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ON QUASI-AMBIVALENT GROUPS 

W. T. SHARPt , L. C. BIEDENHARN, E. DE VRIES, 
AND A. J. VAN ZANTEN 

1. Introduction. The prototype for applications of group theory to physics, 
and to mathematical physics, is the quantum theory of angular momentum [1] ; 
the use of such techniques is now almost universal, and familiarly (through 
somewhat imprecisely) known as "Racah algebra". To categorize, group 
theoretically, those characteristics which underlay this applicability to physical 
problems, Wigner [30] isolated two significant conditions, and designated 
groups possessing these properties as simply reducible. 

The two conditions for simple reducibility are: 
(a) Every element is equivalent to its reciprocal, i.e., all classes are ambivalent. 
(b) The Kronecker (or "direct") product of any two irreducible representations 

of the group contains no representation more than once. 
A group possessing only the first condition is called "ambivalent"; if it admits 
only the second condition it is termed "multiplicity free", (abbreviated m.f.). 

Condition (b) has a direct connection with physical applications [18; 30-32]. 
It implies that the "correct linear combinations" of products of basis functions 
are determined to within phase factors; that is to say, the solution of the 
physical problem is uniquely determined from symmetry arguments. It is im­
portant to realize, however, that condition (b) has the nature of a sufficient, 
but not necessary, condition for this uniqueness. 

The role of condition (a) in physical problems is based upon the fact that 
the ground field in such problems is that of the complex numbers; hence con­
jugation is defined and significant in the resulting representation theory. For 
an ambivalent group, all characters are real; hence complex conjugation takes 
an irreducible representation into itself. This property is equivalently expressed 
by the fact that for an ambivalent group the Schur-Frobenius invariant [15; 
16] is + 1 only. 

Mackey [21] has pointed out that it is possible to generalize the concept of 
ambivalence; a multiplicity-free group satisfying also this weaker condition 
possessed, as he showed, many of the desirable properties of a simply reducible 
group. Mackey's generalization replaced condition (a) by condition (a'): 

(a') The group admits an involutory anti-automorphism which preserves classes. 
(Quasi-ambivalence condition.) 
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That ambivalence implies quasi-ambivalence is easily seen by using the map­
ping g —> g -1, g £ G, as the required involutory anti-automorphism. 

In his thesis, Sharp [26] investigated in detail the basis for Racah algebra, 
the structure used in applications to physics of simply reducible groups. He 
demonstrated that the role of ambivalence in Racah algebra is simply to 
permit a consistent definition of the phase ( —1);, where ( — l)2j = C ,̂ the 
Schur-Frobenius invariant [15; 16] for the irreducible representation labelled 
by j . The property of quasi-ambivalence is sufficient to permit both a general­
ization of the Schur-Frobenius invariant, and the corresponding phase [26]. 
(This generalized Schur-Frobenius invariant has the property that it is equal 
to + 1 for all irreducible representations of a quasi-ambivalent group, and 
vanishes for at least one irreducible representation if the group is not quasi-
ambivalent.) For quasi-ambivalent, multiplicity-free groups there exists, as 
discussed by Sharp [26], a generalized form of Racah algebra. 

Experience with the construction of the Racah algebra [3] for the semi-
simple Lie group SU(3) (which is quasi-ambivalent as will be proved in the 
following section) shows that it is also possible to construct the Racah algebra 
for this group, although SU(S) is not multiplicity-free, i.e., does not satisfy 
condition (b) [5; 6; 20]. This example suggests that in the construction of a 
Racah algebra, the quasi-ambivalent condition is more essential than the 
(difficult and restrictive) property of being multiplicity-free. Whether or not 
this surmise is true is the subject of current research. (SU(3) satisfies the 
weaker condition of being a simple phase group [10; 13; 14; 28; 29]. It is not 
known as to whether the simple phase property is a prerequisite to construct 
a Racah algebra [12].) 

However, the property of quasi-ambivalence for a group is sufficiently im­
portant in the framework of Racah algebra to justify a separate investigation. 
The present paper is devoted to such a discussion. 

2. Quasi-ambivalence of simple Lie groups. In this section we record 
some elementary properties of quasi-ambivalent groups and demonstrate that 
many familiar Lie groups are quasi-ambivalent. 

We denote elements of a group ^ by R, S, T, . . . . Our definition states that 
& is quasi-ambivalent if there is a mapping a of ^ onto ^ such that 

(1) a(RS) = a(S) a(R) for all R, S in g? ; 
(2) a(a(R)) = R for all R in ^ ; 
(3) given R in &, there exists R' in & such that a(R) = R'^RR'. One notes 

immediately that any ambivalent group is quasi-ambivalent (take v(R) = R~l) 
and that any abelian group is quasi-ambivalent (take <r{R) = R). 

To every involutory anti-automorphism a corresponds an involutory auto­
morphism r which is the mapping R —> r(R) = o-(i?_1). To see this one need 
only note that «(R-1) aÇS-1) = a^R-1) = «((RS)-1) and o iXi?- 1 ) )" 1 ] = 
a(a(R)) = R. Conversely, to every involutory automorphism r corresponds an 
involutory anti-automorphism a (take <r(R) — T ( JR - 1 ) ) . These remarks make 
it clear that a group ^ is quasi-ambivalent if and only if there exists an in-
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volutory automorphism r, such that R and T(R~X) are conjugate elements for 
all R in ^ Ai there exists an inner involutory automorphism with this property 
(in particular T(R) = R) then the group is ambivalent. 

The connected compact simple Lie groups fall into the four infinite series 
An, Bn, Cn, and Dn (n = 1, 2, . . .) of classical groups and the five exceptional 
groups £6 , £7, Es, ^4 and G2. The groups of the series An are the special unitary 
groups SU(w + 1 ) , those of the series Bn are the special orthogonal groups 
SO(2w + 1 ) , those of the series Cn are the symplectic groups Sp(2w) and those 
of the series Dn are the special orthogonal groups SO(2n). It has been shown 
in the literature that the following of the above groups have real characters 
only and hence are ambivalent : SO (2n + 1 ), Sp (2n) as well as the exceptional Lie 
groups ElfE8j F4 and G2 and the groups SO (2«) if n = 2k (cf. [2; 8; 10; 22-24]). 

The special unitary groups SU(n + 1 ) , although not ambivalent, are quasi-
ambivalent as we can see as follows. We consider the involutory anti-auto­
morphism 

(1) <r(A) = AT, 

where AT denotes the transpose of the matrix A. We shall prove now that this 
mapping preserves the classes of SU(w + 1 ) . Every element A of SU(n + 1) 
can be brought to diagonal form by the similarity transformation 
(2) D = BAB~\ 

where B is also from S\](n + 1). From (2) we have 
A = B~lDB, 

hence 
a{A) = a(B) a(D) <j(B~l) 

(3) = BT DT(B~1)T = BT D (B~l)T 

= BT BA(BT B)~\ 
i.e., CT(A) and A lie in the same class. 

Next we consider the groups SO(2n) with n = 2k + 1. These groups are 
quasi-ambivalent as well. An element A of SO(2n) with n = 2k + 1 can by 
means of a similarity transformation be brought into the form 

C, 0 0 

0 C2 

D = BAB-

C 2k+l 
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where C< are matrices of the form 

This transformation can be brought about with a matrix B, which belongs to 
the group SO(2n). 

We now define the matrix R as follows: 

R 

R! 0 

0 R2 

R n+i 

where 

(7) R, -Ci]-
Consider the involutory anti-automorphism 

(8) a (A) = RAT R. 

Observe that although R does not belong to SO(2rc) (det R = - 1 ) , R AT R 
belongs to SO(2w). Next we prove that the mapping a preserves the classes of 
SO(2n). From equation (4) we have 

A = B~lDB, 

hence 

a(A) = a(B) a(D) «(B-1) 

= RBT RRDT R R(B-l)TR 

(9) = RBT RDR{B~l)TR 

= RBT RBAB-1 R{B~l)TR 

= (RBTRB)A (RBTRB)-K 

Because R BT R B is an element of SO(2»),<r(A) and A lie in the same class. 

Thus we have proved that all connected compact simple Lie groups {except for 
the exceptional group £6) are quasi-ambivalent. 
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To conclude this section we make a few remarks. The groups \]{n) and 
GL(n) are also quasi-ambivalent. For U(n) the proof is similar as for SU(n). 
For GL(w) we can also take the anti-automorphism 

(10) a (A) = AT. 

By means of a similarity transformation A and A T can always be transformed 
into the same Jordan normal form (cf. [25, p. 34]). 

A careful investigation shows that the proper orthochronous Lorentz group 
SO (2, 1) (which is not ambivalent) is quasi-ambivalent. A detailed proof of 
this assertion will not be given in this paper. 

3. Criteria for Quasi-ambivalence. Here we shall present some criteria 
for a group to be non-quasi-ambivalent and give examples of non-quasi-
ambivalent groups. Most of the criteria are valid for compact groups, but we 
shall formulate them for finite groups only. 

THEOREM I. If a finite group & is quasi-ambivalent and if r is an involutory 
automorphism such that R and T(R~1) are in the same class for all elements Ry 

of & then 

(11) \ Z x 0 ) (R) XU) (T(R)) = 1 

for all irreducible representations j with character %u)-

Proof. Because R and T(-/?_1) are in the same class, there exists an element 
S e & such that rÇR'1) = S R S~K Hence x

<fl
 (T(R)) = xU)* ('(R-1)) = 

XU)* (S R S-1) = xa)* (R) and 

\ Z xij) (R) xlj) (r(R)) = I Z x0) (R) x(j)* (R) = 1 

(* denotes complex conjugation). 

COROLLARY 1. If a finite group & has a fixed irreducible representation j , such 
that for all involutory automorphisms r of & we have 

(12) \ E X0) (R) XU) (r(R)) = 0, 

then & is a non-quasi-ambivalent group. 

COROLLARY 2. Let & be a finite non-ambivalent group. If for all involutory 
outer automorphisms r of & we have 

(13) \ Z x0> (R) xu) (r(R)) = 0 
g R 

for some fixed irreducible representation j , then & is non-quasi-ambivalent. 
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Proof of Corollary 2. Consider an irreducible representation j i with a complex 
valued character and suppose that n is an involutory inner automorphism. 
Then 

\ Z X0l> (R) XUl) (ri(22)) = ; Z X°° (R) XUÛ (S R ST1) 
g R^S g R€& 

= \ E (x0l) (*)}2 = o, 

and from Corollary 1 & is non-quasi-ambivalent. 

COROLLARY 3. Let & be a finite non-ambivalent group. If & does not have an 
involutory outer automorphism, then & is non-quasi-ambivalent. 

We can apply Corollary 3 to complete groups, i.e. groups which have a 
trivial center and no outer automorphisms. If such a group is non-ambivalent 
it is non-quasi-ambivalent. Examples are the i£-metacyclic groups for p = 
5, 7, 11, . . . , which are defined by 

(14) Sp = T*-1 = £ , T~lST = Sr, 

where r satisfies rp~l = 1 (mod p) and is primitive [11, p. 11]. These groups are 
complete [27, S. 126] and are non-ambivalent, hence also non-quasi-ambivalent. 
Note that from Corollary 3 it follows that for groups which have no involutory 
outer automorphisms the notions ambivalent and quasi-ambivalent coincide. 

We shall prove now that there are many more non-quasi-ambivalent groups. 

THEOREM 2. A non-abelian group of odd order is non-quasi-ambivalent. 

Proof. Let ^ be a non-abelian group of odd order. Let us assume that & is 
quasi-ambivalent and let r be an involutory automorphism, such that R~l and 
T(R) are conjugate elements for all R in S? (cf. section 2). The class of the unit 
element E is the only ambivalent class of ̂  [9, p. 294]. From this it follows 
that T(R) 9e R for all R 9e E. This means that r is a fixed-point-free auto­
morphism of order 2. By [17, Theorem 1.4, Chapter 10] it follows that ^ is 
abelian. However, this contradicts the assumption that ^ is a non-abelian 
group and therefore ^ cannot be quasi-ambivalent. 

Theorem 2 shows that the non-abelian group of order 21 and the two non-
abelian groups of order 27 are non-quasi-ambivalent. This corrects and com­
pletes some statements made by two of the authors in [4, Chapter IV]. Further­
more the statement in [4], that the group of order 16, defined by 

(15) R2 = S2 = T2 = E, RST = STR = TRS 

is not quasi-ambivalent is incorrect: in fact 

(16) T-+RTR, S-+RSR, T -> 5 T S 

defines an involutory anti-automorphism that preserves the classes. Actually 
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the X-metacyclic group for p = 5 and order 20 is the group of smallest order 
which is non-quasi-ambivalent. 

4. Quasi-ambivalence for the alternating groups. It is often a difficult 
task to investigate if an arbitrary group is quasi-ambivalent or non-quasi-
ambivalent. To illustrate this we shall study the case of the alternating groups 
An. We remark that all symmetric groups are ambivalent, hence quasi-ambi­
valent. For the alternating groups we have the following theorem. 

THEOREM 3. All alternating groups are non-quasi-ambivalent, except A2 

through A8l AiQl An and An. 

Proof. The alternating groups A2l A5, A&, Ai0 and An have real characters 
and therefore these groups are ambivalent. All other alternating groups have 
complex characters and are therefore non-ambivalent (cf. [7, Theorem 6.2, 
p. 223]). From now on we shall consider only the non-ambivalent alternating 
groups. In order to investigate whether such a group is quasi-ambivalent, we 
have to find an involutory outer automorphism that has the property that it 
maps a class with a complex character into its inverse class. (This is clear from 
equation (11) and the orthogonality relation 

\ E x0) (R) xu) (R-1) = l.) 
g R£<8 

The classes of An with complex characters are classes which together with the 
inverse class form one class of the symmetric group Sn. 

Generating relations for An are given, e.g., in [11, p. 66] as follows: 

(17) Vf = (VtV,)2 = E, 1 S iS j S n - 2. 

A presentation for Vt is 

(18) 7 , = ( I t + I n ) . 

All elements of An are also elements of Sn. Take in Sn the element (12) and 
calculate in Sn: 

(19) V! = (12) 7,(12)-! = (12)7,(12) 

then in Sn we have 

(20) F / 3 = (V/ V;y = £ , l Si Sj S n - 2 

for the transformation of equation (19) is an inner automorphism in Sn. But 
Vi are also elements of An (V/ is again an even permutation). Equations (20) 
are identical with equations (17), hence also V/ generate An and equation (19) 
defines an outer automorphism of An. 

«Because An is a subgroup of index 2 of Sn one has 

(21) Sn = An + (12)An. 
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Consider now a class 9% of Sn which splits into 9 7 and ^ 7 ' in ^4n. Then 

(22) (12) (^/(12)- 1 = # , " . 

For suppose that (12) ^ 7 ( 1 2 ) - 1 = 9 7 . An arbitrary element from Sn is either 
in An or in (12) An. If x € Sn and x G -4W, then x 9 7 x_ 1 = 9 7 , for 9 7 is a 
class of ^4n, but if x G Sn and x g ^4ra, then x = (12)y with y G 4̂W- If (12) 
9 7 (12)"1 = 9 7 , then also x « 7 x"1 = 9 7 , i.e., 9 7 would also be a class 
of S„, but we know that this is false. Hence equation (22) holds. Therefore 
equation (19) defines an outer automorphism of An with the property that each 
split class is transformed into its inverse class. 

From [7, Theorem 6.2, p. 223] it can be seen that the characters of the split 
class of An are all complex-valued for n = 3, 5, 7, 8 and 12. This means that the 
groups A3, At, ATj A8 and Ai2 are quasi-ambivalent for equation (19) defines 
an involutory automorphism such that T(R) and R*1 lie in the same class. 

From [7, Theorem 6.2, p. 223] it also follows that some of the characters of 
the split classes of An are complex-valued whereas the characters of the other 
split classes are real-valued for n = 9, 11, 13 and n ^ 15. Clearly the in­
volutory automorphism defined by equation (19) does not have the required 
property for quasi-ambivalence for these groups. We shall now prove that 
the automorphism group of An n ^ 4 and n ^ 6 is generated by the auto­
morphism defined by equation (19) and the inner automorphisms, which means 
that the automorphism group of An(n ^ 4 and n ^ 6) is the symmetric group 

Suppose n ^ 4. As we know the elements Vt(i = 1, 2, . . . , n — 2) constitute 
a set of generators for An with Vt = (1 i + 1 n). Let us consider an arbitrary 
automorphism of An. Let Vt be mapped onto V/. Then because Vt is of order 
3, Vt also has to be of order 3 and moreover because for w ^ 4 all elements 
with the cycle structure (ai bx d) (a2 b2 c2) . . . (an bn cn) lie in one class of Anj 

all generators have to belong to one class (cf. [7, Theorem 2.1, p. 31]). We 
define 9 \ to be the class (ln~zk 3*). The number of elements of this class equals 

n\ 
( 2 3 ) gk= ( » - 3 * ) ! 3 * * T 

Under an automorphism of a group whole classes are mapped onto whole 
classes, hence the class of the generators Vu which has gi elements can be 
mapped onto 9 ^ only if gk = gi, or 

n\ n\ 
(n- 3*)! 3 * * ! " ( » - 3)! 3 ' 

which gives 

(24) 3*- 1 *! = (n - 3)(» - 4)(» - 5) • • • (n - 3k + 1). 

This equation is satisfied for k = 2 and n = 6, but for no other values of n and 
k (cf. [19, p. 93]). Hence gk 9e gi, except for n = 6, then g2 = gi. From now on 
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we shall therefore also suppose that n 5* 6. Then for an arbitrary automorphism 
the elements Vt can be mapped only onto the elements of the class fé\. 

Because of the relation (Vt Vj)2 = E, all generators Vt must have 2 symbols 
in the same order in common (only then {a,\ b\ C\) (a2 b2 £2) is of order 2, as can 
be checked easily). Consider an arbitrary automorphism V/ —> Vt. Then V/ 
can be any arbitrary 3-cycle say (a b c), hence any element from the class 
( l n _ 3 3) with n\/(n — 3)! 3 elements. V2' = (a b x) has to have 2 symbols in 
common with V\ y but for the third symbol x we have n — 3 choices. Similarly 
for Vz = (a by) we have n — 4 choices for y, etc. The total number of choices 
is 

^ L _ ( w - 3 ) ( . - 4 ) . . . . 2 . 1 = f 

However, instead of keeping a and b fixed, we can also keep a and c or b and c 
fixed, therefore we have to multiply our number of choices by 3 and we find, 
totally, n\. Hence the total number of automorphisms of An is n\. However, 
we know already n\ automorphisms of An: the elements of Sn. Therefore Sn is 
the automorphism group of Anfor n ^ 4, n 9^ 6. For the alternating groups this 
means that the groups are non-quasi-ambivalent for n = 9, 11, 13 and n ^ 15. 
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