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REMARKS ON A PROBLEM OF MOSER

BY
V. CHVATAL

In memory of Leo Moser

Let M (n) be the set of all the points (x;, x,, . . ., X,) € E™ such that x; €{0, 1, 2}
for each i=1,2,...,n and let f(n) be the cardinality of a largest subset of M (n)
containing no three distinct collinear points. L. Moser [4] asked for a proof of the
inequality f(n) > c3"/v/n.

Let us consider the set S, of those points (x;, X, . . ., X,) € M(n) which satisfy
|{i:x;=1}| =[(n+1)/3]. As S, is a subset of the sphere with center at (1, 1,...,1)
and radius (n—[(n+1)/3])"2, no three distinct points of S, are collinear. Thus
we have

) f = 15,0 = |,

n

) n-= n+ 131,
(n+1)/3]

This is the desired result as Stirling’s formula implies

({(n +n1)/3]) on-Tn+ I3 (4_9;) 2 371/,;/5.

Now we are going to improve (1). Let k, n be integers such that 0<k<n. A
family F of sets will be called an (n, k) family if:

(i) all the members of F are subsets of the same set with n elements,
(i) |X A Y|>k whenever X, Y are distinct members of F (X A Y denotes the
symmetric difference (X— Y) U (Y- X)).

We denote by G(n, k) the maximum cardinality of an (n, k)-family. It is easy to
show that G(n, k) <2"~*; the determination of G(n, k) is essentially a problem
from coding theory. Given any x=(xy, Xg, . . ., X,) € M(n) we set P(x)={i:x;=0}
and Q(x)={i:x;=1}. Given any set X<{l,2,...,n} such that |X|=j, take an
(n—j, k—j)-family F(X) of subsets of {1, 2, ..., n}— X such that |F(X)|=G(n—j,
k—j) and put

R(X)={ueMm:Qu) = X, P(u) e F(X)}.

Set R, »=|J R(X) where X ranges over all subsets of {1, 2, ..., n} with at most k
elements. Assume that R, , contains three distinct collinear points x, y, z with y
between x and z. Then 2y=x+2z and so

@ 0(x) = 2(), Q(») = Q(x) V (P(x) A P(2)).
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In particular, we have x, z € R(Q(x)). But then P(x) and P(z) are distinct members
of F(Q(x)) and so |P(x) A P(z)| >k—|Q(x)|. By (2) we then have |Q(»)|=|Q(x)|
+|P(x) AP(z)| >k which is a contradiction, as |Q(y)| <k whenever y € R, . Ask
was arbitrary, we have
3 fo > max (Rusl = max > (76— k=)

0<k<n o0sk<nj=0 \J

<n

Asymptotically (3) is not much of an improvement over (1), for one has

k (n £ (n
max > (.)G(n—j,k—j) < max 2"k Y ()
0s<k j=o \J

0<k<nj=0 \J <n

and, as Professor J. G. Kalbfleisch pointed out to me,

e 5 (M) ~2(2) v
O?ka}n jZo (]) ~ (27;) / a

However, (3) gives better lower bounds for f(n) than (1) whenever n>2. In par-
ticular, it gives exact values of f(n) for n=1, 2, 3—one has f(1)=2, f(2)=6,
f(3)=16. Nevertheless, (3) only yields f(4) >42 whereas f(4) >43. Indeed, the set
A Y B U C where

4={xeM@:|0x)| =2},
B={xeM@):|Q(x)| = 1and |P(x)| is even},
¢ ={(,0,0,0), (0,0,0,2), (2, 2,2, 2)}

contains no three distinct collinear points. I do not know the exact value of f(4).

We conclude with a few remarks setting the present problem in a more general
context. Firstly, for integers £ and »n such that 3 <k <n we denote by r(k, n) the
cardinality of a largest subset of {1, 2, . . ., n} containing no k distinct integers in an
arithmetic progression. It has been conjectured for a long time that

@) r(k, n) = o(n)

for all k. The relation (4) would imply the existence of g(k, p) such that whenever
n>g(k, p) and the set {1,2,...,n} is partitioned into p parts, one of the parts
contains k distinct integers in an arithmetic progression. The existence of g(k, p)
was first proved by Van der Waerden [7]; some small values of g(k, p) can be found
in [1]. Roth [5] proved (4) for k=3; in fact, he proved r(3, n)<cn/log log n.
Recently Szemerédi [6] proved (4) for k=4. The relation f(n)=0(3") would imply
r(3, n)=o(n). More generally, one could define M (k, n) as the set of all the points
(x1, X2, . . ., X;) € E™ such that x;€{0,1,...,k—1} for each i=1,2,...,n, and
f(k, n) as the cardinality of a largest subset of M (k, n) containing no k distinct
collinear points. Then the relation

5) flk,n) = o(k™ forall k
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would imply (4)—indeed, one has r (k, k") < f(k, n). This has been already remarked
by Moser [3]. The relation (5) would also imply the existence of A(k, p) such that
whenever n > h(k, p) and M (n, k) is partitioned into p parts, one of the parts con-
tains & distinct collinear points. Actually, 4(k, p) exists for any & and p; this follows
from a more general theorem of Hales and Jewett [2]. It is easy to see that the
existence of h(k, p) implies the existence of g(k, p) as one has g(k, p) < k"%,
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