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REMARKS ON A PROBLEM OF MOSER 
BY 

V. CHVÂTAL 

In memory of Leo Moser 

Let M (ri) be the set of all the points (xl9 x2,..., xn) e En such that x{ G {0,1, 2} 
for each i'= 1, 2 , . . . , n and let/(«) be the cardinality of a largest subset of M(ri) 
containing no three distinct collinear points. L. Moser [4] asked for a proof of the 
inequality f(ri) > c3n/Vn. 

Let us consider the set Sn of those points (xl9 x2,..., xn) e M(ri) which satisfy 
\{i:Xi= 1}| = [(n +1)/3]. As Sn is a subset of the sphere with center at (1 ,1 , . . . , 1) 
and radius (/z-[(« + l)/3])1/2, no three distinct points of Sn are collinear. Thus 
we have 

(1) f(ri) > \S I = ( n W - t ( n + 1 ) / 3 ] 

This is the desired result as Stirling's formula implies 

/ n \2n- [ ( n + 1)/3] ^ (—\ 2-3nlVn 

Now we are going to improve (1). Let k, n be integers such that 0<k<n. A 
family F of sets will be called an (n, k) family if: 

(i) all the members of F are subsets of the same set with n elements, 
(ii) \X A Y\>k whenever X, Y are distinct members of F (X A Y denotes the 

symmetric difference (X- Y) u (F-X)). 

We denote by G(n, k) the maximum cardinality of an (n, &)-family. It is easy to 
show that G(n,k)<2n~k; the determination of G(n,k) is essentially a problem 
from coding theory. Given any x=(xl9 x2,..., xn) e M(ri) we set P(x)={i:Xi = 0} 
and Q(x)={i:Xi = l}. Given any set X<=-{l,2,...,n} such that \X\=j, take an 
(«-y, £-y>family F(X) of subsets of {1, 2 , . . . , «}-Zsuch that \F(X)\ = G(n-j, 
k—j) and put 

R(X) = {ue M(n):Q(u) = X, P(u) e F(X)}. 

Set i^n,fc=U JR(X) where X ranges over all subsets of {1, 2 , . . . , n} with at most k 
elements. Assume that Rntk contains three distinct collinear points x, y, z with y 
between x and z. Then 2y=x+z and so 

(2) Q(x) = Q(z), Q(y) = Q(x) u (P(x) A P(z)). 
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In particular, we have x,ze R(Q(x)). But then P(x) and P(z) are distinct members 
of F(g(jc)) and so \P(x) A P(z)\>k-\Q(x)\. By (2) we then have \Q(y)\ = \Q(x)\ 
+1 P(x) AP(z)\ > k which is a contradiction, as | Q(y)\ < k whenever y e Rnt k. As k 
was arbitrary, we have 

(3) f(n) > max \Rn,k\ = max 2 \AGifl-hk-j). 
0<,k<n 0£k<n j = o \J/ 

Asymptotically (3) is not much of an improvement over (1), for one has 

max J (n\G{n-j,k-j) < max 2"-« £ (") 

and, as Professor J. G. Kalbfleisch pointed out to me, 

max 2n~k y (n) ~ 2(P\ll23n/Vn. 
0*k<n £0 \jj \4TTJ 

However, (3) gives better lower bounds for f(n) than (1) whenever n>2. In par­
ticular, it gives exact values of f{ri) for n = l,2,3—one has /(1) = 2, f(2) — 6, 
/(3) = 16. Nevertheless, (3) only yields/(4) > 42 whereas/(4)> 43. Indeed, the set 
i u ^ u C where 

A = {xeM(4):\Q(x)\ = 2 } , 

B = {xeM(4):\Q(x)\ = 1 and \P(x)\ is even}, 

C = {(0,0, 0,0), (0,0, 0,2), (2, 2, 2, 2)} 

contains no three distinct collinear points. I do not know the exact value of f(4). 
We conclude with a few remarks setting the present problem in a more general 

context. Firstly, for integers k and n such that 3<k<n we denote by r(k, n) the 
cardinality of a largest subset of {1, 2 , . . . , n) containing no k distinct integers in an 
arithmetic progression. It has been conjectured for a long time that 

(4) r(k, n) = o(n) 

for all k. The relation (4) would imply the existence of g(k, p) such that whenever 
n>g(k,p) and the set {1, 2 , . . . , n} is partitioned into p parts, one of the parts 
contains k distinct integers in an arithmetic progression. The existence of g(k, p) 
was first proved by Van der Waerden [7] ; some small values of g{k, p) can be found 
in [1]. Roth [5] proved (4) for k = 3; in fact, he proved r(3, «)<cn/loglog«. 
Recently Szemerédi [6] proved (4) for k = 4. The relation f(n) = o(3n) would imply 
r(3, ri) = o(ri). More generally, one could define M(k, n) as the set of all the points 
(xl5 x 2 , . . . , xn) e En such that x{ e {0, 1 , . . . , k-1} for each 1 = 1, 2 , . . . , n, and 
f(k, n) as the cardinality of a largest subset of M(k, n) containing no k distinct 
collinear points. Then the relation 

(5) f(k, n) = o(kn) for all k 
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would imply (4)—indeed, one has r (k, kn) <f(k, n). This has been already remarked 
by Moser [3]. The relation (5) would also imply the existence of h(k,p) such that 
whenever n > h(k, p) and M(n, k) is partitioned into p parts, one of the parts con­
tains k distinct collinear points. Actually, h(k, p) exists for any k and/?; this follows 
from a more general theorem of Hales and Jewett [2]. It is easy to see that the 
existence of h(k9p) implies the existence of g(k,p) as one has g(k,p)<kh(k'p\ 
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