by Hom(G, H) —» Hom(Gd, H) is continuous, 
where G satisfies the hypotheses of Theorem 1. Then f is continuous. 

Proof. If X is locally compact and F is a compact neighbourhood of x0 G X, 
t h e n / ( F ) is compact in Hom(Gd, H), hence in Hom(G, H) by Theorem 1. 
If {xô} is a net in V converging to x0, then/(#5) —>/(#) in Hom(Gd, H), thus 
{/(#«)} has at mos t / (x ) as a cluster point in Horn(G,H), hence converges 
because of the compactness o f / ( F ) . If X is metric (or any space in which 
convergent sequences define the topology) we can replace V by {xn}~, where 
Xn ^ XQ. 

COROLLARY 8. Suppose that G, H, and K are topological groups with G and H 
locally compact or complete metric. Suppose that [•,•]: G X H—* K has all 
sections g —> [g, h] and h —> [g, h] continuous homomorphisms. Then [• , •] is 
jointly continuous. 
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Proof, [g, •] G Hom(i7, K), and £—>[#,•] is a continuous map into 
Hom(Hd, K), so that, by Corollary 7, g —» [g, •] is continuous into Horn(77, X) . 
If i7 is locally compact and F is a compact neighbourhood of its identity h0, 
and Wis a neighbourhood of the identity k0 of K, then we have a neighbourhood 
U of the identity g0 in G for which [ U, V] C W, and our proof is complete. 
Again if G is locally compact, our proof is complete since we may interchange 
G and H; thus we can assume that G and H are both metric, and we only 
have to see that gn —•» g0, ^ —> &o imply [gn, hn] —» fe0. But with {/&n} ~ in place 
of F, we have [U, {hn}~] C W for some [7 for any given W, which yields 
convergence. 

Remark (added in proof). Corollary 6 shows that a closed non-compact set 
F in a locally compact abelian group G in a sense has a "large" closure F~ 
in Ga. This is reflected in a further corollary: F~ does not lie in a countable 
collection of cosets of G in Ga. 

We argue by contradiction, reducing to the easy case of a metric cr-compact 
group. First, we have a sequence {fn} in F tending to oo in G, and by hypothesis, 
the closure of {fn} lies in countably many cosets of G. Trivially there is a 
metric quotient H of G in which the image of our sequence tends to oo, and 
since G —> H extends to map Ga onto Ha, with each coset of H in Ha the image 
of a coset of G in Ga, the image of {fn) in H is a closed non-compact subset 
of H with closure in Ha contained in a countable union of cosets of H. Thus 
it suffices to obtain a contradiction from the case in which G is metric and 
F = {fn}> Moreover, since {fn} lies in an open <r-compact subgroup G0 of G 
we can replace G by Go and take G c-compact: for {fn}~ C Go- and 

0 ^ {fn}~ n (x + G) = {/„}- r\ Go- n (x + G) 
implies x + G = XQ + G, x0 G G0

 _ ; thus 

(x0 + G) P\ Go- = x0 + G P\ Go- = Xo + Go 

(since y G G\G0 implies that there is a g in GA = 1 on G0, ^ 1 at y, whence 
y £ G0~); thus {fn}~ lies in a countable union of cosets of G0 in Go-, while 
Go- is precisely G0

a (as is most easily seen by computing its character group, 
GaA/Go~±, or the discrete version of GA modulo its subgroup orthogonal to 
Go-, i.e., to Go, hence the discrete version of G0

A = GA/G0
X). 

Therefore we can assume that G is both metric and cr-compact. But now 
{fn}~ n (x + G) is cr-compact in the topology of G translated to x + G, 
hence in the topology of Ga. Consequently, for x G {fn}~\{fn}, since {fn}~ lies 
in countably many cosets of G, we have a sequence of compact neighbourhoods 
Un of x in Ga with f) Un Pi {fn}~ C x + G; and being compact in Ga and 
contained in x + G, it is compact in the topology of G translated to x + G 
by [3, Theorem 1.2], and both topologies coincide. Thus O Un Pi {fn}~ is a 
metrizable subspace of Ga, which of course implies that x is a Gs in {fn}~y 

hence in {fn}-\{fn}> contradicting Corollary 6. 
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At least when G is metric and c-compact, there is a local form of our result: 
for any x G F~\F, each neighbourhood U of x in F~ meets uncountably many 
cosets of G. (Otherwise, with U compact we can find Un as before with 
Pi Un n U C\ F- C X + G, yielding x a G8 in F~.) 
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