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1. Introduction

A mapping K: ^(X) -> 0>{X) is a quasi-closure operator (see Thron (1966)
page 44) if (i) \JK = •» and for all A,Be&>(X) we have (ii) A £ AK, and (iii)
{A KJB)K = AK UJBK; one easily deduces that such operators have the further
property: (iv) if A £ B £ X, then AK £ BK; if K also satisfies: (v) AK2 £ AK
for all A £ X, then K is called a Kuratowski closure operator.

Birkhoff(1967) and Morgado (1960) have taken statements analogous to (ii)
(iv) and(v) as their axioms for an algberaic closure operator denned on an arbitrary
complete lattice L. One reason for doing this is to ensure that the set <j)(L) of all
such operators is itself a lattice, in fact a complete lattice, under the partial order
defined by:
/1) <j> 5£ i]/ if and only if acj) ^ a\j/ for all aeL

Morgado (1960) discusses the existence of atoms and dual atoms in <j)(L) and in
Morgado (1961) describes all the lattice automorphisms of <p(L); in Morgado
(1961b), he generalises the latter work and determines the conditions under which
^(LJ is lattice-isomorphic to $(L2).

It is well known that not all algebraic closure operators satisfy axiom (iii)
(see Example 1 below for a non-trivial instance) and that in general K(X), the set
of all Kuratowski closure operators, is not a lattice under the order defined in (1)
(see Example 5). On the other hand, if T(X) denotes the set of all topologies
defined on X and O: K(X)-» T(X) is the 1-1 anti-order-preserving correspon-
dence defined by t]<& = {A £ X: A'r\ = A'} for all r\ e K(X) (see [17]), then K(X)
inherits a lattice-structure from that usually defined in T(X); however this is not
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322 P. J. Collyer and R. P. Sullivan [2]

so of Q{X), the set of all quasi-closure operators (see Example 6). In addition, the
operations induced on K{X) under <t> are particularly cumbersome and do not
appear to simplify the analysis of K(X) as a poset.

For these reasons we now commence a study of the posets K(X) and Q(X),
modelling our approach on that of Morgado. In section 2, we determine all the
atoms of K(X) and show that the atoms of Q(X) are precisely those of K(X); in
doing this we give an alternative proof of Frohlich's result characterising the
maximal topologies definable on a set X (Frohlich (1964)). In section 3, we de-
scribe all the dual atoms of K(X) and Q(X) .These results are then used in section 4
to discuss the existence of order-isomorphisms between K(X) and K(Y) and
between Q(X) and Q(Y); this extends Frohlich's work in characterising the
lattice-automorphisms of T(X) (Frohlich (1964); see also Steiner (1966)). Another
feature of Morgado's work, the embedding of 4>(L) in the Cartesian product
4>(M) x <j>(N) for some lattices M and N (see Morgado (1961a), (1963), (1966)),
will be investigated for the case of K(X) and Q(X) in Sullivan (to appear). However,
unlike Morgado, we shall restrict our attention throughout to operators defined on
the lattice 3P{X) rather than on an arbitrary lattice L. For otherwise it seems
that to achieve comparable results, we would have to first assume that L was
complemented and distributive, and so was uniquely complemented (Birkhoff
(1967), page 17), and that it was atomic, and so was in any case a sublattice of

for some set X (Morgado, (1963), page 85).

2. Minimal closure operators

Notation will be that of Banach (1932) and Birkhoff (1967) unless otherwise
specified. We write a for the identity mapping on 0>{X) and <o for the mapping
defined on 0>{X) by setting Qco = • and Aa> = X for all non-empty A £ X.
An order is defined on Q(X) by the relation:

K ^ r\ if and only if AK £ At] for all A £ X.

Under this order, Q(X) is a poset with least element a and greatest element co,
and in general we have K(X) c Q{X) and K{X) <= A(X), the set of all algebraic
closure operators defined on &>{X).

EXAMPLE 1. Let X be infinite and fix some infinite C £ X. Define
tf. 0>(X)-+&(X) as follows:

At] = A U C if C\A is finite,

= A otherwise.

It can be readily checked that t] e A(X). If however we fix x, y e C, and write
C \ {x, y] = A U B, where AC\B = U and both A, B are infinite, then {A U E)t\
^AriKJ Bt]. Hence K(X) <= A{X).

EXAMPLE 2. Let X be any set, and fix some non-empty A £ X such thai
\A' I ̂  2 and some x $ A. Define q: &>(X) -> ̂ {X) as follows:
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Cq = AUx if C^A, C # D

= X if C $ A

= • if C = ••
It is easy to see that q e Q(X); however since Aq2 •=> Aq, we find that q$K(X),
and so K(X) <= Q{X).

In fact, there are other more important, non-trivial examples to show that
K(X) c Q{X): for situations in analysis, see Thron (1966), page 46 and Banach
(1932), page 208; the following example arises naturally in the theory of partial
left translations of a semigroup (Sullivan (1969), Chapter 3).

EXAMPLE 3. Let S be a semigroup and fix some xeS. Define r\: ^(S) -• 0>(S)
as follows:

Cn = CKJxC for all C^S

It is easily checked that n e Q(S). But

Ux2C = Q 2 ;

if S is the positive integers under multiplication, and C = {1}, x = 2, the
containment is proper, and so in this case, n will not belong to K(S).

Although A(X) is a lattice under the partial order defined in (1), this is not
so of K(X): we choose to show this by first defining certain elements of K(X)
which will have a role of some importance in our characterisation of the atoms
of K(X) for X finite.

DEFINITION 1. For A, B s Z , define KAB: ^>{X)-^^{X) as follows:

CKAB = C if A nC = •

= CUB otherwise.

As an abbreviation we shall simply write KOB or KAb when A = {a} or B = {b}.
It is then easy to see that in general we have

a = KAa = KaB = KM and © = KXX

In fact these are the only KAB which equal a and co when | X | > 1: the proof of
this fact is straightforward and so shall be omitted.

LEMMA 1. Suppose \x\ > 1.
(i) KAB = a if and only if either (a) A = Q or B = •» or (Jb) A = B = {a}

for some aeX.
(») KAB = a if and only if A = X = B.

LEMMA 2. K^BeX(Z)/or all A,B^X.
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Unfortunately, even for X finite, not every r\ e K(X) is of the form KAB for
some A, B £ X. In showing this we shall use the additional abbreviation of writing
an for {a}n.

EXAMPLE 4. Let X = {a,b,c,d} and define n: &>(X) -* 0>(X) by setting
• f = D and an = a, dn = d, bn — b Ud, en = c U a, and Yn — {yr\: yeY}
for Y s X. It is then readily checked that n e -K(Z). But suppose n = K^B for some
A,B £ X. If b$A, we have ft/; = bxAB = b, a. contradiction. Hence be A, and
ft Ud = ft/j = ft U.B, cUa = c»j = cUB: this implies deBc.{c,a], a con-
tradiction.

However this particular kind of closure operator can be used to show that
K(X) is not a lattice under :g as defined in (1). Although the infimum under ^ of
4>,\j/e A{X) is the operator <f> A "A defined by:

# for all B s X,

when A is restricted to K(X) we find:

EXAMPLE 5. If [ X | 2: 3 and we choose a,b,c e X and put tj = Kba A Kca, then
by (1) we have

{b, c}t] = {ft, c}K6a n {ft, c}Kca = {ft,c,a},

but ftfj = {ft, a} n ft = ft and likewise cr\ = c. Hence ({ft} U {c})>j # {ft}/; u {c}?/,
and so >; £ K(X).

On the other hand, K(X) inherits a lattice-structure from T{X) by defining,
foraUf/, SeK{X),

tj V ^ = A if and only if T, A T{ = L and AO = L

t] f\£, = n if and only if T, A T{ = M and /̂ O = M.

However under these operations Q(X) is not a lattice. To see this, let na denote
the quasi-closure operator defined in Example 2 for the case A = {a}; we then
have

EXAMPLE 6. For all a eX, 7taO = {•, X} = Tm> and so, if A is well defined
on Q(X), we obtain na/\nb = at; clearly, Q(X) cannot also be a semilattice under
A-

The elements Kab of K(X) introduced in Example 5 and corresponding to
distinct a, ft 6 X prove to be extremely important. They are minimal over <x in the
sense that a < Kab and if £, e K(Z) and a ^ ^ Kafc, then f equals a or Kai, and
they provide a "factorization" theory for certain r\ e K(X) (see Collyer (to appear)).
However before proving the former assertion we now determine the relationship
in general between those KAB which do not equal a.

LEMMA 3. Suppose KAB^ a for A,B s X. Then KAB g KCD if and only if
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(0 A £ C and B\a^D\a VaeA, or (ii) there exists aeA such that
B = {a} = A\C £ D.

PROOF. Let £ £ X and put £ = K^B, n = KCD. If E n 4 *= • , then ££
= £ S Ef/. So now suppose (i) holds and E n A # Q. Then 4̂ # D and £ n C
# D. and so for a e A n E,

E£ = £ U B = EUaUB\asEUa\JD\a = £UD = Er\.

And if (ii) holds and EC\A^U, then £ O C = • will imply E nA = {a} and
= £(|. On the other hand, £ n C ̂  D will imply
= £f/. Hence in all cases, £<!; £ £^ and so ^ g n.

Conversely, suppose { g r\. Now either 4 s C o r i $ C . In the first case,
VaeA, a V B = a£ ̂  an = a V D, and so (i) holds. If there exists aeA\C,
then a LJ B = a£ z ay = a, and so 5 = a = A \ C since B ̂  • and fixed. Now if
A n C = D, then 4̂ = B = a and { = a, contrary to assumption. So, letting
xeA nC, we obtain x£ = {a,x} s {x} VD = xt] and hence aeD.

When we reduce to the special case where both A,B are singletons, we
obtain:

LEMMA 4. For all distinct a, beX, Kab is minimal over a.

PROOF. Suppose £, e K(X) and a^£,-^Kab and let i s i if a$A, then
A <= A^ E -^K^ = yl and so /!<!; = A for all i s j not containing a. Suppose
aeA. Now a £ a£ £ {a,£>}, and so a^ equals a or {a,b}. In the first case, we
obtain A£ = (A \ a U a)^ = 4̂ \ a U a = A, and in the second case

A£ = (A\a)ZUal; = A\Jb.

Hence £ equals either a or Kab, and the result follows.
We now proceed to determine all minimal Kuratowski closure operators on

an arbitrary X. As a first step, we prove:

LEMMA 5. If r\ e K(X), rj ^ a and a <=• arj for some aeX, then Kab ̂  r\ for
some beX.

PROOF. Since a <= an, we can choose bear\\a. Then if C £ X and a £ C, we
have CKab = C<zCr\, and if a e C, then bean ^Cn and so CKa6 = C U fc £ C»7,
and the result follows.

This result together with Lemma 4 suffice to characterise the atoms in K(X)
for X finite. For then, if rj is minimal in K(X) and a — an for all a e X, then
n = a., a contradiction. Hence, a <=: an for some a e l and so by Lemma 5, we
have cc<Kab^n for some b # a; the minimality of ^ then implies the result. The
general result however is considerably more difficult: without the assumption a c a i j
for some aeX, it is not always true that for each neK(X), there exist x, yeX
with Kj,, ̂  n. As an example, let X be infinite and consider the closure operator rj

https://doi.org/10.1017/S1446788700031530 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031530


326 P. J. Collyer and R. P. Sullivan [6]

defined by the conditions: Cn = C for every finite subset C of X and Cn — X
otherwise. For this reason we now begin with

DEFINITION !.££<=, &>(X) is a prime sublattice if it is a lattice and if
CKJDeSe implies that Cs£e or De i? .

DEFINITION 3. Jt c 3P{X) is a maximal prime sublattice if it is a prime
sublattice and if^(X) is the only prime sublattice properly containing Jt.

Our next result shows the existence of prime and maximal prime sublattices
in ^(X) for every X containing more than one element; in order to state this
result, we put 38 x = {C £ X: xe C).

LEMMA 6. / / | X \ > 1 and xeX, then38X is a prime sublattice of ̂ (X) and
any proper prime sublattice containing 3&x is contained in a maximal prime
sublattice of

PROOF. Since I / x, we have 38X <= ^(X) and it is easy to see that 88x is a
sublattice and prime.

Now suppose 0SX<=:<£ <= 0>{X) and X is prime. Let S be the set of all proper
prime sublattices containing <S?: this is non-empty since it contains S£. Suppose F
is a chain in S and put Jt = U F. If C, D e Jt, then C &(6 and D e 9> for some
^ , S e r , and since F is a chain, we may suppose without loss of generality that
<# S 2>. Then both C,DeS> and so both CnD,CUDe® since 2 is a sublattice.
It follows that Jt is a sublattice. Now suppose C U D e l . Then C U D e f
for some 3FeT, and since & is prime, we obtain CeJt or DeJt; that is, Jt is
prime.

If Jt = 0>{X), then in particular X \x e& for some ^ e F. Hence if 4 £ X
and x£v4, then ^ U x e ^ s S f implies that (X\x) r\(A\Jx)e& since S? is
closed under n . Hence ̂ contains every A^X not containing x, and so SF = ^(X)
a contradiction of the fact that <& is a proper prime sublattice of ^"(X). Hence
Jt el. and so Zorn's Lemma implies that ££ is contained in a maximal prime
sublattice of £P(X) as required.

The relevance of the above is shown by the following result

LEMMA 7. Suppose xeX and let £f be a maximal prime sublattice of
0>{X) containing 0SX. Define X: ^"(X)->^(X) as follows:

if

= C otherwise.

Then XeK(X) and is minimal over a.

PROOF. From the definition, we have \JX = • and C^CX for all C s X.
I f C c X , C^^P and C # D, then CA2 = (CUx)A = C Ux since C U x e J , £ if
in this case CX2 = CX. In the other cases CX2 = CX = C trivially.
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Now suppose CUD$£P and C u D # D - If C = Q, then D$£e and
D # Q, and so we have (C U D)X = C KJ D U x = CA U DX. Since the same result
follows if D = D. we may therefore assume that both C,D are non-empty. Now
since Sf is a sublattice and C UD^if, we may also suppose without loss of
generality that CfSCWe therefore have C $ <£ and C ̂  O, and hence (C U D)X
= C U D U x and Cl = CUx. But by definition DX equals D or D Ux, and
hence we obtain CAUB1 = (CUD)X.

If CUD = D, then C = D = • and we have (C U D)A = CX U DA.
So, suppose C U D e i f and C u f l ^ n , and since £C is prime we may

therefore assume without loss of generality that CeJ&?. Hence we have (C UD)1
= C U D and CA = C. Now if D eif, we also have £>A = D from the definition,
and so in this case (C \JD)X = CX \JDX, So suppose D£iP. Then D ^ ^ x since
^ x £ &, and so x £ D. Suppose we also have x ̂  C. Then x ^ C U D .
CUDe^P, a sublattice and DUxe,^x£=Sf together imply that

D = ( C U J ) ) n ( D U x ) e ^ ,

a contradiction. Hence if D^JZ? we must have x e C and so

This gives XeK(X).

Finally suppose that a :g % ^ A for some £ e .K(X) and put

£ei = { C c I : Q = C}.

Since ^eX(X), iP? is a sublattice of ^(X), and if C UDeif? with C^if^, then
C c Cf £ CA. But CA equals C U x o r C , and hence in this case C£ = CUx with
x£C. Then CUD = (CUDX = C£(JD£ = C U x U D J , and so xeD; that
is, D 6 ^ x £ ^f and so D s D^ £ DA = D implies that De£ev and hence ^P? is
also prime. In fact, if E £ X and EeiP, then £ £ £ { £ A = £ and so 2?^ is a
prime sublattice of &{X) such that 0SX £ ^ £ if { £ "̂(A"). By the maximality of
iP, we therefore know that Z£^ equals if or ^(X); that is £ equals A or a, and so A
is minimal in K(X).

We shall now prove that conversely every atom of K(X) is of the form
described in Lemma 7. In order to do this however, we must first show that for
any rjeK(X), there exists a £eK(X) just a little "smaller" than r\; we state this
result in more general terms so that it can be used in Theorem 3 to show that
the atoms of Q(X) are precisely those of K(X).

LEMMA 8. Let t] e Q(X) and xeX. Define <rx: 3^{X) -» 0>(X) as follows:

Cax = Cn\x if x$C

= Cn if xeC.
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Then ax e Q(X) and ax ^ n. Moreover, ifne K(X) then ax e K(X).

PRCK>F. From the definition we have Dcx = CM* = D, and if C £ X with
x $ C, then C ^ Cn and so C £ Cn\x. Hence C £ Cax for all C £ X.

Now if x $ C U D, then x £ C and x ̂  D, and so

(C UDju, = (CVD)n\x = (Ct]UDrj)\x = Cox\JDox.

If x e C U D, then without loss of generality, we may suppose xeC. Then
(C V D)ax = (C KJ D)rj = Cn V Dn and xeCn. If xeD, we have C<jx\JT)ox

= CnVDn, and if x£D, we have Cax U£><xx = Cn VDn\x = Cn VDn since
xeO/ . Hence cr^eQCX).

Now let C £ X. If x e C, we have Co-X = C?;, and if x £ C, we have Ccr,
= CJ/\X £ C>/, and so tr, S 1-

Finally suppose ?/ e K(X) and let C £ X with x £ C. Then CCT̂  = (O/ \x)<rx=
(Crj\x)n\x since x£C»7\x. But Cn\x ^ Cn implies (Cn\x)n £ C?;2 = Cn and so
(O7\x)n\x ^ Cn\x ^ (Cn\x)n. But x$Cn\x implies that CJJ\x £ (Cn\x)n\x,
and so in case x £ C we have Cc^ = Cn \ x = Cax. If x e C, then x e Cn and
so C(TX = Cnax = Cn2 = Cn = Cax.

LEMMA 9. If rjeK(X) is minimal over a and if as before £f^ denotes the
set {C £ X: Cn = C}, then there exists xeX such that 0SX £ &n and &n is a
maximal prime sublattice of

PROOF. Since n ^ «, there exists A <= X such that A <= An. Let xeAn\A.
Then Lemma 7 implies that tx^ax^n, and since Aax = An\x<= An, then
minimality of n implies ax = a. We therefore have A = ylcr,. = An\x, and so
using x € An, we obtain An = AUx.

Now suppose B s X and B c ity. As above we will have Bn = B U y for
some j £ B and <7y = a. If x e B, then from the definition of ax and the fact that
ax = a, we obtain B = Bax = Br\ — B\Jy, and so yeB, a contradiction. Hence
x£B and similarly y ^ A So if D = A^JB (which is non-empty) we have
D n {x, y} = • and hence again using the definition of ax and o ,̂ we have
D = Do-, = Dn\x and D = DCT, = Dn\y. Therefore if x¥= y,

Dn = {Dti\x)V(Dn\y) = D.

But D>/ = An VBn = 4̂ Ux UB U j , and s o x e i u B , a contradiction. Hence
we may fix some Ac X such that .4 <= An, and then if xeAn\A, we obtain
BJ; = B U x for all B £ Z such that B <= B?/. Moreover for such xeX,ox = a. and
so Cn = C for all C containing x. Hence, we have 88x £ if, and the fact that
r\ 6 K(X) implies JSP, is a sublattice.

Since >/ # a, &ncz0>(X). To show if, is prime, suppose C U D e i f , and
C£•£"„. Then C\JD = (C Ul))ij = O; UD// = C Ux UDn since C <= Cn, and
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S O X E C U O . But x$C (otherwise Cn = C and so Ceif,, a contradiction), and
soxeD. Then D = Dn and so D eif,.

By Lemma 6 we may choose a maximal prime i f such that

Let A e K(X) be defined as in Lemma 7. Then if C £ X and C e if, we have
CU = C £ c?;, and if C$S£, then C£if, and so Cn = C U x = CA. Hence
a < A ^ »;, and so A = n by minimality of ?/. Therefore if, = i f and is a maximal
prime sublattice of 0>(X).

If we write A(if, x) for the operator defined in Lemma 7, we can summarise
our work thus far in the following:

THEOREM 1. / / | X | > 1, then neK{X) is minimal over a if and only if
n = A(if,x) for some maximal prime sublattice i f containing 0$x.

REMARK 1. We note that, under the lattice-anti-isomorphism O, this result also
provides a characterisation of the maximal topologies on X (cf. Frohlich (1964)).

For completeness, we now determine which A(if,x) equal Kab for some
a,beX (note Lemma 4).

THEOREM 2. / / | X \ ^ 3 and a,beX, a ^ b, then Kab = X{S£, x) for some
xeX and some maximal prime sublattice i f containing 0&x iff x — b and
cp — at

PROOF. Put A = A(if,x) and suppose A = Kab for a # b. Now aKab = a Wb,
and so if {a} 6 if, aX = a, a contradiction. Hence {a} ^if, and so aX = a Ux,
which implies x = b and 3Sb ^ ££. If now C e38'a, then Cicab = C, and if in ad-
dition C^if and C # Q, then CX = C uft; that is, beC and Ce^j , Eif , a
contradiction. Hence Ce i f UQ and we have J . ' U ^ c ^ u D . But • e i f
since if is a maximal prime sublattice, and so we have 3S'a \J0Sb E if. On the
other hand, if C e i f and b i C, then CX = C, and so if a e C, then CKab = C\Jb,
a contradiction. Hence, a $ C and we have Ce3H'a. We have therefore shown that
i f = 0S'a \J0Sb.

Conversely, suppose that i f = &'a \J3t}b, which is clearly a prime sublattice
of 0>{X). If C s X and a $ C, then C e3S'a £ i f and CX = C = CKab. Suppose
aeC. Now either Ce0Bb or C^^fc, and in the first case, C e i f and CX = C
= Cub = CKa6, and in the second case, C£if, C # D, and CA = C ufe
= CKa(). Hence we have A(if, b) = Kab where i f = &'a U39b.

We are now in a position to prove

THEOREM 3. The atoms of Q(X) are precisely those of K(X).

PROOF. We first show that any atom of K(X) is an atom of Q(X). To do this,
let A = A(if, x) be an atom of K(X) (see Theorem 1), and suppose there exists
q e Q(X) such that a^q^X. Then if C £ X and C eif, we have C^Cq^CX
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= C and so C = Cq = Cq2. On the other hand, ifC^Se, we have C^Cq^C
U x. Now if Cq <= Cq2, then C <= Cq and so Cg = C Ux; that is, x e Cq, Cq eSZ,
and (Cq)q = Cg, a contradiction. Hence for C $£P, we also have Cq = Cq2; that
is, q e X(Z), and so since X is an atom of K(X), we find that q equals a or X.

Conversely, suppose t] is an atom of Q(X) and that r\ $ K(X). Then there
exists A^ X such that An <= At]2. Since this implies that A <= /ty, we can choose
x e 4̂J? \ /I and y e At]2 \ At]. Then a ±± <rx ^ t] for <rx e Q(X) (see Lemma 8) and we
have A s Aax = At]\x<= An. Hence ax<n and so minimality of t] implies that
ax = a; we therefore have A = Aax = At]\x and so At] = ,4 Ux since xeAn.
Hence <xflLoy<Lt] and j> ^ .4 imply that

4̂(7j, = At]\y = At] = AKJx Z3 A

since x£^4, and so a < ay; the minimality of ?/ therefore implies that t] = ar

But y $ {x}, and so xt] = xay = xt] \ y; that is, y$xt]. Hence we have At] = AUx
and /4»;2= 4̂̂  U xt] with y 6 At]2 but y£At] and y^xq, a. contradiction. Therefore
»7 e KQO and if a ^ ^ ^ ?; for some ^ e K(X), then ^ e Q(X) and so the minimality
of t] in g(Z) implies that f equals aort; ; that is, J7 is an atom of K{X).

3. Maximal closure operators

The notion of a dual atom was investigated by Morgado(1960): we shall on
occasion refer to them as maximal elements under to.

DEFINITION 4. For A^X, define yA: &>(X) -> 0>(X) by

CyA = ^ if C £ A, C # •

= X if C $ yl

= • if C = ••
It is readily seen that yA = co if and only if A equals • or X. But more generally
we have:

LEMMA 10. yA e K(X) for all A^X.

PROOF. It is clear from the definition that QyA = • and C E CyA for all
C s l . From the remark above we may suppose that • c A <= X. Then if C £ ,4
and C # D, we have CyA = AyA = A = CyA, and if C $ 4, then Cy^ = XyA

- X = Cŷ  since X ^ A. Now suppose C UD s 1̂ and C U f l ^ n . Then both
C, D E A and without loss of generality we may suppose C # • • In this case
therefore (C U Z))^ = A = Cyx

 u ^7^- If C U D $ 4 , then either C $ .4 or
D $ A, and so (C UD)yA = X = CyA UDyx. Finally if C u D = D , then
C = D = D, and again (C U D)yA = Cy^ UDy^.

Closure operators of the form yA are of particular importance as the following
result indicates:
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THEOREM 4. t]eK(X) is maximal under co if and only if n = yA for some
Ac X such that • <= A <= X.

PROOF. Suppose n is maximal under co in K(X). Since n ^ co, there exists
D c ^ c j ; such that Br\ c X. Put ity = A: we assert that n^yA (we note that
A # • since B £ Bf;). If C £ X and C £ 4, C ^ • then C// £ .4/7 = B/72 = A
= Cy ,̂ and if C $ J4, then Crj £ X = C)U- Clearly, D>7 = D = Dy^. a"d so the
assertion follows. But from a remark above, yA ^ co and so maximality of t\
implies the result.

Now suppose • c A c X and 7̂  ^ ^ co. Then if C £ X and C $ .4, we
haev X £ C£; if C £ ^ and C * rj , then C£ £ At, and .4 £ C£, and so C<̂  = Alt
fo all such C. Now A £ /1£: if A = 4<i;, then ^ = yx; if there exists aeA£\A,
then a £.4 implies that X = at, £ ^4 ,̂ and so ^ = co.

REMARK 2. As before, we note that under $ this result determines all minimal
topologies on an arbitrary set X.

The next result reveals the relationship between the operators yA and the
KCD introduced in section 2.

THEOREM 5. Suppose yA ^ co. Then yA = KCD if and only if one of the
following occurs

(i) C = XandA = D = X\a,
(ii) C = X\a,A = a,
(iii) C = X\a,A = a,

= 2 and D = a,
> 2 and D = X.

PROOF. Suppose yA = KCD and • <=• A <= X. Then VxeA', xyA = X = XKCD;

if x$ C, then X = x implies A = x, a. contradiction. Hence x e C and we have
A' £ C and X = x UD VxeA'. This gives ^ = A r\X = A dD and so A £ D.

Now suppose ^4\C = • • Then A^C and so C = X since ^4' £ C from
above. If there exists d e D \ A, we obtain X = dyA = dKXD = d U D = Z), and
so Lemma 1 (ii) implies y^ = co, a contradiction. Hence D = A. Let aeX\^4.
Then X = ayA = aKX/< = a \J A, and so 4 = X\a.

Now suppose there exists aeA\C. Then /I = ayA = aKCD = a implies A = a
and A\C = a. Hence C ^ X and so C = X \ ^ since X\a £ C from above.
Now we already have X = xUDVxeC, and aeD. Hence if |X | = 2, we obtain
D = a. But if IXI > 2, then |D | 3: 2 and so there exists deD\a, and once again
we have X = dyA = dKCD — d U D since C = X \ a and d ^ a.lt follows that in
this case D = X, and hence (ii) and (iii) hold.

Conversely suppose (i) holds and E £ X. If E £ A and £ # Q, then EKXA

= EUA = A = EyA and if E £ A, then £ = X and the result follows. If (ii)
holds and we put C = fo, it is readily checked that ya = Kba. Finally if (iii) holds,
then first aKcx = a = aya, and if E $ A, then £ n C ^ • and so EKCX = £ U X
= X = £ya, and again the result follows.
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Before proceeding to determine the dual atoms of Q(X), we wish to point
out that for any rj e Q(X), there exists a ^ e Q(X) just a little "bigger" than r\.

REMARK 3. If neQ(X) and xeX, and if we define 0X: &>(X)-*^(X) as
follows:

CPX = Cr[ U x if x e Cf/2

= O7 otherwise,

then PxeQ(X) and >/ g £,. For, since x$ Urf = D, we have UPX = D>7 = D,
and clearly, C £ Cfix for all CzX. Moreover, if C,D £ X and xe(CUD)^2,
then (C uD)/?x = (CUD)/7 Ux and without loss of generality we may suppose
x G Ct]2. Then C ^ U J ) ^ = Ci/UxU D^x where Di?x equals either Dr\ or Dr\ \Jx:
in either case we will obtain (C U D)fix = C(lx u Dfix. If on the other hand,
x $ (C U £>V, then x ̂  C>/2 and x <£ Drj2, and so

(C U 0)0, = (C U D)t] = CtjKJDri = Cft. U D&.

Hence, PxeQ(X) and it is obvious that ^ ^ jŜ .
The result indicated in Remark 3 can be regarded as a "dual" of Lemma 8.

Yet another instance of some correlation between our earlier work on showing
that the atoms of Q(X) are precisely those of K(X) and our aim to now determine
the dual atoms of Q(X) and relate them to those of K{X) is indicated by the
following

EXAMPLE 7. Suppose r\ e K(X) and choose £ £ £?(X) with the property

[JeS1 and CKJDeS if and only if both C,DeS

Note that both 0>(X) and any set of the form {{a}, • } , a e X, has this property.
Now define £,: &(X)-• 0>{X) by putting C£, = Cr\'\iCe& and equal to X other-
wise : it is then easily checked that £ e Q{X) and that r\^.£,-^(o.

However the analogy between the two situations is illusory. To show this we
first state

DEFINITION 5. For a,beX, a^b, define

4>ab: &(X) - 0^C) by

C<pab = • if C = •

= X\b if C = a

= X otherwise.

Since a ^ b, 4>ab is only defined for | X | ^ 2.

LEMMA 11. 4>abeQ(X) for all a,beX, a ^ b.
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PROOF. O4>ab = • fr°m the definition. Since a ^ b, {a} £ X\b = a(f>ab and
for C ^ a, we see from the definition C £ C<j>ab. Now suppose C u f l ^ a . If
C U£> = D, then C and D are both empty and ( C u % t = C4>ab VD(f>ab. If
C u D ^ D , then at least one of C or Z) is both non-empty and not equal to {a}.
Without loss of generality, let us suppose it is C. Then

C(j>ab\JD4>ab = XUD<j>ab = X = {C\JD)4>ab.

If C U D = a, then C S a and Z) S a and either C or D equals a. Without loss of
generality, let us assume C = a. Now D <=, a implies D<j)ab equals the empty set
or X \ b. In either case we have C<j>ab U D4>ab = I \ * U D<j)ab = X\b = (C(J D)<t>ab.

Just as the yA defined earlier were maximal under co in K(X), we now have a
similar result for Q(X) when | X | ^ 2.

THEOREM 6: rjeQ(X) is maximal under a> if and only if rj = 4>abfor some
a,beX, a + b.

PROOF. Suppose r\ is maximal under co in Q{X). Since r\ ^ a>, there exists a
non-empty C <= X such that Cn # X. Choose a e C, and beX\Cn. We assert
that ?7 ^ </>o6. Clearly D>7 = • = • & * • If D ^ a, D # D, then D0a6 = X 2 Zty.
If D = a, then D s C , and

and so the assertion follows. But <f>ab ^ co since a<f>ab = X\b ^ X, and so
maximally of n implies n = <j)ab.

Now suppose, there exists f e g(X) such that (j>ab^£^ co. Then if D s X is
non-empty and D ^ a, then X = D(j)ab zD£,^X gives D^ = X for all D ^ a. If
D = a, then D<j>ab = X\b ^ D£ ^ x. So D£ either equals X \ b or X. If D |
= X | £, fien ^ = <pab, and iFD{ = X, <f = co.

REMARK 4. We note that <pab e K(X) if and only if | X | = 2. For clearly we
always have U4>al = •<&,*, and if D ¥=a,D^U, then DtpJ = Xc6a6 = X = D(j>ab.
If Z> = a, then Ztya| = (X\b)<t>ab and Z><6aft = Z\A. If X\ = 2, then Z \ 6 = a
and so Z)0aft

2 = a<6a6 = Z)^a6 implying 4>ab e K(X). If f X ^2, then Z \ b ^ a and
so D<j>ttl = (Z\ft)cAai = X^X\b = D<f>ab, implying 4>ab$K(X).

4. Order-isomorphisms

We now use the results of section 3 to investigate the existence of bijections
6: K(X) -> K(Y) such that n ^ £, in K(X) if and only if r/9 ^ id in K(Y); that is,
.we shall attempt to determine the condition under which K(X) is order-isomorphic
to K(Y), and in like manner the conditions under which Q(X) is order-isomorphic
to Q(Y), where X and 7are arbitrary (cf. Birkhoff (1967), page 3). Before stating
our first result in this direction, we note that if | X | = 1 and K(X) is order-iso-
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morphic to K(Y), then \Y\ ^ 1: for otherwise there would exist a,beY, a ^ b
such that KabeK(Y) and Kab ^ aY-

LEMMA 12: / / [ z | > l and K(X) is order-isomorphic to K(Y), then
2m = 2 | r | .

PROOF. Suppose 8: K(X)-^K(Y) is an order-isomorphism and let CJ^A
<= X. Then Theorem 5 states that yA is maximal in K(X). Hence yA8 is maximal in
K(Y) since 0 is an order-isomorphism, and so again by Theorem 5, yAQ = yB

for some • <= B <= Y. Define 8': 0>{X)^^(Y) as follows:

D0' = n, *0' = Y

and V/4 <= X, Ad' = B if and only if yA0 = yB.

Then 8' is a bijection since 0 is an order-isomorphism, and the result follows.
Before proceeding we note that if \x\ = | Y\ and 8: X-* Y is a bijection,

then T: ^(X)->^(y) defined by putting Cx = C0 for all C E I is an order-
isomorphism of 0>{X) into ^(Y), and that every order-isomorphism is obtained
in this way. We can therefore formulate a partial converse of the above Lemma:

LEMMA 13: / / 1X \ = | Y \, then K{X) is order-isomorphic to K(Y).

PROOF. Suppose 6:X-+Y is bijective and for each neK(X), define
fj:^(Y)-^!^(Y) by putting Cfj = ((Cfl-1)^ for all C = Y. It is then easily
checked that JjeK(y). Now define the mapping 8*: K(X)-+K(Y) by putting
rjd* = fj for all neK(X); it can also be easily checked that 8* is the required
order-isomorphism.

Combining Lemmas 12 and 13 in the finite case, we obtain:

THEOREM 1: If X is finite and \x\ > 1, then K(X) is order-isomorphic to
K(Y) if and only if \x\ = \Y\.

REMARK 3. For infinite X, a complete converse to Lemma 12 does not seem
possible. By assuming the Generalised Continuum Hypothesis, we can deduce
\X | = | y | when 21*1 = 2|y | , but without this assumptio) it still does not appear
to be known whether the deduction is valid (see Morgafo (1966), page 155). An
alternative approach to the problem would be to use the results of section 2.
Clearly minimality will be preserved under order-isomorphisms, and so a charac-
terisation of the maximal prime sublattices of ^(X) containing 38x, xeX, may
enable a "better" cardinality condition to be obtained when K(X) is order-
isomorphic to K(Y) and X is infinite.

When we turn our attention to order-isomorphisms of Q(X) we obtain a
much better result. However before stating this we first note that if | X | = 1 and
Q{X) is order-isomorphic to Q(Y), then | Y\ ^ 1; for otherwise we would have
4>abeQ{Y), (j>ab^ojr.
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THEOREM 8. For \X\ > 1, Q{X) is order-isomorphic to Q(Y) if and only if

1*1 = 11-
PROOF. Suppose 9: Q(X)-+Q(Y) is an order-isomorphism and let a, beX,

a # b. Then Theorem 6 states that <f)ab6 is maximal in Q(Y) since 6 is an order-

isomorphism, and so again by Theorem 6, $abd = <j>cd for some c,deY, c ̂  d.

Define

O':(X xX)\{(a,a):aeX}->(Yx Y)\{(c,c): ceY}

as follows:

((a,b)W = (c,d) iS 4>*0 = 4>e*

Then 9' is a bijection since 9 is an order-isomorphism.

For |AT| > 1 and \x\ finite, this implies \x\ = \Y\.

For | z | infinite, let ix = {(0,0): aeX}. Then if aeX, we define

H:Xx(X\a)-+(X x X)\ix by

(c, d)n = (c, d) if c # d,

= (c,a) if c = d.

Then it is easily shown that n is well defined, 1-1 and onto. Now for X infinite,

IX \ a I = j ĴT I and so | X x (X \ a) | = | X x X | and so we have

This gives us | x | = \(X x X)\ix\ = | ( 7 x Y)\ir\ = \Y\.

A proof similar to that of Lemma 13 establishes the converse.
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