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Interferometric Processing

5.1 Interferogram Formation

Creating an interferogram from two single look complex (SLC) images involves
two basic steps. The first step is to align the reference and repeat images to sub-pixel
accuracy. This is done by two-dimensional cross-correlation (xcorr in GMTSAR)
of hundreds of small sub-patches (e.g., 64 × 64) taken from the master and sec-
ondary images. A more modern approach is to use a topography grid and precise
orbital information for alignment. Both approaches are described in Chapter 3.
Then a six-parameter affine (or continuous) transformation is determined using a
robust 2-D fit to the offset data (fitoffset in GMTSAR) or the precise orbit data as
described in Chapter 3. This is used to align the secondary image to the master
image. For raw data, the alignment is done in the SAR processor (esarp in GMT-
SAR). For SLC image data, the alignment is done using a sinc-interpolator (resamp
in GMTSAR).

The second step is to multiply the two SLC images to form the complex interfer-
ogram. The complex number C (x) in each pixel of the SLC image can be written
as an amplitude A(x) and phase φ (x) as

C (x) = A (x) eiφ(x) (5.1)

where x = (ρ,a) is the position vector consisting of range ρ and azimuth a. An
interferogram is defined as

C2C
∗
1 = A1A2e

i(φ2−φ1) = R (x) + iI (x) (5.2)

The phase of the interferogram is extracted as

(φ2 − φ1) = tan−1
(
I
R

)
(5.3)

An example of the phase of reference and repeat images and their phase difference
is shown in Figure 5.1.
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5.2 Contributions to Phase 61

(a)

(b)

(c)

Figure 5.1 (a) The phase of a reference SLC file. (b) The phase of a repeat SLC
file, and (c) the phase difference of repeat – reference SLC files calculated using
Equations 5.2 and 5.3. The fringes across the interferogram are mostly due to the
curvature of the Earth where the fringe rate is proportional to the perpendicular
baseline between the reference and repeat images.

5.2 Contributions to Phase

The phase of an interferogram has many components as described in Equation 5.4.

phase =Earth curvature (almost a plane, known) +

topographic phase (broad spectrum) +

surface deformation (broad spectrum, unknown) +

orbit error (almost a plane, largely known) +

ionosphere advance (often a plane or 20–40 km wavelength waves) +

troposphere delay (power law, unknown) +

tides (almost a plane, largely known) +

phase noise (white spectrum, unknown)
(5.4)

A common task in InSAR analysis is to isolate the phase associated with surface
deformation from all the other contributions. The largest known contribution comes
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62 5 Interferometric Processing

from the irregular shape of the Earth, which can be divided into an Earth curva-
ture component and a topography component. In the remainder of this chapter,
we show derivations of the phase and phase gradient due to Earth curvature, the
critical baseline, point scatterers, and phase due to topography, as presented pre-
viously in Rosen et al. (1996); Joughin et al. (1996b); Sandwell and Price (1998).
These derivations are useful for exposing concepts such as parallel and perpendicu-
lar baseline. However, this standard geometric model is not adequate for achieving
high-accuracy results, especially for L-band large spatial baseline interferometry
cases. We next derive the exact formulas that are implemented as phasediff in
GMTSAR. These exact formulas are also conceptually and mathematically simpler
than the approximate formulas, which are preferred in InSAR processing routines.

5.3 Phase due to Earth Curvature

The geometry of repeat-pass interferometry is shown in Figure 5.2.
The key parameters are:

ρ range from reference track to reflector
B total baseline distance between reference and repeat track
θ look angle
α angle between the baseline vector and the tangent plane

spheroid 

reference 

repeat 

�

�

B 

�

������

B 

B 

(a) (b)

B 

Figure 5.2 (a) Triangle for reference and repeat passes imaging the same point on
the Earth. (b) The total baseline can be decomposed into parallel and perpendicular
components.
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5.4 Look Angle and Incidence Angle for a Spherical Earth 63

The baseline B can be divided into parallel and perpendicular components given by

B‖ = B sin (θ − α)

B⊥ = B cos (θ − α)
(5.5)

Because the look angle θ changes across the swath, the notion of a single per-
pendicular baseline for an interferometric combination is only an approximation.
(SAT_baseline in GMTSAR computes the total baseline B as well as the angle α at
3 or more points along the image.) The phase difference φ to a point on the ground
is related to the range difference δρ.

φ =
4π
λ
δρ (5.6)

where λ is the wavelength of the radar. The law of cosines provides the relationship
among the repeat-pass range, the reference-pass range, the baseline length B, and
the baseline orientation α as shown in Figure 5.2.

(ρ+ δρ)2 = ρ2 + B2 − 2ρB sin (θ − α) (5.7)

Under the assumption that δρ� ρ, we have

δρ=
B2

2ρ
− B sin (θ − α) (5.8)

Furthermore, since B� ρ, the parallel ray approximation yields

φ =
−4π
λ
B sin (θ − α) (5.9)

The phase difference depends on the parallel component of the baseline. The
derivative of the phase with respect to range is

∂φ

∂ρ
=
−4π
λ
B cos (θ − α)

∂θ

∂ρ
(5.10)

This phase gradient depends on two terms, the perpendicular component of the
baseline B⊥ = B cos (θ − α) and the derivative of look angle with respect to range
δθ/δρ. The perpendicular baseline varies slightly with look angle across a typical
SAR image. The change in look angle usually increases with range, so δθ/δρ > 0.
However, when the local terrain slope exceeds the look angle (actually the inci-
dence angle), an increase in look angle does not produce a corresponding increase
in range. This is the layover geometry where δθ/δρ ≤ 0 (see Figure 7.2).

5.4 Look Angle and Incidence Angle for a Spherical Earth

In order to calculate the derivative of look angle with respect to range δθ/δρ, we
first make the approximation that the Earth is locally spherical and then adjust the
local radius of the Earth using the WGS84 ellipsoid 5.11. We note that there can
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64 5 Interferometric Processing

be large differences between the elliptical Earth model and the local radius for
wide SAR swaths. This difference can produce topographic fringes in long-strip
interferograms depending on the interferometric baseline. We address this issue
later by including the ellipsoidal radius minus the local radius into a topographic
correction term. The local Earth radius is given by

re(ϕ) =

(
cos2ϕ

a2
+
sin2ϕ

c2

)−1/2
(5.11)

where ϕ is latitude, and a and c are the equatorial (6 378 km) and polar (6 357 km)
radii, respectively.

The radar look angle depends only on the local Earth radius re, the range to the
sphere ρ, and the height of the spacecraft above the center of the Earth b as shown
in Figure 5.3.

The law of cosines is used to calculate the look angle

η = cos θ =

(
b2 + ρ2 − r2e

)
2ρb

(5.12)

On a sphere, the incidence angle is greater than the look angle by the angle ψ.
To determine the derivative of the phase (5.10), we need to determine the deriva-

tive of the look angle with respect to range from Equation 5.12. An expression for
the phase gradient due to Earth curvature is

∂φ

∂ρ
=
−4πB
λρ

cos (θ − α)
sin θ

(
cos θ − ρ

b

)
(5.13)

b

re

Figure 5.3 Triangle formed by the range ρ, radius of the Earth re, and spacecraft
height b.
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5.5 Critical Baseline 65

5.5 Critical Baseline

Consider a single range pixel of length Δρ= cτ/2. The phase of this pixel in the
reference image is the vector sum of the phase from all scatterers in the pixel.
The repeat image has the same scatterers but slightly different imaging geometry
(B > 0). As a result, there are additional phase delays across the range cell, causing
the sum of the phase from all scatterers to be different from the reference image.
This is called baseline decorrelation. When the fringe rate across the interferogram
exceeds 2π radians per range cell, the interferogram is completely decorrelated.
This is the case of the critical baseline. To calculate the critical baseline, we start
with Equation 5.13 and make a flat-Earth approximation ρ/b = 0. To avoid baseline
decorrelation, change in phase with range must be less than

∂φ

∂ρ
=
−4πB⊥
λρ

cos θ
sin θ

<
2π
Δρ

(5.14)

The baseline where the fringe rate equals the critical value is

Bc =
λρ

cτ
tan θ (5.15)

For the parameters of the ERS satellite, the critical baseline is 1 100 m (Table 5.1).
For topographic recovery, a baseline of about 1/4 critical is optimal. For change
detection, a zero baseline is optimal but not usually available.

There is a second way to calculate the critical baseline. Consider a single ground
range resolution pixel cell, which is related to the pulse length and the incidence
angle Rr = cτ/(2 sin θ). This cell is imaged from two positions separated by a
perpendicular baseline (Figure 5.4). If the resolution cell contains only a single per-
sistent scatterer at the center, the change in the viewing geometry does not change

Table 5.1 Comparison of critical baseline (in km). ERS/Envisat – altitude = 790
km, wavelength = 56 mm. ALOS – altitude = 700 km, wavelength = 236 mm.
Sentinel-1 – altitude = 700 km, wavelength = 55 mm, three look angles for each
of the three subswaths. Shaded area is the most common mode for interferometry.

Look angle 23◦ 34◦ 41◦

ERS/Envisat
16 MHz 1.1 02.0 02.9

ALOS FBD
14 MHz 3.6 06.5 09.6

ALOS FBS
28 MHz 7.3 13.1 18.6

Sentinel-1
64 MHz 4.3 06.8 08.26
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Figure 5.4 Diagrams showing the effects of changing viewing angle δθ for a res-
olution cell of length R. (a) point scatterer has no phase change with viewing
angle. (b) has multiple scatterers where the vector sum of the phase will vary with
viewing angle in a random way causing decorrelation.

the range to this single scatterer, and the pixel remains coherent. However, if there
is a uniform distribution of persistent scatterers in the cell, the scatterers at the edges
of the cell have a change in range of δρ= Rr

2 sin δθ cos θ. When δρ is less than a
quarter of the wavelength, the phase shifts at the edge of the resolution cell do not
destroy the correlation in the cell. Note that since the path delay is 2δρ, the phase
delay is one half wavelength. It can be shown that the resulting critical baseline is
the same as the formula found earlier

Bc =
λρ

2Rr cos θ
=
λρ

cτ
tan θ (5.16)

5.6 Approximate Phase due to Topography

We can use the approximate Equation 5.9 to calculate the topographic phase as
well. The actual radius of the Earth (land), r, is usually greater than the radius of
the spheroid re. The difference is the geometric elevation. The phase due to the
actual topography can be expanded in a Taylor series about re
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5.7 Topography from Single-Pass InSAR: SRTM 67

φ (r) = φ (re) +
∂φ

∂r

�����re (r − re) + 1∂2φ

2∂r2

�����re (r − re)
2 + · · · (5.17)

Using Equations 5.9 and 5.12, we can calculate the first two derivatives. It turns out
that the second derivative is about (r − re)/r times the first derivative (i.e., 2.7/6 371
for our area), so we only need to keep the first two terms in the series. The first term
is Equation 5.13, while the second term is

∂φ

∂r
(re) =

−4πre
λρb

B cos (θe − α)
sin θe

(5.18)

where θe is the look angle to the spheroid (5.12). The mapping of total unwrapped
phase into elevation as a function of range is

(r − re) = −λρb4πre

sin θe
B cos (θe − α)

(φ − φe) (5.19)

Note that the unwrapped interferogram does not provide the complete phase dif-
ference φ − φe, given that there is an unknown constant of integration. While
this formula is useful for demonstrating that the magnitude of the topographic
phase correction is proportional to the perpendicular baseline, the formula is only
an approximation. The more accurate approach used in the GMTSAR code is
discussed in Section 5.8.

5.7 Topography from Single-Pass InSAR: SRTM

The Shuttle Radar Topography Mission (SRTM) used a single-pass interferometer
with a fixed baseline to generate a near-global topography map of the Earth (60 N to
56 S) (Farr et al., 2007). The space shuttle was equipped with two receive antennas,
one in the cargo bay and a second on a 60-m boom extending from the shuttle to
form the fixed baseline. The transmit antenna was located in the shuttle bay and
radar pulses were recorded by the two antennas after reflecting from the Earth’s
topography. The main advantage of a single-pass interferometer for topographic
mapping is that the atmospheric and ionospheric phase delays cancel in the two
SAR acquisitions, so the phase difference mainly reflects the topography. For a flat
Earth geometry (b/re = 1), the sensitivity of the topography T to phase noise is

∂T
∂φ
=

λρ sin θe
2πB cos (θe − α)

. (5.20)

There is a factor of 2 difference from Equation 5.19 because there is only a phase
difference from the reflected pulse, so this is a one-way phase difference measure-
ment (Zebker et al., 1994). Inserting the values for the C-band radar at a nominal
look angle of 45 degrees and a range to the surface of 330 km shows one fringe of
phase corresponds to 108 m of topography. Since the radar was able to achieve
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68 5 Interferometric Processing

phase precision of 1/12 of a fringe, the nominal topography accuracy was 9
m. Note that the C-band radar does not reflect from the bare earth but from the
canopy of vegetation as well as the tops of buildings. Nevertheless, this provides
the optimal topography correction for C-band repeat-pass InSAR although will be
suboptimal for L-band where the radar reflects deeper in the canopy or on the
bare Earth.

5.8 Exact Phase due to Earth Curvature and Topography

In Sections 5.6 and 5.7, we provided approximate formulas for the phase changes
from a curved Earth and local topography for a given perpendicular baseline. Here
we derive the exact formulas. We start with the triangle shown in Figure 5.2. The
law of cosines provides the relationship between the reference range ρ, the repeat
range ρ+ δρ, the baseline length B, and the baseline orientation relative to the look
angle θ − α. We can solve Equation 5.7 for δρ

δρ=
[
ρ2 + B2 − 2ρB sin (θ − α)

]1/2 − ρ (5.21)

and convert this to the phase correction φ =
4π
λ
δρ. The cosine of the look angle θ

is given in Equation 5.12, which is valid for any Earth radius, such as the radius
of a topographic reflector. In Chapter 3, we discussed an algorithm for mapping
a topographic reflector from longitude, latitude, and height above the ellipsoid to
range, azimuth, and topography T (ρ,a) above a local spherical shape for the Earth.
Using this information, we can combine the Earth curvature correction and the
topographic phase correction into a single correction. The algorithm is:

1. Read a row of data from the reference and repeat SLC files, and assign every
pixel in the reference image a range ρ and azimuth a.

2. Using the precise orbital information, compute the radius of the spacecraft orbit
for the reference image b (a), the length of the baseline B (a), and the orientation
of the baseline α (a).

3. Interpolate the topography to each range pixel and compute the look angle using
the following formula from Equation 5.12.

θ = cos−1
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
b2 + ρ2 −

(
re + T (ρ,a)

)2)

2ρb

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.22)

4. Using the look angle for each range pixel, calculate the phase correction to be
applied to the repeat image using Equation 5.21 and the conversion from range
to phase Equation 5.6.
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(a) (b)

Figure 5.5 (a) A 1.95 km baseline interferogram with no topography correc-
tion has 120 fringes that need to be accurately removed. (b) Same interferogram
corrected for topography phase using the exact Equations (5.21) and (5.22).

5. Multiply the repeat image by the complex phase and form the interferogram.
Note this phase correction should be applied before any multilook averaging or
filtering.

R (x) + iI (x) =C2C
∗
1e
iφ (5.23)

6. Extract the interferometric phase, which is now corrected for both the Earth’s
curvature and the topographic phase.

(φ2 − φ1) = tan−1
(
I
R

)
(5.24)

An example of a 1.95 km long baseline interferogram that was corrected for topo-
graphic phase is shown in Figure 5.5. There is 3 200 m of relief within this inter-
ferogram. As a result, there are 120 fringes in the full interferogram (Figure 5.5(a))
that need to be removed. The residual fringes (b) could be due to topography errors
but could also be ionospheric or tropospheric delays.

5.9 Geocoding

Interferograms are naturally presented in the radar coordinates, where the x-axis
corresponds to the range direction and the y-axis corresponds to the azimuth direc-
tion. It is challenging to relate the features in the radar coordinates with features
seen in the latitude/longitude coordinates, because the ground features are often
flipped, stretched, and rotated in the radar coordinates. Proper interpretation of
interferograms requires the last step in the processing called geocoding, which
transforms images in radar coordinates into geographic coordinates. In Section 3.7,
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70 5 Interferometric Processing

Table 5.2 Lookup table for mapping from
geographic to radar coordinates and vice versa.

range azimuth elevation longtitude latitude
33484.3362 4554.8018 456.4585 -117.4900 35.7525
33462.4183 4553.8639 461.4579 -117.4891 35.7525
33438.8219 4552.9243 471.4572 -117.4883 35.7525
33415.9137 4551.9859 479.4566 -117.4875 35.7525
33395.6569 4551.0485 479.4560 -117.4866 35.7525
33376.7027 4550.1103 475.4554 -117.4858 35.7525
33356.4499 4549.1728 475.4548 -117.4850 35.7525
33335.8676 4548.2351 476.4543 -117.4841 35.7525
33315.2630 4547.2962 477.4537 -117.4833 35.7525
33294.6845 4546.3585 478.4531 -117.4825 35.7525

we discussed the use of the precise orbital information, along with a digital ele-
vation model, to map between geographic and radar coordinates. We generated a
lookup table called trans.dat to do the forward transformation. Now, we need to
do the inverse transformation using the same table. A sample of the trans.dat file
is provided in Table 5.2.

The first two columns of the file are the range and azimuth coordinates, column
3 is the height above the spheroid, and the last two columns are the longitude and
latitude. The geocoding algorithm has the following steps:

1. Extract columns 1, 2, and 4 and use the GMT surface routine to make a grid of
longitude versus range and azimuth. Repeat using columns 1, 2, and 5 to make
a grid of latitude versus range and azimuth.

2. Extract wrapped phase observations from an interferogram.
3. Use the GMT command grdtrack along with the two grids of longitude versus

range/azimuth, and latitude versus range/azimuth to create a table of longitude,
latitude, and wrapped phase.

4. Establish the output pixel spacing in delta longitude and delta latitude to be
1/4 of the Gaussian filter wavelength to achieve full sampling. The longitude
spacing is equal to the latitude spacing divided by the cosine of the latitude.

5. Use the GMT blockmedian routine to take the median value of the longitude,
latitude, and wrapped phase in the previously established longitude and latitude
bins.

6. Use the GMT command xyz2grd to populate the longitude, latitude, and
wrapped phase grid. Note, some grid cells may not have entries. The empty
locations will have the not-a-number flag. Also note that there is no inter-
polation of the regridded products. This is important for the wrapped phase,
because there should be exact 2π discontinuities at the phase wrap boundaries
and interpolation would blur the phase wrap.
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5.10 Geocoded SLC InSAR Processing Strategy

In this chapter, we reviewed the key steps in the standard InSAR processing rou-
tines (Figure 5.6(a)): raw radar data from two satellite passes are processed into
focused SAR images, and then delivered to end users. A user can use GMTSAR to
coregister the radar images, and then cross-multiply the results to form an interfero-
gram. The phase components due to Earth curvature and topography are estimated
and removed based on the satellite orbit information and an existing DEM map.
The geocoding step can be applied either on each individual flattened interferogram
or the final surface deformation solutions derived from a stack of flattened inter-
ferograms. Zheng and Zebker (2017); Zebker (2017) proposed a geocoded SLC
processing strategy (Figure 5.6(b)) that can be used to generate user-friendly radar
image products for InSAR analysis:

1. Create a zero-Dopper SLC image for each scene using its orbit solutions.
2. Extract a DEM covering the region with desired postings (∼SAR image

resolution).

Figure 5.6 (a) Standard InSAR processing work flow that is commonly adopted by
many InSAR processors. (b) Geocoded SLC InSAR processing work flow. Origi-
nally from Zebker (2017). Reprinted with permission from IEEE Geoscience and
Remote Sensing Letters.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009606226.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 03 Oct 2025 at 20:23:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009606226.006
https://www.cambridge.org/core
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3. For each pixel in the DEM, find the corresponding zero-Doppler satellite
observation location along the orbit.

4. Resample the SLC image to that DEM pixel, applying a phase correlation for the
propagation distance from the sensor zero-Doppler point to the elevated surface
point.

Compared to standard InSAR processing strategies, the topographic correction and
geocoding steps are moved prior to the interferogram formation. Using this new
processing architecture, interferograms can be generated with relatively low com-
putational cost by simple cross-multiplication of pairs of these processed SLC radar
images, which are automatically topography-corrected and geocoded. Depending
on the desired spatial resolution, interferograms might be multi-looked to further
reduce the overall storage needs and phase noise.

5.11 Problems

1. Develop a formula similar to Equation (5.12) for the incidence angle as a func-
tion of local Earth radius re, the range to the sphere ρ and the height of the
spacecraft above the center of the Earth b.

2. Derive Equation (5.13). What happens when the change in phase with increasing
range exceeds 2π radians per range resolution cell?

3. Give two reasons why the critical baseline for ALOS is more than 10 times
longer than for ERS.

4. What happens to the phase of an interferogram in areas where the slope of the
topography facing the radar exceeds the incidence angle of the radar?

5. Derive Equation (5.19). What is the correct zero level for the topography in this
equation?
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