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Abstract

Let a1, a2, . . . , am and b1, b2, . . . , bl be two sequences of pairwise distinct positive integers greater than 1.
Assume also that none of the above numbers is a perfect power. If for each positive integer n and prime
number p the number

∏m
i=1(1 − an

i ) is divisible by p if and only if the number
∏l

j=1(1 − bn
j ) is divisible

by p, then m = l and {a1, a2, . . . , am} = {b1, b2, . . . , bl}.
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Let a1, a2, . . . , am and b1, b2, . . . , bl be two sequences of pairwise distinct positive
integers greater than 1. We associate with them the following two sequences:

xn =

m∏
i=1

(1 − an
i ), yn =

l∏
j=1

(1 − bn
j). (1)

They belong to the broader class of so-called Lehmer–Pierce sequences (see, for
example, [2]).

For any natural number z, let supp(z) denote the set of all prime divisors of z. The
main result of the paper is the following theorem.

Theorem 1. Assume that for each n ∈ N,

supp(xn) ⊆ supp(yn). (2)

Then, for any i ∈ {1, . . . ,m} for which ai is not a perfect power, there exists j ∈ {1, . . . , l}
such that

b j = at
i with t ∈ N.

We now introduce some useful terminology. We call a Lehmer–Pierce sequence
(xn) of type (1) reduced if and only if none of the ai is a perfect power.

Theorem 2. Assume that for each n ∈ N, the relation (2) holds and that (xn) is reduced.
Then, for each n ∈ N, the term yn is divisible by xn and yn/xn is a linear recurrence
sequence.
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Theorem 3. Assume that for each n ∈ N,

supp(xn) = supp(yn) (3)

and that both (xn) and (yn) are reduced. Then m = l, {a1, a2, . . . , am} = {b1, b2, . . . , bl}

and xn = yn for each n ∈ N.

We need two lemmas.

Lemma 4 [4, Corollary 1]. Let n and ni be positive integers with ni |n for 1 ≤ i ≤ k. Let
K be a number field, αi ∈ K∗ (1 ≤ i ≤ k) and β j ∈ K∗ (1 ≤ j ≤ l). Let wn(K) be the
number of nth roots of unity contained in K and assume that

(wn(K), lcm[K(ζq) : K]) = 1, (4)

where the least common multiple is over all prime divisors q of n and additionally
q = 4 if 4 |n. Consider the following implication.

(i) Solubility in K of the k congruences xni ≡ αi (mod p) implies solubility in K of at
least one of the l congruences xn ≡ β j (mod p).

The implication (i) holds for almost all prime ideals p of K if and only if there exists
an involution σ of the power set of {1, . . . , l} such that for all A ⊂ {1, . . . , l},

|σ(A)| ≡ |A| + 1 (mod 2)

and ∏
j∈σ(A)

β j =
∏
j∈A

β j

k∏
i=1

αain/ni
i γn,

where ai ∈ Z, γ ∈ K∗.

Lemma 5. Let G be a free abelian group. Then the equality

l∏
i=1

(1 − gi) = 0 in the group ring Z[G]

implies that gi = e for a certain i ∈ {1, . . . , l}.

Proof. Only a finite number of elements of G is involved and therefore we can assume
that G is of finite rank, say G = Zs. Let us consider the homomorphism

h : Z[G] −→ C(z1, . . . , zs)

given on group elements by the formula

h(k1, . . . , ks) = zk1
1 · · · z

ks
s .

It is clear that g , e gives h(g) , 1 and hence the assertion follows. �
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Proof of Theorem 1. Without loss of generality, assume that i = 1. Let q be a prime
number and assume that a1 is a qth power residue mod p, where p is also a prime
number and p , q. If p . 1 (mod q), then all residues mod p are qth powers mod p
and a posteriori there exists b j, a qth power residue mod p. If p ≡ 1 (mod q), then by
Euler’s criterion

a(p−1)/q
1 ≡ 1 (mod p)

and hence x(p−1)/q ≡ 0 (mod p) as well. Using the assumption (2) of the theorem, we
infer that y(p−1)/q ≡ 0 (mod p) and further there exists j with 1 ≤ j ≤ l such that

b(p−1)/q
j ≡ 1 (mod p).

Using Euler’s criterion once again, we see that b j is a qth power residue mod p. So,
we have verified that the implication (i) of Lemma 4 does hold for all p , q (K = Q,
k = 1). The technical assumption (4) is obviously satisfied. Therefore, we conclude
by Lemma 4 that there exist an involution σ = σ(q) of the power set of {1, . . . , l} and
integers a(A), γ(A) ∈ Q∗ for A ⊂ {1, . . . , l} such that |σ(A)| ≡ |A| + 1 (mod 2) and∏

j∈σ(A)

b j = aa(A)
1 γ(A)q

∏
j∈A

b j. (5)

Because there are only finitely many relevant involutions, there are an involution σ and
an infinite set of primes Q such that (5) holds for q ∈ Q with the same σ. LetD be the
set of all prime divisors of the number a1b1 · · · bl. For any prime s ∈ D and u ∈ Q+, let
νs(u) be the s-adic exponent of u. For any u ∈ Q+, let v(u) = (νs(u))s∈D be the vector
of exponents. For q ∈ Q, we obtain from (5) that

dimFq

(
v
( ∏

j∈σ(A)

b j ·
∏
j∈A

b−1
j

)
, v(a1)

)
= 1.

Because Q is infinite, it follows that

dimQ
(
v
( ∏

j∈σ(A)

b j ·
∏
j∈A

b−1
j

)
, v(a1)

)
= 1.

Now we employ the assumption that a1 is not a perfect power and get∏
j∈σ(A)

b j = aa(A)
1

∏
j∈A

b j with a(A) ∈ Z.

The above 2l−1 equalities can be compactly rewritten as the equality
l∏

j=1

(1 − b j) = 0

in the group ring Z[Q+/〈a1〉], where b j denotes the image of b j ∈ Q
+ in the quotient

group Q+/〈a1〉. Because a1 is not a perfect power, the group G = Q+/〈a1〉 is free and,
by Lemma 5,

b j = e in Q+/〈a1〉,

which gives b j = at
1 with t ∈ Z. �

Theorems 2 and 3 are immediate corollaries of Theorem 1.
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Theorem 2 can be considered as a variant of the so-called quotient problem (see, for
example, [5, Theorem A] and also [3]): instead of assuming that yn/xn ∈ Z for infinitely
many n ∈ N, we require that supp(xn) ⊆ supp(yn) (for each n ∈ N) and obtain essentially
the same conclusion that yn/xn assumes only integral values and is a linear recurrence
sequence. It would be interesting to generalise Theorem 2 to any pair (xn), (yn) of
linear recurrence sequences or at least to dispense with the restriction that (xn) should
be reduced.

Theorem 3 can be compared with the following theorem of Barańczuk.

Theorem 6 (Barańczuk [1, Corollary 1.4]). Assume that a1, . . . , am are multiplicatively
independent and also b1, . . . , bl are multiplicatively independent. If, for each n ∈ N,
we have (3), then

{a1, . . . , am} = {b1, . . . , bl} and xn = yn or each n.

In [1] a broader perspective is outlined, which applies also to our note.
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