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EXTREMAL VALUESOFA(X.N) = 5 1— xp(N)
N

n<x
(n.N)=1

P. CODECA AND M. NAIR

ABSTRACT. The function A(x. N) as defined in the title is closely associated via
A(N) = sup, |A(x, N)| to several problems in the upper bound sieve. It is also known
via a classical theorem of Franel that certain conjectured bounds involving averages
of A(x, N) are equivalent to the Riemann Hypothesis. We improve the unconditional
bounds which have been hitherto obtained for A(N) and show that these are close to
being optimal. Several auxiliary results relating A(Np) to A(N), wherep isaprime with
p / N, are also obtained and two new conjectures stated.

Introduction. Thefunction A(x, N) is defined for x € Rand N > 1 by

AX.N)= > 1—x¢(N)
n<xN
(n,N)=1
where ¢(N) is Euler’s function. Clearly A(x, N) is periodic, as afunction of x, of period
1 with A0, N) = 0 and A(x, N) = A({x}, N) where {x} = x— [x]. Further, if

N=]]p.

pIN
then writing N = NL, we obtain that

AXN)= 3 1—xLo(N) = A(XL.N).
n<xLN
(n,N)=1
Henceasfar asboundsuniformin x are concerned, we canrestrict ourselvesto squarefree
N > 1 which will be assumed from now onwards. We shall also always use p and q to
indicate prime numbers.
It is easy to seethat

@) A(x.N) = —u(N) C”ZN p(d){xd},

where 1 is the Mbius function and indeed one can also show that

A(x,N):—%%:T({H%} _%)
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Certain mean-square estimates for A(x, N) are equivalent to the Riemann Hypothesis.
Indeed, as shown by Franel [4], the Riemann Hypothesisis equivalent to the estimate

> (- ﬁ)z =0 (N™)

n<®(N)

where ¢, indicates the n-th Farey fraction of order N, ®(N) = >~ ¢(qg) and ¢ > 0. On
q<N

noting that
> AGn. 9) =N — G ®(N).

q<N
Franel’s equivalence can be rephrased as
2 +e
> (X A @) = O(N*").

n<®(N) g<N

Further, we also observe that for N = T[T« p, large fluctuations of A(x, N) correspond to
an abundance or paucity of integers with smallest prime factor > t over their expected
numbers in appropriate intervals. These correspond to limitations in anticipated sieve
upper bound estimates in short ranges.

We define

A(N) = sup[A(x. N)|.

Trivially, we havethat

1 1
AX,N)| = d d} — = -> 1
660] =32 (et 5 1< 53

dN

so that A(N) < 2“1 where w(N) is the number of prime factors of N. Vijayaragha-
van [11] showed that this is best possible. More precisely, he showed that given any
e > 0, A(N) > 22M-1 _ ¢ for an infinite sequence of N with w(N) — oo. For an
alternative proof, see also Lehmer [6].

One can a'so obtain upper boundsfor A(N) with an explicit dependence on the prime
factors of N. Suryanarayana[9] proved that

@ AN) < 2201 ] (1+ 1) 1,
PIN

Thisis sharp when N is prime. It is an easy consequenceof (1) that if p f N then
M A(X, Np) = A(px, N) — A(x, N),
and hence A(Np) < 2A(N). Iterating this, we obtain

ANN) < 240-1()
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for any prime factor q of N. Since A(g) = 1 — 1/q, we deducethat

©) A <2007t (1~ )
P2

where p; isthe smallest prime factor of N. Apart from the casesN = 6 and N primewhen

both bounds are equal, it is a simple induction exercise to confirm that (3) is always an

improvement over (2). In our Theorem 1, we shall improve the bound A(Np) < 2A(N)

to

A(Np) < 2A(N) — % (p /N)

which leads to an even stronger upper bound for A(N) in which all the prime factors of
N play arole. Our Theorem 2 shows that for a certain class of integers N,

2u(N)

A(N) > 22001 —
( )_ p1+l

which essentially differs from (3) by only afactor of 2.
It is awell-known result that
Lo _ 1 24MNp(N)
/O N Ny dx = 5 ==
Three different proofs of this may be found in Delange[1], van Hamme[10] and Perelli-
Zannier [8]. For ease of reference, we include another short proof in Theorem 4(v). As
observedin [8], thisintegral immediately yields that

/LM)%,

AN = (

In Theorem 3, we shall exploit the integral in a different manner to obtain the slight
sharpening

\12° N 12

Thisbound is actually attained for N = 2, 3 and 6.

Our final Theorem 4 consists of auxiliary results and simpler proofs of two known
results.

For integers N which are divisible by a prime p, p = 1(modk), k € N, Lehmer [6]
showed that for any a € Z, the number of n in the interval (aN/k, (a + 1)N/K] with
(n.N) = 1 is precisely ¢(N)/k. Necessary and sufficient conditions on N under which
thisisvalid werefurther investigated by McCarthy [7] and Erdos[2],[3]. In Theorem 4(i),
we give a ssimpler proof of Lehmer’s result based on the above identity (1). Different
applications of this identity combined with a classical theorem of Landau on fractional
parts also yield (Theorem 4(ii), (iii)) that

(1 22M0(N) 1>% !
A0 >

AN) =

A(2N) = A(N)
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for al odd N > 1 and the lower bound for p / N,
1
A(Np) > (1 - 5) A(N).

A reasonable conjecture would be that A(Np) > A(N) for al N > 1andp f N. We also
conjecturethat if N isthe product of the first s primes then

S— ¢(N)
ANN) < 2 1T

and have confirmed this by direct calculation for s < 8.
Statements of Theorems.

THEOREM 1. For any squarefreeN > 1 and a prime pwith p f N, we have
) 1
0] A(Np) < 2A(N) — p

In fact, the sharper but more awkward bound

- (1+1) o(N) ©(N) | 1p(N)
(i) A(Np)SZA(N)—TT+max(O,N—p+T—l).
wherel = [%] also holds.

COROLLARIES.
(i) For primespandgwithp>qg> 3,

s 21313

(i) For anys e N and distinct primesps > ps-1 > -+ > P,

s S—i
A(pr...ps) <25t =3 —.
i=1 Pi
If p1 =2 and s > 2, this can be sharpened to
s 2%14
A(pr...p) <2723
i Pi

REMARKS. (@) Thetwo inequalitiesin Theorem 1 are, infact, equalitieswhen N = 2
and p isany odd prime.

(b) Theboundin Corallary (i) isan equaity when g = 3and p = 1(mod 6) (cf. Theo-
rem 4(iv)).

(c) Corollary (ii) is obtained by using Theorem 1(i). By using Theorem 1(ii) instead,
we can obtain aslight improvement in this corollary. Indeed, further small improvements
can be obtained by incorporating Corollary (i) into the argument.

https://doi.org/10.4153/CMB-1998-046-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-046-3

EXTREMAL VALUES OF A(X, N) 339
(d) Corollary (ii) shows that given s primes p; < --- < ps in some interval
[X, (1 +¢)X], where e > 0, we have that
1 . 1
(I+e)pr (A+e)p1’

THEOREM 2. Let k € N and let N be composed of primes p with p = —1(modKk).
Then

A(py...ps) <257 —

A(N) > 201 (k ” 2)
In particular, given any prime p, all N with smallest prime factor p and with all other

prime factors g satisfying g = —1(mod(p + 1)) has

2
> oN-1(q_ _% |
A(N) > 2 (1 1)

THEOREM 3. For any N > 1, we have

- 1 Z( ) a1 ameN) 1
O ¢(N) i= ( ) - EZ (N)T "
i 1 ameN) 1)% 1

THEOREM 4.
() (LeEHMER) Let N be a squarefree integer which is divisible by a prime p, p =
1(modk) andk € N. Thenfor anya € Z,

1
2. 1= E@(N)-
F<ns et
(n,N)=1
(i) A(2N) = A(N) for any odd N > 1.
(iii) A(Np) > (1— l) A(N) for any N € N and prime pwithp / N.

() AGEp) = 2 % p = —1(mod6)
P g( ) p = 1(mod6).
(v) ForanyN > "
1 2°MN(N)
/ BN dx = 5

Preliminary Discussion. Let 1 = a; < a < --- < a,n = N — 1 be the p(N)
integersin [1, N] which are coprime to N. For convenience, we shall also defineap = 0
anda,ny+1 = N. Notethat therelation N—& = a,n)—i+1 istrueforall i,0 <i < p(N)+1.

We shall refer to points a/N with (a.N) = 1 as N-nodal so that, in [0. 1], these are
precisely thepointsa; /N, 1 <i < p(N).
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From the definition of A(x, N), we have that

A(ﬁ N)—l—&#. 0<i < w(N).
A(2LN) =a(2N)+1-@a-a) T o<i<pm)
andthat if & <x< &2.0<i < ¢(N), then

A(x.N) = A (% N) - (x— %) o(N).

These observations imply that A(x, N) is a piecewise linear function of x with each
line-segment in [a;/N. aa+1/N) having gradient —¢(N) and that in the bounds

—A(N) < A(x.N) < A(N)

equality is attained in the upper bound for some N-nodal point x while the lower bound
is, infact, astrict inequality. Note also that if xisN-nodal then we havethe sharper lower
bound

A N) =1+ lim At N) > ~AN) + 1
The relationA(%. N) = —A(%. N) + 1 shows, in fact, that

. aj _
1§i|2£(N)A(N'N) =—A(N) +1.

Proofs of Theorems. We begin with the proof of Theorem 4 because it contains
some of the results which are required in the subsequent theorems.

PROOF OF THEOREM 4. (i) Write N = pM wherep / M and p = 1(modk). Identity
() impliesthat forany a,0 <a < k-1,

8 (30) = (%) o) =5 (20) -a () =0

and, clearly, this also holds for a = k. Hence
O:A(a 1 N) A(E.N) = 3 1——¢(N)
“ <7 pcncien
(n,N)=1
Thisproves (i).
(i) Forany N > 1, we have that

1
A(X,N) = —u(N d d}—=].
0N = N 2 (@) ) — 5 )
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Hencefor (I,N) = 1,

S ({5 -3)

dN n=0

—u(N)Zu(d)Z([Td T-3)-

dN n=0

Theinner sumis {ud} —  (see eg. Landau [5], p. 170). We therefore deduce that for
any (I,N) =landu € R,

) A (? N) = A N).

n=0

Using (4) with | = 2 and N odd together with identity (1), we have that
u u+l u+l
A (E' N) = A(u,N) — (T N) A (T ZN)
By varying u through an interval of length 2, we deduce that the set of values of A(x, N)
and that of A(x, 2N) is the same and (ii) follows.
(iii) Using (4) with| = pwherep £/ N and identity (1), we have that
p-1 p-1 p-1
S A (M Np) =S AWN) - S A (ﬂ N) = pA(u. N) — AU, N)
n=0 p n=0 n=0 p
= (p— 1DA(u,N).
Choosing u so that A(u, N) = A(N), we deduce that
(p— DA(N) < pA(Np)
which implies (iii).
(iv) Forany awith1 < a < 3pand(a,3p) =1, identity (1) yields
a a
A(Sp 3p) A(§.3) —A(3—p. ) .
It follows directly from the definition of A(x, 3) that

8(39)= {33 2= smeas

(39-[-2

We deducethat if a = 2(mod 3) and a < p then

a 2 2a
A(s—p-SF’)‘é*s—p

and that
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and hencethat if p = 1(mod6) then

p—2_\_4 _E)
A( 3 3")"3(1 o)

and if p = —1(mod 6) then
a(Biap)=2-2

3p 3 p
We now show that these are indeed the largest values of A(x, 3p). Clearly, thisisindeed
the caseif a = 2(mod3) and a < p. If a= 1(mod 3) then
a _}_g 2a 1 2(p H_. 2 4 2
e R e T e AR
for any p > 5 and so is smaller than either of the above candidatesfor A(3p).
If a=2(mod3) and 2p < a < 3pthen
a 4 2a 2
8(5%) =375 <3
and thisisalso smaller. Finaly, if a= 2(mod3) andp < a < 2p then
A(i )= 1 2a {1—%. p = 1(mod6)

_-+28 <
P73 3 S 1- 3. p=-1mode)

which are smaller as well. This completes the proof of (iv).
(v) SinceA(x,N) = —u(N) Zgn p(d)({xd} — 3), using aclassical result of Franel [4],

we have that
2 _Z N
/ A%(x, N) dx = dllN%lN 11(dh)a(do) / ({xdl} )({xdz} ) dx
® = S e B
dy |N.d|N

Writing r = (d1, dy), dy = 611, do = 62r, the abovesumis

w(61) (6 dyr(d d)yr(d
T oy pé)pd2) _ 5 ( LT():Z 14( LT().
0102 TN diNyr TN dl

IIN 6|N/r.6IN/r
(61,02)=1

The function f(r) = g, p(d)r(d) /d is multiplicative with f(p) = 1 — 2/p. Further, the
function g(N) = 3\ f(r) is also multiplicative with

g(p)=1+f(p>=2(1—%).

Hence, for squarefree N, g(N) = 2+M) <p(N) /N. We deduce from (5) that
1 22N, (N)
N

asrequired. Using A(x, N) = A(xL, N) as noted in the introduction, it follows easily that
theresult holds evenif N is not squarefree.

/ A%(x, N)dx— 0N = 55
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PrROOF OF THEOREM 1. Letawith (a. Np) =1 and 1 < a < Np be chosen such that
a
A(Np) =A (N_p Np) .
By identity (1), we have that
a a
(6) A(Np) = A (N N) )\ (N—p. N) .

Since (a,N) = 1, {a/N} is N-nodal but clearly a/Np is not N-nodal. We can therefore
definei € N, 1 <i < p(N) + 1, such that

ai—1 a a;
N SNp SN

Thisimpliesthat a < pa; and so we canwrite a = pa, — r withr € N.
We shall prove the validity of both

™ A(Np) < 2A(N) — Nip@(N)
and, if r < Np/¢(Np),
©) A(Np) < 2A(N) — 1+ NLp@(Np)

We begin by considering the casei = ¢(N) + 1 on its own. Here g = N and hence
a=pN—r sothat

r<p(N)

a
A(N—p.N) A, N)+(1— —) »(N) =
so that we deduce immediately from (6) that (7) istrue. Note also that in this case

A(Np) = A (ip Np| < AL NP + (1 ) (NP

Np
_ Te(Np) . #(Np)
Np < 2A(N) — —Np \

since A(N) > 1/2for N > 1. This proves (8).

We may therefore assume from now onward that 1 < i < ¢(N). Hence, using our
preliminary observations,

A(Np N) =A(§ N)—l (N__) o(N)

i r
.N) 14 e
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so that (6) implies that

A(Np)

A(%.N) —A(%,N) +1— NLp¢(N)

< BN)— (—B(N) +1) +1— NLptp(N),

sincea; /N isN-nodal. Thisimplies (7).
On the other hand, identity (1) implies that

A(a—H.Np) :A(%.N) —A(%.N)

Np
and hence
©) A (a—” Np) < AN) — (—AN) +1) = 28(N) — 1.
Np ' <
Sincei < ¢(N), we havethat
a g 1 1 Np—1
N — < - — — — =
Np<N_1 N<:L Np Np

and hence a/Np is not the largest Np-nodal point in (0,1). Denoting by b/Np the least
Np-nodal point larger than a/Np, the definition of a/Np implies that
b a (b—a)p(Np)
> — — — =1-—-
O‘A(Np’Np) A(ND'\“D) ! Np
and henceb — a > Np/¢(Np). Since (a + r)/Np is not Np-nodal, we deduce that if

r < Np/¢(Np) then
Np = Np " Np’
For suchr, we use (9) to infer that
a a+r r
A(Np) = A(N—p.Np) —A(N—p.Np) + N—p(p(Np)

smmr4+ﬁymm

This proves (8) and hence completes the proof of (7) and (8).

We now prove (i).
If r > N/¢(N) then (7) immediately yields

Ammsmm%%.

If, on the other hand, r < N/¢(N) then certainly r < Np/(Np) so that (8) yields

N 1 B 1
A(Np) < 2A(N) — 1+ o N_p(p(Np) =2A(N) — o
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This completes the proof of (i).
We now prove (ii). Put | = [N/ o(N)].
If r > |+ 1then (7) implies that

(I +1)e(N)
< -
A(Np) < 2A(N) ND
If r <1 then certainly r < Np/¢(Np) so that (8) yields

Pp(N) L o(N) [ le(N)
Np Np N '

A(Np) < 2A(N) — 1+ Nipw(Np) = 2A(N) — (1 +1)

Hence, in any case,

©(N) ¢(N) | T¢(N)
A(Np) < 2A(N) — (1 + 1)N—p + max (O. Np YN 1)

asrequired.
This completes the proof of Theorem 1.

PROOF OF COROLLARIES. In Theorem 1(ii), put N = q > 3. Then| = 1 and so we
obtain

2 qg—1 g-1 )
A <2AM)— —(g—1)+max|{0, ——+ — —1
(pe) < 286~ —(a—1) ( L

i) -2y -

as required for Corollary (i). Corollary (ii) follows on iterating Theorem 1(i). If p; =
2, we just use Theorem 4(ii) to note that A(py...ps) = A(p2...ps) before iterating
Theorem 1(i).

PROOF OF THEOREM 2. We use induction on w(N) to first show that

A (E N) = —u(N)2: (E . %)

foranya,1<a<k-—1
If p= —1(modk) then

aN-2a_(py_a_ & _,(a 1
A(k'p)_k (et =k (2 k) z(k 2)'
and so the result is true for w(N) = 1. Suppose that it is true for some N whose prime

factors q satisfy g = —1(modk) and let p be another prime with p = —1(modk) and

p f N. By identity (1),
o (§) - (52) - (Ln).
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Since {2} = 52, theinduction hypothesisimplies that

A (2:Np) = —p(N)2 (k =-5-(5-3))

_ o (21
u(Np2 (3~ 5)

asrequired. Hence
k—1 k—2
A(N) > |A(T N)| 24N)= 1( . )

PROOF OF THEOREM 3. For the proof of Theorem 3, we shall need an elementary
lemmawhich we state in a general context since it may be of independent interest.

LEMMA. Let oy < ap < --- < oy bel pointsin (0, 1) and define for any x € [0, 1],

AX)= > 1—x.
w<x
Then
1d 1, 1/ |
I—; 2() / N dx+ % — \;al - E) .
ProOF. Defineap = 0and oy+1 = 1. Observethat if o < x < 41, then A(X) =i —xl.

Hence

| i+

[ wedx =3 [ 2200 dx
0 i=0

L | 2

(20 = Z Iz(ai+1 —ap) —| Z(; I(oci2+1 — oziz) + 3 Z{;(O‘isﬂ — a3)
1= =l
2 | |
= - Zoc, 23 i +1> o

3 i=1 i=1 i=1

Further, since A(o) =1 — ail,
[ | [ [
(1) Y 82a) = (7 — gl + o) = DAY o500y
i=1 i=1 i=1 i=1

Comparing (10) and (11), we deduce that

14 | |1
T = [ A=Y+ g

asrequired.
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. - . . 1
COROLLARY. If, in addition, the points ¢; are symmetric about > then

%EAZ(%) - /OlAz(x)dx+ %.

For N > 1, we apply the above corollary with o = &, 1 < i < ¢(N), and use
Theorem 4(v) to obtain Theorem 3(i).

Since . "
K a N\ e(N)Y _ e(N)
(12) ;A(N,N)— > (. af iy )__2
we deduce that
- _ _ - “}(N) i —
(3) e(N) = (A<N’N) 2) 122 N 12°

Sinceinf A(§.N) = —supA(§.N) + 1, we deduce from (13) that

N2 1 _ageN) 1
e I Sy () B S A
(A(N) 2) = 152 N 12

Theorem 3(ii) now follows on observing that (12) implies that A(N) > %
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