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COMPLEX-HARMONIC MEIER’S THEOREM

SHINJI YAMASHITA

1. Fatou’s theorem is true for a bounded complex-valued harmonic
function in the disk D: |z| <1. One asks naturally: “Is Meier’s topological
analogue of Fatou’s theorem (simply, “MF theorem”; [14, p. 330, Theorem
6], cf. [10, p. 154, Theorem 8.9]) true for a bounded complex-valued har-
monic function in D?” We shall give the affirmative answer to this question.
Furthermore, the horocyclic MF theorem [2, p. 14, Theorem 5] in the com-
plex-harmonic form will be proved in parallel.

For recent various discussions on Plessner’s and Meier’s theorems we
.consult [1~7, 11, 12, 15~18].

2. In the rest of this note we denote by 6(§0,‘p) the open disk |z — &l
< p in the z-plane.

Lemma 1. Let a function g(§) be complex-valued and harmonic (simply, *‘complex-
harmonic) in (5, o) and |g(§)| <1 for £€8(Cs 0). Then we have:

(1) 19(8) — 9(8,)| = (8/x) arc tan(|& — &,|/p)

for £€6(&,, o) (Schwarz’s lemma).
Proof. Let w= (¢ — ¢&,)/e and consider the function

G(w) = {glew + &) — g(&)}/2

in D: |w| <1. Then G(0) =0 and |Gw)| <1 in D, so that we may apply
‘the ready Schwarz lemma [13, p. 101, Lemma] to the complex-harmonic G
in D. The inequality [13, p. 101, (3)]

G(w)| =< (4/x) arc tan|w|

for weD proves (1). Q.E.D.
The reader should know the definition of cluster set, chordal cluster set
and angular cluster set [10, pp. 1, 72 and 73].
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LemMA 2. Let a function f(z) be complex-harmonic in D with |f(z)| <1 for

zeD. Assume that

@) Cx(f, 1) # Cp(f, 1),

where X is a chord of the unit circle passing through the point z =1. Then there
exists an angle 4 at z =1 (i.e., the interior of a triangle lying in D except for one
vertex z = 1) such that

3) Cif, 1) #=Cp(f, 1.
Proof. Choose a point PECp,(f, 1) — Cx(f, 1) and let
0<2e<dis {P, Cx(f, 1)}.

By (2) such a point P does exist and further we can find a rectilinear seg-
ment X,CX terminating at z =1 such that

4 FX)N(P, €) = ¢ (empty)

by the very definition of Cx(f, 1). Let ¢ be the directed angle, |¢|< =/2,
made by X and the radius of D at z =1 and suppose without loss of gene-
rality that 0 <o <z/2. Set

7(20) = |1 —2,| sin (x/4 — ¢[2), 2z,€X,
and choose a constant g such that
5) 0 < g < tan (re/16).

Then tan (ze/16) <1< z/2 because of € <1 and for any point z2€d(z, £7(z,))
(zo=X,) we have

6) | f(2) — f(zo)| = (8[x) arc tan {7 (2,)/7(z.)} < €/2

by (1) of Lemma 1 and (5) if 2, is so near to z =1 that 8(z,, 7(2,))cD. Now,
as X;22,—1, the disks 5(z, £7(z,)) sweep an angle 4 at z =1, so that by
(4) and (6) we have

™ FANG(P, e/4) = ¢.
Now that (7) means Pe f(d) we have
PeCy(f, 1) = Cuf, 1),
which proves (3). Q.E.D.

b2 <<

For the terminology, “right horocycle”, *“right horocyclic cluster set”,
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“right horocyclic angle”, etc. we refer to [2, pp. 4-6].

LemMa 3. Let a function f(z) be complex-harmonic in D with | f(z)] <1 for
zeD. Assume that

(8) Ch(l)(f’ 1) 7+ CD(fa 1)$

where h(1) = ht(1) is a right horocycle at z = 1. Then there exists a right horocyclic
angle H(1) = H7, (1) at z =1 such that

T2:73

(9) Cuw(f, 1) # Cp(f, 1).

Proof. We use a different method from Bagemihl’s [2, p. 14, Lemma 3].
By (8) we can find a point P€C,(f, 1) — Crawy(f, 1) and we then set

0<2e<dis {P, Cron(f, 1)}

By the definition of C,u(f, 1) we obtain a subarc a of k(1) terminating at
z =1 such that

(10) Fl@na(P, e) = ¢.

We consider next the map

2= =E—-D/E+D

from the half plane Re{ >0 onto D. The initial point of k(1) lies on the
real axis, which we denote by #, |#|<1. Then the image L, of (1) by the
map x~' is the half line

L, ={&; Ref =1+ 2)/(1 —«) and Im¢& <0},
Let g be the image of @ by x™ and let
(11) 0 < ¢ < tan (z€/16).

Let 0< p <1+ 2)/(1 — =) and consider the composed function F(§) = fox(£)
in the disk é(¢,, o), where ¢,€8. Then for {=d(,, po)cal&, o), we have

(12) |F(£) — F(E)| = (8fz) arc tan (ze/p) <&f2

by (1) of Lemma 1 combined with (11). Now, as 8¢, —> « (i.e., a2x({,) = 1)
the disks 4(¢» pp) sweep a strip of width 2xp whose image by ¥ contains a
right horocyclic angle H(1) = H},,.,,,,(1) at z=1. By (10) and (12) we have

SH@) NP e/4) = ¢,
so that we have (9). Q.E.D.
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Remark. Lemma 3 is true if the word ‘“right” is replaced by “left”
where it is.

3. A point ¢” of the circle is a Meier point (horocyclic Meier point,
resp.) of a complex-harmonic function f(z) in D if Cp(f, ) is a proper
subset of the Riemann sphere and if every chordal cluster set (every right
or left horocyclic cluster set, resp.) of f at e coincides with Cp(f, ) [10,
p. 153}, [2, p. 61.

By means of Lemmas 2 and 3, and Collingwood’s maximality theorem
({8, p. 1241, Theorem 4], [9, p. 8, Theorem 4]; [10, p. 80, Theorem 4.10]) or
its ready generalization from (Stolz) angles to horocyclic angles we have the

following two theorems.

TueEOREM 1.  Let a function f(z) be bounded, complex-valued and harmonic in
the disk |2\ <<1. Then all points of the circle I': |z| =1 are, except perhaps for
a set of first Baire category on I' [10, p. 75), Meter points of f.

THEOREM 2. Let a function f(z) be bounded, complex-valued and harmonic in
the disk |z|<1. Then all points of the circle I': |z| =1 are, except perhaps for
a set of first Baire category on T’y horocyclic Meier points of f.

4. As a concluding remark we note that further generalizations of
‘Theorems 1 and 2 are possible (cf. [15]). Let 2 and 2’ be domains in the
z-plane and in the {-plane respectively. A complex-valued function f(z) in 2
is called K-quasi-conformal harmonic (simply, “KQCH”) in Q provided that
f(z) is of the composed form f(z) =goQ(z), where {=Q(z) is a K-quasi-
conformal homeomorphism (K=1) from Q onto 2’ and g¢(§) is complex-har-
monic in 2'*, The key lemma for the proof of MF or horocyclic MF theorem
of KQCH functions in D is, of course, an analogue of the Schwarz lemma:

LEMMA 1vis,  Let a function f(z) be KQCH and | f(2)| <1 in the disk 5(z, q).
Then for z€d(z, q) we have

(13) | f(2) — flz,)| = (8/x) arc tan (497X |z — z,]|'/%).

Proof. We may consider f = go 7, where T is a K-quasi-conformal self-
homeomorphism of (z,, q) with the additional property that z, = T(z,), and
g is complex-harmonic in (2, ¢). Furthermore, we know about T that [15,
p. 323, line 2 from below]

*® A domain £’ may depend upon f.
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[T(2) — T(zo)| =4q'7F |z — 2,|'%, 2€0(20 q),

an inequality due to A. Mori, so that combining this with Lemma 1 of section
2 we obtain (13).
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