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Overtaking collisions of large-amplitude solitons are investigated via fluid simulations for
a plasma consisting of cold ions and Boltzmann-distributed electrons. To achieve this, a
new fluid simulation code is presented. In addition, a novel approach to construct soliton
initial conditions is developed. Using these ideas, initial conditions are combined that
allows the simulation of overtaking collisions. It is shown that, in the small-amplitude
regime, simulation results agree well with the two-soliton solution obtained from
reductive perturbation theory. Interestingly, in the large amplitude regime, both the slow
and fast solitons re-emerge after the collision with no significant change, showing that
the collisions remain elastic. A comparison between reductive perturbation analysis and
the simulations show that the only significant effect of higher order nonlinearities on
overtaking collisions is a reduction in the magnitude of the phase shifts of both solitons.

Keywords: plasma nonlinear phenomena

1. Introduction

Bipolar electric field structures propagating parallel to the magnetic field have been
observed in many regions of Earth’s magnetosphere (see for example Hansel et al. (2021)
and references therein). An interesting feature of these observations is that the structures
often appear in large clusters, as is clearly demonstrated by Bale et al. (1998) and Bounds
et al. (1998). These structures are often interpreted as Bernstein–Greene–Kruskal modes
obtained from kinetic models (Muschietti et al. 1999; Main, Newman & Ergun 2006) or
ion-acoustic solitons from fluid models, as argued in the review paper by Lakhina et al.
(2018). This paper concerns itself with the latter, namely fluid theory. The fact that these
pulses have different widths and amplitudes implies that they propagate with different
velocities. As such, one may expect frequent overtaking collisions to occur when the faster
solitons overtake the slower ones.

In fluid theory, there are two theoretical approaches to study soliton solutions. The
first approach is reductive perturbation theory (RPT) that was introduced by Washimi
& Taniuti (1966), where Korteweg–deVries (KdV)-type equations are derived. These
equations govern small-amplitude solitons. The study allows for the construction of
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so-called N-soliton solutions, allowing one to study collisions in the small-amplitude
regime. These solutions show that overtaking collisions are elastic in the small-amplitude
regime.

The second theoretical approach to study solitons in fluid models is the so-called
Sagdeev pseudopotential analysis that was first applied by Sagdeev (1966). The
advantage of this methodology is its ability to construct single-soliton solutions without
small-amplitude restrictions. However, the method is formulated in a way that excludes
the possibility to consider collisions Therefore, to study overtaking collisions in the
large-amplitude regime, one must resort to experiments or simulations.

In recent years, fluid simulation studies of solitons have gained much traction. Most of
these studies focus on two aspects of soliton dynamics, namely wave-breaking (Kakad,
Omura & Kakad 2013; Kakad & Kakad 2016; Lotekar, Kakad & Kakad 2017) and
generation mechanisms of solitons from initial ion number density disturbances (Kakad,
Kakad & Omura 2014; Kakad, Lotekar & Kakad 2016; Lotekar, Kakad & Kakad 2016;
Kakad et al. 2019; Lotekar, Kakad & Kakad 2019b; Singh et al. 2021, 2022; Guo et al.
2023). For the latter aspect, results show that such disturbances are sufficient to generate
solitons in a wide range of plasma models. Moreover, Lotekar et al. (2016) showed that
supersolitons can also be generated from a generalized initial disturbance in appropriate
models.

As was alluded to in the introductory paragraph, another important aspect of soliton
dynamics is their collisions. This topic has received less attention to date in terms of fluid
simulation studies. Previous studies of this topic are limited to head-on collisions, that is,
collisions where solitons move in opposite directions (Lotekar, Kakad & Kakad 2019a).
However, to the best of my knowledge, fluid simulation studies of overtaking soliton
collision have not been undertaken to date. Nevertheless, the topic of overtaking collisions
has been studied via kinetic simulations (Jenab & Spanier 2016) and particle-in-cell
(PIC) simulations (Sharma, Sengupta & Sen 2015). In the latter case, solitons were
generated through solutions obtained from KdV solutions. An unfortunate consequence
of this approach is that in the large-amplitude regime, the initial disturbances undergo
a steepening process before the final form of the soliton emerges while producing a
disturbance in the wake of the soliton. This complicates the analysis of the effect of the
collision, as it is difficult to distinguish between the effects of steepening, tail-formation
and collisional effects. As a result, the topic of the elasticity of overtaking collisions of
large-amplitude solitons received little attention from Sharma et al. (2015).

To address the issue of initial steepening and tail-formation, this paper introduces
a novel approach based on the works of Olivier, Verheest & Maharaj (2017) and
Olivier, Verheest & Hereman (2018) to construct soliton solutions directly via Sagdeev
pseudopotential analysis (Sagdeev 1966). The advantage of this approach is that its
solutions retain the full nonlinearity of the fluid equations. This eliminates the problem
of initial steepening. In addition, it allows one to simulate solitons with larger amplitudes
than those obtained from KdV approximations or other initial disturbances.

The purpose of this paper is to use this new approach to study the elasticity of overtaking
collisions of large-amplitude solitons. To perform the simulation, we constructed a fluid
simulation code that is conceptually similar to those used in earlier studies (Lotekar
et al. 2016, 2019a), with three modifications, namely that the second-order bootstrap
time integration method is replaced by a fourth-order accurate Runge–Kutta method, a
fourth-order accurate spatial derivative approximation is used to solve Poisson’s equation
instead of a second-order approximation and Newton’s method is used to solve the
nonlinear system of equations resulting from the discretized Poisson’s equation, rather
than the successive-over-relaxation (SOR) method (Young 2014). It should be noted that
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the use of Newton’s method to solve the Poisson equation has been applied successfully
in PIC simulation studies (Sharma et al. 2015).

The paper is structured as follows. In § 2, we present a standard fluid model consisting of
cold ions and Boltzmann electrons. We also obtain soliton solutions by means of RPT and
Sagdeev pseudopotential analysis. Section 3 provides a brief overview of the numerical
scheme, supplemented by more details in Appendices A–C. In § 4, the fluid simulation
code is validated through simulations of single-soliton solutions. In § 5, the results of the
simulation of overtaking soliton collisions are presented. Conclusions are discussed in § 6.

2. Fluid model and analytical solutions

We now proceed to introduce the fluid model that is studied in this paper. In addition,
we also provide an overview of soliton solutions obtained by means of RPT and Sagdeev
pseudopotential analysis.

2.1. Fluid model
The fluid equations are governed by the normalized continuity equation,

∂n
∂t

+ ∂

∂x
(nu) = 0, (2.1)

the normalized momentum equation,

∂u
∂t

+ u
∂u
∂x

+ ∂φ

∂x
= 0, (2.2)

and the normalized Poisson equation,

∂2φ

∂x2
+ n − eφ = 0. (2.3)

In the normalized fluid equations, n denotes the ion number density normalized with
respect to the equilibrium ion density ni0. The ion fluid velocity is represented by u
and is normalized with respect to the ion-acoustic speed for Boltzmann electrons CIA =
(kBTe/mi), where mi denotes the ion mass, and the electrostatic potential φ is normalized
with respect to kBTe/e, where kB is the Boltzmann constant, Te is the electron temperature
and e is the electron charge. In addition, the time variable t is normalized with respect
to the inverse ion plasma frequency ω−1

pi = (miε0/ni0e2)1/2, where ε0 is the permittivity
of free space. The spatial variable x is normalized with respect to the Debye length
λD = (ε0kBTe/ni0e2)1/2.

2.2. Reductive perturbation analysis
In the following, we use the results obtained by Washimi & Taniuti (1966). Rather than
producing a full derivation, we report the important definitions and solutions used in this
study.

For reductive perturbation analysis, we introduce the following perturbation expansions:

n = 1 + εn1 + ε2n2 + · · · , (2.4)

u = εu1 + ε2u2 + · · · , (2.5)

φ = εφ1 + ε2φ2 + · · · , (2.6)
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along with the moving frame coordinates

ξ = ε1/2 (x − t) , τ = ε3/2t. (2.7a,b)

By substituting these expansions, as well as a Taylor series expansion of the function eφ

in Poisson’s equation, it follows that the electrostatic potential φ1 satisfies the following
KdV equation:

∂φ1

∂τ
+ 1

2
∂3φ1

∂ξ 3
+ φ1

∂φ1

∂ξ
= 0, (2.8)

while n1 = u1 = φ1.
For the purpose of this paper, we are interested in two solutions. The first of these is the

single soliton solution, given by

φ1(ξ, τ ) = 3c sech2
[√

c
2

(ξ − cτ)

]
. (2.9)

To express the solution in the original coordinates, we note that φ ≈ εφ1. By setting c = 1
and using the original coordinates as expressed in (2.7a,b), one obtains the following
solution for the electrostatic potential:

φ(x, t) = 3ε sech2
[√

ε

2
(x − (1 + ε)t)

]
. (2.10)

It follows that the amplitude of the soliton is given by A = 3ε, while the speed is given
by M = 1 + ε. Therefore, for any choice of M > 1, one can determine the value of ε to
determine the solution. However, it should be noted that the approximation works best for
ε � 1. In addition, since n1 = φ1 and u1 = φ1, one obtains the following solutions for the
number density and ion fluid velocity:

n = 1 + 3ε sech2
[√

ε

2
(x − (1 + ε)t)

]
, (2.11)

u = 3ε sech2
[√

ε

2
(x − (1 + ε)t)

]
. (2.12)

The second solution we consider is the two-soliton solution. In particular, we consider
the two-soliton solution where the excess velocity of the fast soliton is twice as large as the
excess velocity of the slow soliton. Here, the excess velocity is the speed in excess of the
ion acoustic speed. More specifically, if the speed of the soliton is given by M, the excess
speed is given by M − 1. The solution is given by

φ1(ξ, τ ) = 12
2 cosh2 η1√

2
+ sinh2η2[

a−cosh
(

η2 + η1√
2

)
+ a+cosh

(
η2 − η1√

2

)]2 , (2.13)

where a± = √
2 ± 1 and ηj = ξ − jt for j = 1, 2. We can express the solution in terms of

the original coordinates, so that

φ(x, t) = 12ε
2 cosh2 ζ1 + sinh2ζ2[

a−cosh (ζ2 + ζ1) + a+cosh (ζ2 − ζ1)
]2 , (2.14)
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where ζ1 = √
ε/2(x − (1 + εt) and ζ2 = √

ε(x − (1 + 2ε)t. During periods of the
solution where |t| � 1, the fast soliton propagates with a speed of Mf = 1 + 2ε, while the
slow soliton propagates with speed Ms = 1 + ε. In addition, the corresponding solutions
for the ion density and ion fluid velocity are given by

n(x, t) = 1 + 12ε
2 cosh2 ζ1 + sinh2ζ2[

a−cosh (ζ2 + ζ1) + a+cosh (ζ2 − ζ1)
]2 (2.15)

and

u(x, t) = 12ε
2 cosh2 ζ1 + sinh2ζ2[

a−cosh (ζ2 + ζ1) + a+cosh (ζ2 − ζ1)
]2 , (2.16)

respectively.
As an example, consider the two-soliton solution (2.14) with ε = 0.1, corresponding

to the collision of two solitons, where the slow and fast solitons propagate with speeds
Ms = 1.1 and Mf = 1.2, respectively. In figure 1, we show different representations of the
solution. In figure 1(a), the solution is shown in terms of the original coordinates by using
the perturbation expansions (2.5) and transformations (2.7a,b). Unfortunately, the width
of the solitons is small relative to the total spatial domain so that the resulting solutions
only produce thin lines that provide little detail. To gain a better perspective, we plot the
solutions in terms of moving frames coordinate defined in terms of the slow and fast soliton
speeds, defined as

ξs = x − Mst, ξf = x − Mf t. (2.17a,b)

Figure 1(b) shows the solution plotted with respect to the slow soliton time frame ξs.
Notice that prior to the collision, the slow soliton (light green line) is vertical, indicating
that its speed coincides with the moving frame. After the collision, we see that this line
shifts to the left, indicative of the phase shift that results from the collision. Following the
collision, the shifted curve remains vertical, indicating that the speed after the collision is
unaffected. Similarly, figure 1(c) shows the propagation of the fast soliton (yellow curve)
to remain unchanged after the collision, except for a phase shift to the right. Due to the
full recovery of both solitons after the collisions, these collisions are referred to as elastic
collisions.

2.3. Sagdeev pseudopotential analysis
An important aspect of reductive perturbation analysis is the fact that it is limited
to the small-amplitude regime. For larger amplitudes, higher order nonlinear effects
become significant and even dominant for large amplitudes. For such solutions, Sagdeev
pseudopotential analysis provides an alternative approach that retains the full nonlinearity
of the system. However, the resulting analysis is only relevant to the construction of
single-soliton solutions.

Sagdeev pseudopotential analysis introduces a moving frame of the form

ξ = x − Mt, (2.18)

where M is the propagation speed. The idea is then to look for solutions that remain
constant in this frame of reference. A necessary condition for obtaining soliton solutions
is that one must have a propagation speed that exceeds the acoustic speed, that is, M > 1.
In addition, we impose asymptotic boundary conditions that ensure that the plasma returns
to the equilibrium far away from the soliton, given by the following set of boundary

https://doi.org/10.1017/S002237782400062X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400062X


6 C.P. Olivier

(a) (b)

(c)

FIGURE 1. Different graphical representations of the time evolution of the electrostatic potential
φ corresponding to the two-soliton solution with ε = 0.1. (a) Solution plotted in terms of the
original coordinates of x and t. (b) and (c) Solutions plotted in the moving frames ξs and ξf ,
respectively.

conditions: n → 1, u → 0 and φ → 0 when |ξ | → ∞. By substituting the moving frame
variable into the continuity equation and performing a straightforward integration yields

u = M − M
n

. (2.19)

Similarly, the momentum equation can be integrated in a straightforward manner. By using
(2.19) to eliminate u, one obtains

n = 1√
1 − 2φ

M2

. (2.20)

Substitution of (2.20) into (2.19) allows us to also express the fluid velocity u in terms of
φ, given by

u = M −
√

M2 − 2φ. (2.21)
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The final step is to use Poisson’s equation to obtain the electrostatic potential φ. By
substituting the moving frame variable into (2.3), Poisson’s equation becomes

d2φ

dξ 2
= eφ − 1√

1 − 2φ

M2

. (2.22)

By multiplying this equation by dφ/dξ , integrating and applying the boundary conditions,
one obtains the following first-order ordinary differential equation (ODE) in the form of
an energy integral:

1
2

(
dφ

dξ

)2

+ V(φ) = 0, (2.23)

where the Sagdeev potential V(φ) is given by

V(φ) = M2

[
1 −

√
1 − 2φ

M2

]
+ 1 − eφ. (2.24)

Unfortunately, (2.23) and (2.24) cannot be integrated analytically. However, one can
integrate the equation numerically to construct the soliton solutions. Once the electrostatic
potential is constructed numerically, one can substitute the solutions into (2.20) and (2.21)
to obtain the ion number density and ion fluid velocity, respectively The unstable nature
of the solutions of (2.23) leads to some inaccuracies for the region where |φ| � 1. To deal
with this, one can apply an asymptotic analysis, as discussed in § 4. Throughout this paper,
this novel approach is used to construct initial conditions for solitons.

2.4. Higher-order effects on single-soliton solutions
For solitons with small amplitudes and speeds only marginally faster than the acoustic
speed Ma = 1, the difference between the single-soliton solutions obtained from the
KdV equation and the Sagdeev pseudopotential are very small. Gradually, as the soliton
amplitude increases, the differences become increasingly more apparent, thus indicating
that higher order nonlinear effects become significant. To illustrate this, let us consider the
number densities obtained for solutions with small amplitude that arises when M = 1.01
and a relatively large amplitude that arises when M = 1.3. The results are shown in
figure 2. In panel (a), we see that the solution obtained from the KdV equation agrees
well with the Sagdeev potential. The two sets of solutions are almost identical except
at the peak, where we see that the KdV solution slightly underestimates the maximum
number density. However, in panel (b), we see a dramatic difference between the KdV
approximation and the exact solution obtained from the Sagdeev approach. We see that the
solution obtained from the RPT overestimates the width, but significantly underestimates
the peak density.

This leads to the question: how does the increase in peak density affect overtaking
collisions of solitons? In particular, two-soliton solutions of the KdV equations show that
overtaking soliton collisions are elastic, with collisions only resulting in a phase shift.
For large-amplitude soliton collisions, are these collision properties still valid or do higher
order nonlinear effects, such as larger peak ion densities, lead to inelastic collisions? Since
there is no analytical approach available to study this question, we investigate this problem
by means of numerical simulation.

https://doi.org/10.1017/S002237782400062X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400062X


8 C.P. Olivier

(a) (b)

FIGURE 2. Comparison of solutions for the ion number density obtained from Sagdeev
pseudopotential analysis (blue curves) and RPT (red curves): (a) solutions for M = 1.01; (b)
solutions for M = 1.3.

3. Numerical scheme

The main purpose of this fluid code is to simulate solitons that are typically defined on
the interval x ∈ R. As such, the first step is to truncate the interval to a large but finite
interval x ∈ [−L/2, L/2]. In addition, we introduce periodic boundary conditions. This
approach is typical in soliton simulations.

The next step is to introduce a discretization. To discretize the spatial domain, we
introduce a grid of N + 1 equidistant points on the interval, denoted by

xi = −L
2

+ i
x, i = 0, 1, . . . , N − 1. (3.1)

Here 
x = L/N denotes the spatial step size. Since periodic boundary conditions are used,
all function values at x0 are equal to function values at xN , so that the function values at
this grid point do not need to be approximated.

In a similar way, we discretize the time domain by introducing a time step size of 
t
and denote the jth time step as

tj = j
t. (3.2)

To ensure that the Courant–Friedrichs–Lewy condition (Courant, Friedrichs & Lewy
1928) is satisfied, we choose 
t = 0.1
x throughout the paper.

Having fully discretized the domain, we introduce vectors to denote the different
function value approximations at different time steps. To this end, let ni,j = n(xi, tj) and
let

n( j) = [
n0,j, n1,j, . . . , nN−1,j

]T (3.3)

denote the approximate solution at all the grid points when t = tj. Using similar notation,
we introduce vectors for the fluid velocity and electrostatic potential, given by

u( j) = [
u0,j, u1,j, . . . , uN−1,j

]T (3.4)

and
φ( j) = [

φ0,j, φ1,j, . . . , φN−1,j
]T

, (3.5)

respectively.
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To ensure that all spatial approximations are fourth-order accurate, we use the finite
difference formula

∂f
∂x

(x̄, t) = f (x̄ − 2
x, t) − 8f (x̄ − 
x, t) + 8f (x̄ + 
x, t) − f (x̄ + 2
x, t)
12
x

+ O (

x4)
(3.6)

to approximate the spatial derivatives in the continuity and momentum equations (2.1)
and (2.2), respectively. For the spatial derivative in Poisson’s equation, we use the
approximation

∂2f
∂x2

(x̄, t) = 1
12
x2

[−f (x̄ − 2
x, t) + 16f (x̄ − 
x, t) − 30f (x̄, t)

+16f (x̄ + 
x, t) − f (x̄ + 2
x, t)
]+ O (


x4) . (3.7)

A crucial element of the numerical scheme is to solve the boundary value problem
associated with the Poisson equation. We follow a similar approach to that used
by previous schemes, namely by using finite difference approximations to obtain a
nonlinear system of equations. There are two notable changes however. First, we use
a fourth-order finite difference approximation (3.7) to approximate the second-order
derivative, an improvement on the second-order approximation used previously. Second,
we use Newton’s method to solve the nonlinear system of equations, as opposed to the
SOR method used previously. The details of this approach are discussed in Appendix A.

To solve the equations of continuity and momentum, we use a method of lines
approach to yield a system of ODEs. The resulting system of ODEs is solved through
a fourth-order Runge–Kutta method, once again improving (in terms of accuracy) on the
second-order bootstrap method of earlier codes. The details of this approach are discussed
in Appendix B. In addition, some important steps were taken to improve the efficiency of
the code, as detailed in Appendix C.

4. Single-soliton simulation

Before we investigate soliton collisions, it is important to demonstrate the ability to
simulate single-soliton solutions. This not only validates the accuracy of the numerical
simulation code, but also tests the construction of the soliton initial conditions. A crucial
component of such simulations is the ability to construct the soliton solution on an interval
of arbitrary length by means of an asymptotic analysis. Once we have established this
construction, we show the results obtained for a single soliton with speed M = 1.1.

4.1. Constructing soliton initial conditions on arbitrary interval lengths
Despite the analytical form for the Sagdeev potential, (2.23) has no closed form solutions.
As such, one must integrate (2.23) numerically to obtain the solution of φ. To do so,
we consider the initial value problem given by (2.22) with initial conditions given by
φ(0) = φr and dφ/dξ = 0, where φr is the positive root of the Sagdeev potential, that
is, V(φr) = 0 with φr > 0. Due to the symmetry of soliton solutions, it then follows that
φ(ξ) = φ(−ξ), so that the solution only has to be constructed for ξ > 0 and can then be
reflected about the φ axis to produce the remainder of the solution.

One issue that arises from this approach is that the solution of the ODE initial value
problem is unstable. As a result, numerical and round-off errors lead to inaccuracies in
the limit when φ → 0. To understand this problem, it is useful to refer to the potential
well analogy of (2.23), where the Sagdeev potential acts as a frictionless potential well
for a fictitious particle. For the particle to finish on the top of the potential well, the
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solution must be solved exactly, otherwise the particle will either fall back into the well
(underestimation) or fall off on the other side of the well (overestimation).

To deal with the tails, we briefly review the results of Olivier et al. (2017), where an
asymptotic analysis was used to compare the tails of regular solitons with those of acoustic
speed solitons. The idea is to use a Taylor series analysis to fit a parabola for |φ| � 1. Since
V(0) = V ′(0) = 0, it follows that the Taylor series expansion of V about φ = 0 is given by

V (φ) = 1
2 V ′′ (0) φ2 + O (

φ3) , (4.1)

so that we can approximate the Sagdeev potential as

V (φ) ≈ −M2 − 1
2M2

φ2, (4.2)

provided that |φ| � 1. By substituting this approximation into (2.23), one can easily
integrate the equation analytically to obtain

φ (ξ) = C exp

(
±
√

M2 − 1
M2

ξ

)
, (4.3)

where C is an integration constant. To construct the initial condition, we solve the initial
value problem (2.22) numerically until one observes a sufficiently small solution of φ. One
then substitutes the given ξ value, say ξ0 into (4.3), to determine the constant of integration
C. Clearly for ξ → +∞, one must use the lower minus sign in the exponent, so that

C = φ0 exp

(√
M2 − 1

M2
ξ0

)
. (4.4)

As an example, we show the Sagdeev potential for M = 1.1 in figure 3(a). Here the red
dot represents a pseudoparticle for illustrative purposes. Now, if the particle is released
from this position, the absence of friction will mean that it will approach the local
maximum of the potential well at the origin, and the position φ will approach zero as
ξ approaches infinity, as ξ plays the role of time in the analogy. However, the solution
obtained from numerically integrating (2.22) is shown in figure 3(b) by the blue curve.
Here we see that the solution behaves appropriately for 0 � ξ � 40. However, at some
point, the value of φ starts to increase. This corresponds to the particle returning to its
original position as if it does not have enough energy to reach the top. However, as stated
earlier, this is due to numerical errors and the unstable nature of the solution. Indeed,
numerically, one always observes either that the particle returns to φ ≈ φr or that the
particle overshoots the origin, resulting in φ → −∞. The red curve shows the solution
obtained by fitting the asymptotic tail at φ ≈ 10−4. Here, the curve decreases exponentially
as one would expect. The resulting solution can be constructed for the necessary interval
length without any stability issues.

4.2. Results of single-soliton simulation
To simulate the soliton solutions, we use the solution obtained through integrating
Poisson’s equation numerically, along with the tail fitted by means of the asymptotic
analysis, as the initial condition electrostatic potential φ(x, 0). This solution is then
substituted into (2.20) and (2.21) to obtain the initial number density, n(x, 0), and
the initial fluid velocity, u(x, 0), respectively. Throughout all simulations, we choose
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(a) (b)

FIGURE 3. Construction of the tail of the soliton initial condition. In panel (a), the Sagdeev
pseudopotential well is shown with the blue curve, while the red dot indicates the fictitious
particle. The red part of the potential near the origin shows the part of the curve where the
asymptotic expansion is applied. In panel (b), the blue curve shows the solution obtained from
numerical integration only, while the red curve shows the soliton solution obtained by fitting the
asymptotic tail.


t = 0.1
x to ensure numerical stability while also satisfying the Courant–Friedrichs–
Lewy condition.

In figure 4(a), the solution is shown for the initial condition associated with M = 1.1
for 0 � t � 100. Here, an interval length of L = 100 is used, with 
x = 0.1. It is clear
that the soliton propagates with a fixed speed and without changing form, as expected
from a soliton solution. Notice that the solution re-emerges on the left of the domain at
t ≈ 45. This is due to the incorporation of periodic boundary conditions. In figure 4(b),
the same solution is shown relative to the moving frame ξ = x − Mt, where M = 1.1. The
advantage of this representation is that the analytical solution remains stationary in this
frame. The vertical nature of the yellow curve indicates that the constant speed of the
soliton is recreated numerically. In figure 4(c), we plot the absolute error of the solution at
t = 100. Here, the absolute error is given by the absolute difference between the solution
at t = 100 plotted in the moving frame and the initial condition φ(x, 0), that is,

Absolute error = |φ(x − 110, 100) − φ(x, 0)| . (4.5)

The maximum of the absolute error is five orders of magnitude smaller than the soliton
amplitude. This validates both the numerical scheme and the construction of the soliton
initial conditions.

5. Overtaking soliton collision simulations

We have now established all the elements necessary to simulate overtaking collisions of
solitons. To do this, we construct the solution of the slow soliton and a fast soliton using
the Sagdeev pseudopotential method. Once both solutions are available, we shift the initial
condition of the fast solution sufficiently far to the left of the origin to ensure that there is
almost no overlap with the slow soliton. The two solutions are then added together to form
the initial condition for the collision. To start off, we consider an overtaking collision in the
small-amplitude regime. We then consider an overtaking collision in the large-amplitude
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(a) (b)

(c)

FIGURE 4. Simulation results for a soliton simulation with speed M = 1.1. (a) Full solution in
the laboratory coordinates. (b) Solution in the moving frame ξ = x − Mt. (c) Absolute error for
the solution at t = 100.

regime. Finally, we will discuss the effect of amplitude on the phase shifts associated with
soliton collisions.

5.1. Small-amplitude soliton collision Ms = 1.01
To start off, we consider the simulation results from a collision between two solitons,
where the slow soliton propagates with a speed of Ms = 1.01 and the fast soliton has
a speed of Mf = 1.02. The amplitudes of the two solitons are given by φs ≈ 0.029777
and φf ≈ 0.059117, respectively. These values agree well with the corresponding values
associated with reductive perturbation analysis, given by φs = 0.03 and φf = 0.06,
respectively. This is to be expected, as both solitons are in the small-amplitude regime.

The large widths of the solitons require a sufficiently large choice of truncated interval
length L to avoid soliton overlap at the initial condition. Here we used a truncated interval
length L = 1000. Conversely, the small gradients associated with the large widths allow
us to use a relatively sparse spatial grid. For Ms = 1.01, the simulations provided accurate
results for a spatial step size of 
x = 1 and a temporal step size of 
t = 0.1. Since
the difference between the speeds is small, the time integration must be performed over
a substantial time period. Here, we solved the solution for 0 � t � 60 000.

The result of the simulation is shown in figure 5. In figure 5(a), the solution is shown
in terms of the slow moving frame ξs = x − Mst. After the collision at t ≈ 30 000, we see
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(a) (b)

(c)

FIGURE 5. Simulation results for a soliton collision with slow and fast soliton speeds of Ms =
1.01 and Mf = 1.02, respectively. The moving frame references ξs = x − Mst and ξf = x − Mf t
are used in panels (a) and (b), respectively. In panel (c), the solid blue line shows the simulation
results at t = 60 000, while the associated two-soliton solution from RPT (2.14) is shown with
the black dots.

that the slow soliton (green line) remains vertical, indicative that the propagation of the
slow soliton after the collision is unchanged. In addition, we see that the soliton re-emerges
slightly to the left of its original position, indicating a phase shift to the left.

To consider the effect of the collision on the fast soliton, we plot the solution in terms
of the fast moving frame ξf = x − Mf t in figure 5(b). The fact that the fast soliton (yellow
curve) remains vertical after the collision shows that the speed of the fast soliton is also
unaffected by the collision. In addition, we see that the fast soliton re-emerges to the right
of its original position, indicating a phase shift towards the right.

Figure 5(c) shows a comparison between the two-soliton solution from RPT (2.14) and
the simulation result at the termination time t = 60 000. The solid blue line shows the
result obtained from the simulation, while the black dots show the two-soliton solution
obtained from RPT. This panel shows good agreement between the simulation result and
RPT. This is to be expected, as the solitons fall well within the small-amplitude regime.

This leads to the main question of the paper: how do higher order nonlinear effects
affect soliton collisions in terms of elasticity and phase shift? To investigate this question,
we next consider a collision of two solitons in the large-amplitude regime.
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5.2. Large-amplitude soliton collision Ms = 1.2
We now consider the simulation results for a collision between two large-amplitude
solitons, where the slow soliton propagates with a speed of Ms = 1.2 and the fast soliton
has a speed of Mf = 1.4. The amplitudes of the two solitons are given by φs ≈ 0.52439
and φf ≈ 0.93827, respectively. For solitons with such large amplitudes, the effects of
higher-order nonlinearities can no longer be ignored, so that one would expect deviations
from the small-amplitude regime.

For these simulations, the widths of the solitons are fairly small, so that a significantly
smaller interval length of L = 200 can be used. However, the large gradients associated
with these small widths require us to choose a much finer spatial grid than for the previous
example, namely a spatial step size of 
x = 0.01 and a temporal step size of 
t = 0.001.
Fortunately, the large difference between the speeds means that the time integration can be
performed over a relatively short time span. Here, we solved the solution for 0 � t � 500.

The results of the simulation are shown in figure 6. In figure 6(a), the solution is shown
in terms of the slow moving frame ξs = x − Mst. After the collision at t ≈ 250, we see that
the slow soliton (green line) remains vertical. Remarkably, this shows that the propagation
of the slow soliton after the collision is unchanged. In addition, the leftward phase shift is
clearly visible. Similarly, figure 6(b) shows that the fast soliton also recovers its original
speed after the collision. In this panel, the rightward phase shift of the fast soliton is clearly
visible.

To compare the simulation results with the associated result from RPT, we plot the
result of the simulation along with the two-soliton solution (2.14) in figure 6(c) at the
termination time t = 500. The solid blue line shows the result of the solution obtained
from the simulation, while the black dashed line show the two-soliton solution of RPT. As
mentioned in § 2.4, the difference in shapes is due to higher order nonlinear effects. The
most important aspect that is shown here is that there is a significant difference in phase
shifts. In particular, the leftward phase shift of the slow soliton is less than that predicted
by the two-soliton solution (2.14) from RPT. Similarly, the rightward phase shift of the fast
soliton is smaller than that predicted by RPT.

To summarize, the simulation shows that the elastic nature of overtaking collisions is
conserved in the large-amplitude regime. The only effect of higher order nonlinearities is a
reduction in the magnitude of the phase shifts of both slow and fast solitons. To investigate
this further, we now take a closer look at the effect of higher order nonlinearities on phase
shifts.

5.3. Higher order nonlinear effects on phase shift
The results from the large-amplitude simulation revealed that the only effect of higher
order nonlinear effects is to reduce the phase shift of the solitons after the collision. In the
following, we make a comparison between phase shifts obtained from simulations with
those obtained from the two-soliton solution (2.14) via RPT.

In table 1, we show the two sets of phase shifts corresponding to different speeds. For
both the simulation and the two-soliton solution, the phase shifts were determined by
comparing the solutions before and after the collision. For the slow solitons, we see good
agreement for speeds Ms � 1.1. Beyond this, we see that the differences between the KdV
and simulation results grow increasingly fast. For large speeds, we see that the phase shift
of the slow soliton is closer to the simulation of the fast soliton (in magnitude) than to
the phase shift predicted by RPT. Similarly, the difference of the phase shifts between the
simulated and RPT for the fast soliton becomes larger as the speed increases. Note that
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(a) (b)

(c)

FIGURE 6. Simulation results for a soliton collision with slow and fast soliton speeds of Ms =
1.2 and Mf = 1.4, respectively. The moving frame references ξs = x − Mst and ξf = x − Mf t
are used in panels (a) and (b), respectively. In panel (c), the solid blue line shows the simulation
results at t = 500, while the associated two-soliton solution from RPT is shown with the black
dashed line.

increasing speed also leads to an increase in amplitude, thereby amplifying the effects of
higher order nonlinearities.

6. Conclusions

In this paper, a new algorithm is designed and implemented to study ion-acoustic
solitons for a plasma consisting of cold ions and Boltzmann electrons. The numerical
scheme uses a fourth-order Runge–Kutta method to integrate over time, while also
using the fourth-order accurate finite difference approximation to approximate all spatial
derivatives, thereby resulting in a more accurate scheme than previously implemented.
In addition, a novel approach to construct soliton initial conditions directly is derived by
means of an asymptotic analysis.

Before proceeding with the simulation of overtaking soliton collisions, we use
single-soliton solutions to validate the simulation code. This result shows accuracy
up to a five orders of magnitude. Following this, the collisions are simulated. In the
small-amplitude regime, collisions are shown to agree well with two-soliton solutions
obtained in reductive perturbation analysis.
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Ms RPT slow RPT fast Simulation slow Simulation fast

1.005 −35.25 24.93 −35.09 23.13
1.01 −24.93 17.63 −24.40 15.74
1.05 −11.15 7.884 −9.358 6.349
1.1 −7.884 5.574 −5.429 4.129
1.15 −6.436 4.552 −3.635 2.886
1.2 −5.574 3.942 −2.554 2.113
1.25 −4.986 3.526 −1.822 1.571

TABLE 1. Comparison between phase shifts predicted by RPT and obtained from simulations
for different speeds.

For collision of solitons with large amplitudes, collisions are shown to maintain the
elastic nature of the small-amplitude regime. This is a remarkable property that shows that
solitons are robust against overtaking collisions. An analysis of the phase shift associated
with collisions shows that large amplitude phase shifts are smaller (in magnitude) than
predicted by RPT in the large-amplitude regime. This seems to be the only effect of higher
order nonlinearities on overtaking soliton collisions.

It is important to emphasize that these results are only relevant to this specific fluid
model. At present, these results cannot be generalized to more complicated fluid models.
Nevertheless, it is the intention that this paper will provide a blueprint for future studies
related to soliton collisions, a topic that has received little attention to date. The elastic
nature of collisions can also be used as a benchmark for studies of collisions in more
complex plasmas.
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Appendix A. Poisson’s boundary value problem

An interesting challenge of the fluid code is the solution of Poisson’s equation. Unlike
the continuity and momentum equations, Poisson’s equation has no time derivatives,
reducing the problem to an ODE boundary value problem. Indeed, the time dependence
is captured in the ion number density n, while the nonlinear dependence of the electron
density ne on the electrostatic potential φ means that the problem is nonlinear. The value
of the electrostatic potential depends on the ion number density, that is to say, we can
express the former as φ(n).

Poisson’s equation is given by

∂2φ

∂x2
= eφ − n. (A1)
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To discretize the problem, we approximate the second-order spatial derivative using the
finite difference approximation (3.7). Substitution into Poisson’s equation (A1) then gives

−φi−2 + 16φi−1 − 30φi + 16φi+1 − φi+2

12
x2
= eφi − ni (A2)

for i = 0, 1, . . . , N − 1. Here, φi = φ(xi, t) and ni = n(xi, t) for some fixed time t. From
the periodic boundary conditions, one has the following identities:

φi = φi+N, φi = φi−N . (A3a,b)

From these identities, it follows that φ−2 = φN−2, φ−1 = φN−1, φN = φ0 and φN+1 = φ1.
Substitution of i = 0, 1, . . . , N − 1 into (A2) leads to a system of N nonlinear equations.

The use of iterative methods for linear systems of equations, namely the Jacobi iterative,
Gauss–Seidel and successive over-relaxation (SOR) methods are often used to solve the
resulting system of equations. In this scheme, we use the standard Newton method for
nonlinear systems. To do this, we express the system of nonlinear equations in the form

f (φ) = 0, (A4)

where
φ = [

φ0(t), φ1(t), . . . , φN−1(t)
]T

, (A5)

and row i + 1 of the function f (φ) is given by

−φi−2 + 16φi−1 − 30φi + 16φi+1 − φi+2

12
x2
− eφi + ni. (A6)

Newton’s method is an iterative method, given by

φj+1 = φj − J−1 (φj
)

f
(
φj
)
, (A7)

where the bold subscript in φj represents the jth iteration of the Poisson solver. Here, J (φj)

is the nearly pentadiagonal Jacobian matrix, with entries at row a and column b given by

J ab
(
φj
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 5
2
x2

− eφa−1 for a = b, where a = 1, . . . , N

4
3
x2

for a = b + 1 where a = 1, 2, . . . , N − 1,
b = a + 1 where b = 1, 2, . . . , N − 1,

and (a, b) = (1, N), (N, 1)

− 1
12
x2

for a = b + 2 where a = 1, 2, . . . , N − 2,

b = a + 2 where b = 1, 2, . . . , N − 2,
and (a, b) = (1, N − 1), (2, N), (N − 1, 1), (N, 2)

0 otherwise
(A8)

The convergence criterion is given by ‖φj+1 − φj‖ < ε, where ε = 10−8 was typically
used in our simulations. In the derivation of the numerical scheme, we use the notation

φ = Π (n) (A9)

to denote the application of the Poisson solver defined above, that is, the numerical method
to solve the electrostatic potential φ for a given ion number density vector n.
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Appendix B. Fourth-order Runge–Kutta time integration

Having established a way to solve Poisson’s equation in Appendix A, we can now
proceed to evaluate the temporal evolution by means of solving the continuity and
momentum equations numerically. To this end, we use a fourth-order Runge–Kutta
integrator. In this Appendix, we consider the advancement of one time step. To this end, we
introduce a temporal step size tj = j
t, and use n( j), u( j) and φ( j) to denote the vectors of
the number density, fluid velocity and electrostatic potential at t = tj, respectively. These
are then used to calculate n( j+1), u( j+1) and φ( j+1). This process can then merely be repeated
until the solution at the desired termination time is calculated.

To start off, we consider the semi-discretized system of ODEs resulting from keeping
the time derivative, but using the finite difference approximation for the spatial derivatives
for the continuity equation (2.1). By using the fourth-order finite difference formula (3.6)
for the spatial derivative, one obtains the general formula

dn( j)
i

dt
= − 1

12
x

(
n( j)

i−2u( j)
i−2 − 8n( j)

i−1u( j)
i−1 + 8n( j)

i+1u( j)
i+1 − n( j)

i+2u( j)
i+2

)
. (B1)

A treatment of the boundary conditions similarly to that of the Poisson’s equation in
Appendix A leads to a system of N ODEs. In vector form, this can be expressed as

ṅ( j) = g1

(
n( j), u( j)

)
. (B2)

Similarly, the momentum equation can be semi-discretized to give the following set of
equations:

du( j)
i

dt
= − u( j)

i+1

12
x

(
u( j)

i−2 − 8u( j)
i−1 + 8u( j)

i+1 − u( j)
i+2

)

− 1
12
x

(
φ

( j)
i−2 − 8φ

( j)
i−1 + 8φ

( j)
i+1 − φ

( j)
i+2

)
. (B3)

In vector form, this can be expressed as

u̇( j) = g2

(
u( j),φ( j)) . (B4)

By combining (B2) and (B4), one can express both continuity and momentum equations
as one large system of ODEs, given by

ẇ( j) = g
(
n( j), u( j),φ( j)) , (B5)

where

w =
[

n( j)

u( j)

]
, g

(
n( j), u( j),φ( j)) =

[
g1

(
n( j), u( j)

)
g2

(
u( j),φ( j))

]
. (B6a,b)

The first step of the Runge–Kutta is straightforward, given by

k1 = 
tg
(
n( j), u( j),φ( j)) . (B7)

We use the notation k1 = [n(k1), u(k1)]T to denote the different components of the k1 vector.
Note that we drop the time step j from this notation for all kp vectors for p = 1, 2, 3, 4.
Before proceeding, it is important to note that the approximation for the solution of
the ion number density n and fluid velocity u was obtained. However, at this stage, no
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approximation for the electrostatic potential φ was obtained. To do so, we need to solve
the Poisson equation, so that

φ(k1) = Π
(
n( j) + 1

2 n(k1)
)
. (B8)

After performing this calculation, one can obtain the next approximation as

k2 = 
tg
(
n( j) + 1

2 n(k1), u( j) + 1
2 u(k1),φ(k1)

)
. (B9)

Once more, the approximation of the electrostatic potential must be calculated before
proceeding, given by

φ(k2) = Π
(
n( j) + 1

2 n(k2)
)
. (B10)

By following the same pattern, one obtains

k3 = 
tg
(
n( j) + 1

2 n(k2), u( j) + 1
2 u(k2),φ(k2)

)
, (B11)

followed by the calculation of

φ(k3) = Π
(
n( j) + n(k3)

)
. (B12)

Finally, one obtains the final approximations, given by

k4 = 
tg
(
n( j) + n(k3), u( j) + u(k3),φ(k3)

)
. (B13)

From this, one obtains the following solutions at the next time step j + 1:

n( j+1) = n( j) + 1
6

(
n(k1) + 2n(k2) + 2n(k3) + n(k4)

)
(B14)

and
u( j+1) = u( j) + 1

6

(
u(k1) + 2u(k2) + 2u(k3) + u(k4)

)
. (B15)

Once n( j+1) is obtained, one can calculate the updated electrostatic potential, given by

φ( j+1) = Π
(
n( j+1)

)
. (B16)

The progression from the solutions at time step tj to tj+1 is schematically represented in
figure 7.

Appendix C. Optimizing the code

Of all the steps involved in the numerical scheme, the most time-consuming operation
is the Poisson solver and particularly solving equation (A7), given by

φj+1 = φj − J−1 (φj
)

f
(
φj
)
. (C1)

To make the code more efficient, it should be noted that inverting a matrix requires more
calculations than solving a linear system of equations. As such, we introduce the vector

yj = J−1 (φj
)

f
(
φj
)
, (C2)

leading to the linear system of equations

J
(
φj
)

yj = f
(
φj
)
. (C3)

Once yj is solved by means of LU-factorization, (A7) is merely given by

φj+1 = φj − yj. (C4)

An important feature of the code is the effective use of Matlab’s sparse matrix
capabilities. In general, to solve (C3) for a system with N variables requires O(N3)
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FIGURE 7. One iteration of the numerical scheme to progress from n( j), u( j), φ( j) to n( j+1),
u( j+1) and φ( j+1).

calculations along with storage space for N2 entries of the matrix. However, in our
numerical scheme, the matrix J (φ) is a sparse matrix that is nearly pentadiagonal, with
the exception of six non-zero entries, three in the north-east corner of the matrix and three
in the south-west corner of the matrix.

Entering the Jacobian matrix as a sparse matrix in Matlab significantly reduces the
calculation time. Indeed, the LU-factorization can be shown to consist of merely O(N)

calculations, while the back-substitutions require only O(N) calculations. The total
number of O(N) calculations required results in a significant reduction in calculation time,
especially for large choices of N.

In a similar way, the sparse matrix requires a mere 5N number of storage spaces for
the non-zero elements of the matrix. This significantly reduces the memory allocation
required to store the elements of the Jacobi matrix. The combination of the reduction in
calculation speed and storage requirements leads to vast improvements in calculation time.
As a result, the simulations reported in this paper could be performed on a standard laptop.
It is worth pointing out that this is in contrast to earlier fluid simulation studies where the
use of supercomputers are frequently credited in the acknowledgements.
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