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The shear-induced migration of dense suspensions with continuously distributed
(polydisperse) particle sizes is investigated in planar channel flows for the first time. A
coupled lattice Boltzmann–discrete element method numerical framework is employed
and validated against benchmark experimental results of bulk shear-induced migration
and segregation by particle size. Distinct dependence on the particle size distribution
is shown in the flowing (non-plugged) regime (where the bulk solid volume fraction,
φ̄, ≤ 0.3) resulting from a dual dependence on the particle self-diffusivity and local
rheology imposed by the particle pressure gradient. Close agreement between statistically
equivalent bidisperse and polydisperse suspensions suggests that the bulk migration, and
by extension the shear-induced diffusivity, is completely characterised by the first three
statistical moments of the particle size distribution. For both bidisperse and polydisperse
suspensions in the plugging regime, φ̄ ≥ 0.4, the smallest particles preferentially form
the plugs, causing the largest particles to segregate to the channel walls. This effect
is accentuated as φ̄ increases and has not been reported in the literature hitherto. It is
proposed that smaller particles preferentially form the plugs due to their higher shear-rate
fluctuations, which completely dominate particle motion near the plug where the mean
shear rate vanishes. Finally, increasing inertia causes a greater bulk migration towards
the channel walls, but increased mid-plane migration for the largest particles due to
the dependence of the particle self-diffusivity on the particle Reynolds number. As φ̄
increases shear-induced migration dominates and these inertial effects disappear, as does
dependence on the particle size distribution.
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1. Introduction

Shear-induced migration (SIM) arises in sheared flows as particles deviate from
hydrodynamic streamlines due to particle collisions. These accumulated fluctuations result
in a particle self-diffusivity in the direction of diminishing shear rate, which scales
linearly with the shear rate, γ̇ , and quadratically with the particle radius, a (Leighton
& Acrivos 1987). For Poiseuille flows this self-diffusivity causes an accumulation of
particles at the channel mid-plane, herein referred to as bulk migration. In suspensions
containing particles of two (bidisperse) or more (polydisperse) different size species it
also leads to segregation of particles by size, commonly termed size segregation. These
phenomena are exploited in the separation of certain cell types from whole blood in
microfluidic devices (van Dinther et al. 2013; Zhou et al. 2019), while size segregation in
blood vessels (margination) is critical to effective immune response (Henriquez Rivera,
Zhang & Graham 2016) and drug delivery (Müller, Fedosov & Gompper 2016). The
blood-cell concentration (haematocrit) can approach 0.54 (Pocock et al. 2013), yet there
is little understanding of cell segregation at this upper limit of solid volume fraction. In
industrial settings, size segregation is employed in microfiltration (Kromkamp et al. 2002),
while polydisperse mixtures are ubiquitous in geological applications such as hydraulic
fracturing (Medina et al. 2018).

SIM in regions of homogeneous flow is classically modelled using the suspension
balance model (SBM) (Nott & Brady 1994; Morris & Boulay 1999; Miller & Morris 2006),
which solves the mass and momentum conservation equations for both the suspension
and particle phases. The shear stress, τ ∼ ηs(φ)ηf γ̇ , and gradient-direction normal stress
(particle pressure), Π ∼ ηn(φ)ηf |γ̇ |, require an adequate rheological model for the local
shear and normal suspension dynamic viscosities, ηs(φ) and ηn(φ) (Vollebregt, van der
Sman & Boom 2010), where ηf is the dynamic viscosity of the suspending fluid. The
macroscopic friction follows, μ(φ) = τ/Π = ηs/ηn, and the cross-channel concentration
variation itself can be determined by inverting μ(φ) (Guazzelli & Pouliquen 2018).
The SBM intuitively explains that spatial gradients in the particle pressure drive spatial
variations in the particle concentration, due to the dependence of the suspension viscosity
on the local solid volume fraction, φ (Krieger & Dougherty 1959); here, φ is distinguished
from the bulk solid volume fraction, φ̄. For pressure-driven Poiseuille flow, as the linear
fluid shear gradient develops, a gradient in Π is also created. Further development of
the suspension towards its steady-state profile – where Π is constant across the channel
width – then drives ηn(φ) (and hence φ) to increase towards the channel mid-plane, in the
direction in which γ̇ decreases. This process is herein referred to as viscous suspension
reordering, with this general description of SIM herein termed the homogeneous rheology
approach. For a critical review of the fundamental physics and modelling of homogeneous
SIM the reader is referred to Vollebregt et al. (2010). There also exists a simplified,
phenomenological version of the SBM, which preceded it in development, named the
diffusive flux model (DFM), which relies on diffusion coefficients for the concentration
and shear gradients (Phillips et al. 1992).

For bidisperse suspensions, the preferential migration of larger particles to the
mid-plane, due to their higher self-diffusivity, will be constrained by the local viscosity
requirement imposed by the particle pressure. Experiments of Brownian (Semwogerere &
Weeks 2008; van Dinther et al. 2013) and non-Brownian (Lyon & Leal 1998b) suspensions,
as well as numerical models (Chun et al. 2019; Reddy & Singh 2019), observe that φL is
enriched at the centre of the channel and decreases at the channel walls for all φ̄S/φ̄L,
aS/aL and φ̄. Here, φS and φL are the local solid volume fractions of small and large
particles; φ̄S and φ̄L are the respective bulk solid volume fractions; and aS and aL are
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the respective particle radii. While φS remains relatively constant over the width of the
channel in most cases, small particles do form a concentration peak at the channel centre
for φ̄S > φ̄L (Semwogerere & Weeks 2008; van Dinther et al. 2013; Reddy & Singh 2019),
or for φ̄S ≥ φ̄L when φ̄ = 0.4 (Lyon & Leal 1998b).

A complete description of bidisperse SIM requires a numerical solution of the particle
normal stresses. The DFM has been extended to bidisperse suspensions, incorporating
a correlation for bidisperse effective viscosity (Shauly, Wachs & Nir 1998). The SBM
has also been extended to bidisperse suspensions with the use of a granular temperature,
T , which was adopted to sheared granular suspensions from gas kinetic theory (Jenkins
& McTigue 1990; Nott & Brady 1994; Morris & Brady 1998); T represents the
specific kinetic energy for particle fluctuations and scales with the square of particle
size, consequently reproducing the dependence of self-diffusivity on particle size. For
bidisperse suspensions, a single effective temperature, Teff , has been utilised in the SBM,
where the particle pressure is a linear function of Teff . Closure has been achieved such that
Π is a linear function of ηn(φ) and γ̇ , but varies highly nonlinearly with φ/φrcp (van der
Sman & Vollebregt 2012), where φrcp is the random close packing limit. The efficacy of the
SBM for bidisperse suspensions therefore depends on the closure relations for ηn(φ) and
φrcp, however, accurate prediction of experimental results (Semwogerere & Weeks 2008)
has been demonstrated (Vollebregt, van der Sman & Boom 2012). A similar approach for
extension to polydisperse suspensions is theoretically possible, however, none such has
been developed.

For Poiseuille flows the homogeneous rheology approach of the SBM is useful
for conceptualising and predicting the particle distribution in the sheared regions.
Approaching the mid-plane, however, the shear rate disappears. If φ̄ is sufficiently large
then φ reaches the jamming limit, φm, at some finite distance from the mid-plane. In the
region where φ > φm the suspension behaves as a uniform un-yielded plug. Instead of
vanishing as γ̇ → 0, however, μ converges to a finite value, μm (Pähtz et al. 2019), and
within the plug particle rearrangements persist, resulting in sub-yielding, where μ < μm.
Over-compaction can also occur, where φm < φ < φrcp (Oh et al. 2015). This continued
motion within the plug is caused by the propagation of particle fluctuations over the plug
threshold from the region where γ̇ > 0 (Lecampion & Garagash 2014). Within the plug,
therefore, the particle motion solely depends on the fluctuation rate, which scales ∝ √

T/a
(Pähtz et al. 2019). Modelling of SIM in Poiseuille flows therefore needs to capture the
homogeneous non-zero shear-rate region and the inhomogeneous vanishing shear-rate
region (near/in the plug). For a recent approach, along with a survey of past attempts
at modelling over-compaction and sub-yielding, the reader is referred to Gillissen & Ness
(2020). In this work complex SIM behaviour is observed in the plugged flow regime which
has not been reported in existing bidisperse results.

The discussion thus far has regarded SIM in the limit of vanishing inertia, i.e. as
the particle Reynolds number approaches zero, Rep → 0. For finite Rep, however, bulk
migration and size segregation are also dependent on inertial migration (IM). In dilute
Poiseuille flows, for example, in which particle interactions are negligible, particles
migrate closer to the channel walls as Rep (and hence inertia) is increased (Matas, Morris
& Guazzelli 2004). Consequently, for non-dilute particle suspensions bulk migration
is dependent on a combination of SIM and IM: increasing inertia causes particles
to migrate towards the channel walls, while increasing particle interactions move the
suspension back towards the mid-plane (Abbas et al. 2014; Kazerooni et al. 2017).
The shear-induced self-diffusivity, however, also increases with Rep (Kromkamp et al.
2005), meaning that the steady-state particle positions are not simply determined by a
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linear balance of SIM and IM. For bidisperse and polydisperse suspensions, this also
has the consequence that larger particles should exhibit greater SIM compared with
smaller particles when the shear rate is increased, due to their comparatively higher
Rep.

An alternative to mechanistic continuum modelling is the direct numerical simulation
(DNS) of all hydrodynamic and particle interaction forces, which has only seen application
to Poiseuille flows of dense bidisperse suspensions in a single case (Chun et al.
2019). In those coupled lattice Boltzmann method–discrete element method (LBM-DEM)
simulations, which employed the first-order accurate link-bounce-back method, it was
demonstrated that size segregation occurs on a much longer time scale than bulk migration.
However, for the parameter ranges tested, smaller particles never migrated to the channel
centre, with a significant φS trough forming which was more accentuated than in prior
experimental results (Lyon & Leal 1998b; Semwogerere & Weeks 2008; van Dinther et al.
2013). It should also be noted that, due to its computational cost, DNS must be applied with
finite Reynolds numbers to obtain meaningful length scales. In this work the LBM-DEM
is applied to polydisperse suspensions for the first time, utilising the second-order accurate
partially saturated method.

The intrinsic importance of the effective suspension viscosity to SIM requires an
analysis of polydisperse viscosity also. It is generally known that the viscosity of
polydisperse suspensions decreases as the degree of polydispersity increases (Rastogi,
Wagner & Lustig 1996; Luckham & Ukeje 1999; Chun et al. 2011). Further, for both
bidisperse (Chang & Powell 1994) and polydisperse suspensions (Pednekar, Chun &
Morris 2018) the viscosity is a function of φrcp, while φrcp is also a function of the
first three statistical moments of a particle size distribution (PSD) (Desmond & Weeks
2014). It was subsequently demonstrated that viscosity is therefore also a function
of the statistical moments (Gu, Ozel & Sundaresan 2016; Pednekar et al. 2018). By
extension, the viscosity of a continuous PSD is also equivalent to a statistically similar
bidisperse suspension (Pednekar et al. 2018). Consequently, this work characterises
polydisperse PSDs by their first three statistical moments. The final part of the paper
expands on this equivalence theory, suggesting that statistically equivalent bidisperse
and polydisperse suspensions exhibit matching SIM in pressure-driven Poiseuille flows,
and that the shear-induced diffusivity is also described by the statistical moments as a
result.

2. Methodology

2.1. Numerical model
The numerical test cell depicted in figure 1 is implemented to study granular particle bulk
migration and size segregation. Spheres ranging in radii from amin to amax are suspended
in a Newtonian fluid of constant density, ρ, and kinematic viscosity, ν = ηf /ρ, and driven
by an external body force, akin to a pressure gradient, G, in the x direction of the channel.
SIM occurs in the velocity gradient direction, y, transverse to the mean flow direction, x,
and neutral direction, z. The boundaries in the x and z directions are periodic, while fixed
wall particles of radius aw = amin bound the flow in the y direction in order to prevent the
formation of a single particle layer at the wall, which is considered a numerical artefact
of perfectly smooth walls (Yeo & Maxey 2011; Chun et al. 2017). The characteristic
channel width, W, is defined as the distance between the innermost points of opposing wall
spheres.
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Figure 1. Schematic of the numerical channel used to study the bulk migration and size segregation of
polydisperse suspensions with continuous PSDs ranging in radii from amin to amax. Wall particles are stationary
with radius aw. The boundaries are periodic in the x and z directions, while fluid is driven by a constant G in
the x direction. Schematic is not to scale.

2.1.1. Lattice Boltzmann method
The flow of the suspending fluid is governed by the Navier–Stokes equations for
Newtonian fluids,

∇ · u = 0,

∂

∂t
(ρu)+ u · ∇(ρu) = ∇p + ∇ · ρν

[
∇u + (∇u)T

]
+ F ,

⎫⎬
⎭ (2.1)

where u is the macroscopic fluid velocity vector and F is the sum of the body force density.
In this study, (2.1) is solved via the lattice Boltzmann method (LBM). The LBM is based

on the discrete Boltzmann equation (DBE), which itself discretises the velocity space of
the Boltzmann equation into a finite set, ci = c1, . . . , cQ. The DBE is then integrated over
discrete points in space, x + ciδt, and time, t + δt, to obtain the lattice Boltzmann update
equation (LBE),

fi(x + ciδt, t + δt) = fi(x, t)− fi(x, t)− f eq
i (ρ,u)
τ

+ F(x, t), (2.2)

in which the motion of the fluid is described by the propagation of fluid density distribution
functions, fi, between the discrete lattice of computational nodes along the ci. In this
way the LBE retains the properties of implicit integration of the DBE, but is updated
via a local and explicit time-stepping scheme, allowing efficient parallelisation on CPU
and GPU architectures (Łaniewski-Wołłk 2017). Therefore, while any immersed boundary
method coupled with any fluid computational scheme can handle continuously evolving
solid boundaries, it is this feature which renders the LBM suitable for large-scale DNS of
particle suspensions, and has contributed to its increasing uptake over the last two decades
(Kromkamp et al. 2006; McCullough et al. 2016; Rettinger & Rüde 2018).

Equation (2.2) reflects the single relaxation parameter, τ , used in this work,
which relaxes the fi towards their equilibrium values, f eq

i , in what is known as the
Bhatnagar–Gross–Krook collision operator. As the stability of the LBM decreases as
τ → 0.5 and accuracy decreases for τ > 1 in general (Holdych et al. 2004), τ = 1 is
used in the present study. Here, G is incorporated via the external forcing term, F(x, t).
Twenty-seven velocity directions on a three-dimensional lattice, commonly termed the
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D3Q27 velocity set, are utilised to eliminate spurious velocity currents which potentially
arise in the D3Q15 and D3Q19 sets.

The macroscopic mass and momentum densities are recovered from the propagation of
the mesoscopic fi,

ρ(x, t) =
∑

i

fi(x, t),

ρu(x, t) =
∑

i

cifi(x, t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

In this work, ν = 1 × 10−6 m2 s−1 is first specified, and δt is calculated based on,

ν = c2
s

(
τ − 1

2

)
δ2

x

δt
, (2.4)

where δx is the lattice spacing. A sufficiently small δx for numerical accuracy, as shown
in § 2.2, is selected. The lattice sound speed, cs, is equal to

√
1/3 for the isothermal LBM

on a square lattice. As with all numerical integration of fluid flows, the maximum stable
velocity of the LBM is limited by the speed of information propagation. For bulk flow
away from boundaries and τ ≥ 1, C < cs is a sufficient condition for stability, where C =
|u|δt/δx is the Courant number. The presence of solid interfaces, however, significantly
reduces the limit of this condition and consequently the selection of G in this work. The
inferred δt and resulting maximum C/cs are reported in § 2.3. For further introduction to
the LBM the interested reader is referred to Kruger et al. (2017).

2.1.2. Discrete element method
The solid particles of the suspensions are modelled as spheres by the discrete element
method (DEM) (Cundall & Strack 1979). The motion of each sphere, A, is updated at each
discrete time step by explicitly integrating Newton’s laws of translational and rotational
motion,

mA
duA

dt
=
∑

B

(
F c,AB

)+ F h,A,

IA
dωA

dt
=
∑

B

(
an × F c,AB

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

via a velocity Verlet algorithm, where F c,AB is the force on A due to collision with
another contacting sphere, B. Here, F h,A is the total hydrodynamic force acting on A,
which is directly calculated by the LBM-DEM coupling method presented in § 2.1.3. No
hydrodynamic torque is transmitted to the particles.

The soft sphere interaction model on which the DEM is based replicates particle
deformation by allowing the non-deforming spheres to overlap and F c,AB is then calculated
as a spring-damper system, based on the sphere–sphere overlap, x̄, and relative interaction
velocity, ū,

F c,AB = (knx̄n − γnūn)+ (ktx̄t − γtūt) , (2.6)

in which the subscripts n and t denote the normal and tangential components, respectively.
The elastic and damping constants, k and γ , are modelled in this work via Hertz contact
theory, for which full expressions can be found in Kloss et al. (2012). In § 2.2, when the
model is validated for SIM of monodisperse suspensions, k and γ are tuned by varying the

939 A30-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.166


Shear-induced migration of polydisperse suspensions

coefficient of friction and coefficient of restitution. These values of k and γ are then held
constant to produce the subsequent results in this work.

The maximum DEM time step for linear collisions,

δt,DEM,max = 2
ωc

(√
1 + ζ 2 − ζ

)
, (2.7)

provides a guiding criterion for DEM stability, where ωc = √
kn/mmin is the maximum

contact natural frequency and ζ = γ /(2mminωc) is the maximum damping ratio.
Equation (2.7), however, neglects the nonlinearity of the Hertz contact model, the
additional damping provided by the fluid, as well as the dependence on ū for large ū (Burns,
Piiroinen & Hanley 2019). Consequently, a safety factor of approximately 0.1 is typically
applied if selecting δt based on δt,DEM (Han, Feng & Owen 2007). In the present work,
however, selecting δt based on ν and δx (as described in § 2.1.1) and utilising δt,DEM = δt
is sufficient to maintain stability for the range of simulated G. The selected δx and inferred
δt are reported in § 2.3.

2.1.3. Fluid–solid coupling
To determine the hydrodynamic force contribution from the LBM to the DEM, and vice
versa, a coupling method is required. The present model employs the partially saturated
method (PSM) (Noble & Torczynski 1998), which falls under the bounce-back (BB) family
of LBM boundary schemes. However, the PSM differs from simpler BB schemes in that
solid objects are mapped directly to the underlying lattice, with no staircase approximation
or interpolation between lattice nodes. The proportion of momentum exchange with each
LBM node is instead calculated by overlaying the DEM spheres with the lattice elements
and calculating the solid coverage, ε, at each lattice element for each time step, illustrated
in two-dimensions by figure 2. Then, ε is converted to the τ -dependent solid weighting
function originally presented by Noble & Torczynski (1998),

β(τ) = ε(τ − 0.5)
(1 − ε)+ (τ − 0.5)

, (2.8)

which is applied to (2.2) to obtain a modified LBE,

fi(x + ciδt, t + δt) = fi(x, t)− (1 − β)
fi(x, t)− f eq

i (ρ,u)
τ

+ F(x, t)+ βΩS
i , (2.9)

where ΩS
i is a new ‘solid’ collision operator. This work employs the non-equilibrium BB

form,
ΩS

i = f−i(x, t)− fi(x, t)+ f eq
i (ρ,us)− f eq

−i(ρ,u), (2.10)
due to its superior convergence and accuracy over other operators in permeability tests
(Wang, Leonardi & Aminossadati 2018). The subscript −i denotes the bounced-back
direction, and us is the weighted average velocity of all solid objects mapped to the lattice
node.

The hydrodynamic force imparted by the fluid on particle A is conveniently calculated
by summing contributions of the ΩS

i from all of the lattice elements, ψ , which map A to
the underlying grid,

F h,A = δ2
x

δt

∑
ψ

(
εψ
∑

i

ΩS
i ci

)
. (2.11)

Overall, the PSM effectively interpolates the boundary to calculate the weighted
momentum exchange between the fluid and each solid object, while dependence on τ
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ε = +

Figure 2. Mapping of DEM spheres to the LBM lattice elements and calculation of the solid coverage, ε, at
each lattice element for the PSM.

in maintained. Compared with standard BB, however, which is first-order accurate, the
PSM maintains the second-order accuracy of the LBM (Strack & Cook 2007). Further,
unlike interpolating methods, it is local, mass conserving and, as all nodes are treated
as fluid nodes and information is retained, newly uncovered or covered nodes do not
need to be specially treated. Consequently, the PSM has successfully been applied in
simulations of dense suspensions across a range of applications (Cook, Noble & Williams
2004; Owen, Leonardi & Feng 2011; Yang et al. 2019), and the exact two-way momentum
exchange (within second-order accuracy) makes it an excellent candidate to resolve SIM.
Implementation of the PSM is achieved via coupling of the open source LBM code base
TCLB (Łaniewski-Wołłk & Rokicki 2016) and DEM solver LIGGGHTS (Kloss et al.
2012).

2.2. Verification and validation
The theoretical second-order numerical accuracy of the PSM is verified via the benchmark
case of a single sphere settling between two infinite parallel plates. Initialised at a quarter
of the distance between the two plates, the sphere is allowed to settle under the influence
of gravity until it reaches a terminal settling velocity due to the inhibiting drag from the
plates. The flow around the sphere remains in the Stokes regime. Diffusive scaling is
applied to the spatial and temporal resolutions (i.e. δt ∝ δ2

x ), which maintains identical
physical viscosity between tests in accordance with (2.4). Figure 3 plots the error between
the measured terminal velocities for each δx and the analytical solution (Faxen 1923),
demonstrating second-order convergence with increasing lattice resolution. The lattice
nodes per sphere radius, a/δx, range from five for the lowest resolution up to 20 for the
highest resolution, corresponding to an error range relative to the analytical solution of
0.009–0.2.

Following the model’s numerical verification, its ability to accurately capture SIM is
validated via comparison with benchmark experimental (Lyon & Leal 1998a) and recent
LBM-DEM (Chun et al. 2017) modelling, as well as the analytical DFM result, for a simple
test case comprising monodisperse spheres of radius a. The case parameters are set to φ̄ =
0.4 and W/a = 44.6, with periodic dimensions of X/a = 17.1 and Z/a = 11.4, closely
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Figure 3. Log–log plot demonstrating the second-order (dashed line) convergence of the present LBM-DEM
model.

emulating the literature studies. A lattice resolution resulting in a/δx = 5.6 is utilised.
From this validation case, the friction and restitution coefficients of the DEM Hertz contact
model are tuned to values of 0.5 and 0.8, respectively.

In figure 4 both φ and the suspension velocity, u, normalised by the mean suspension
velocity, 〈u〉, are plotted at points across the channel, y, normalised by the channel width.
Overall, the characteristic concentration profile peak and blunted velocity profile are
resolved by the present model. The concentration profile is smoother and adheres to the
analytical DFM solution more closely compared with the prior LBM work, especially at
increasing distance from the channel centre. The concentration depletion at the channel
walls seen in the literature LBM results is attributed to measurement of the channel width
from 0.25aw within the wall particles. In this study the channel wall is measured from the
edge of the wall particles, however, similar concentration depletion occurs if the width
plane of reference is extended. Depletion in the experimental results is most likely due to
wall roughness. The velocity profile shows close agreement with the literature results but
is slightly more blunt. It should also be noted that the experimental results were obtained
in the Stokes regime (Rep,LL = 1.5 × 10−6), while the prior and present LBM results were
obtained at Rep,LL = 1.9 × 10−4 and 1.4 × 10−3 respectively. This indicates that SIM
dominates IM at φ̄ = 0.4. Here, the particle Reynolds number is calculated based on the
definition in Lyon & Leal (1998a), Rep,LL = 16ρa3〈u〉/(3ηf W2), to allow comparison. An
alternative definition of the particle Reynolds number incorporates the local shear rate,
which is more indicative of the shear-induced self-diffusivity (Kromkamp et al. 2005).

Finally, fundamental cases from the works of Lyon & Leal (1998b) and Chun et al.
(2019) are reproduced and compared here in order to validate the segregation of particles
by size in the present model. These studies were the natural extensions to bidisperse
suspensions of their respective prior monodisperse SIM studies (Lyon & Leal 1998a;
Chun et al. 2017). Both literature studies were at bulk solid volume fraction of φ̄ = 0.3,
however, the experimental results (Lyon & Leal 1998b) were obtained at aL/aS = 3.4 and
φ̄S/φ̄ = 0.25, while the numerical LBM and DFM results (Chun et al. 2019) were obtained
at aL/aS = 1.9 and φ̄S/φ̄ = 0.33. Figure 5 compares the results obtained by the present
model with both the experimental and numerical literature results. The parameters used
to obtain the present model results match the parameters of their respective literature
comparison studies, and as such the present model results of figures 5(a) and 5(b)
are quantitatively different. Concentration profiles are shown for half of the channel
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Present model

LBM

DFM

Pure fluid
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Present model
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DFM
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Figure 4. Validation of SIM for monodisperse suspensions using the presented LBM-DEM model.
Comparison of present model with literature LBM, DFM (Chun et al. 2017) and experimental (Lyon & Leal
1998a) results, as well as pure fluid analytical case, for (a) particle concentration profile and (b) velocity profile.

(0 < y/W < 0.5) for clarity. Excellent agreement with Lyon & Leal (1998b) and Chun
et al. (2019) is seen for the concentration of large particles, which attain a maximum
concentration in the centre of the channel and a minimum at the channel walls. Small
particles, on the other hand, maintain a relatively uniform concentration across the
channel, with the present model obtaining a slightly higher concentration at the wall
compared with both the experimental and numerical results. It must be noted that all
results in figure 5 are obtained at L/W = 560, where L is the distance that the suspension
has travelled based on the mean suspension velocity. This concept will be discussed further
as the distances required for development of size segregation are analysed.

2.3. Particle distributions and parametrisation
In the present work five distinct polydisperse PSDs (P1, P2, P3, P2,1, P2,2) are
implemented as the basis for investigating the effect of polydispersity on bulk migration
and size segregation. The PSDs are characterised by their first three statistical moments,
namely mean, variance and skewness, here denoted by M1, M2 and M3, respectively.
The reason for doing so is based on the fact that the rheologies of polydisperse PSDs
are completely described by their first three statistical moments, and that bidisperse and
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Small particles present model
Large particles present model
Small particles LBM
Large particles LBM
Small particles DFM
Large particles DFM
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Large particles present model

Small particles experimental
Large particles experimental

Figure 5. Validation of particle segregation by size for bidisperse suspensions via comparison with
fundamental (a) experimental (Lyon & Leal 1998b) and (b) numerical LBM and DFM (Chun et al. 2019)
cases.

polydisperse distributions with matching M1, M2 and M3 have identical effective viscosity
(Pednekar et al. 2018). In this work the bidisperse–polydisperse equivalence is shown to
extend to SIM in pressure-driven Poiseuille flows.

A two-parameter Weibull function is used to define the probability density functions,
f (a), of the number of particles by particle size,

f (a) = λ1

λ2

(
a
λ2

)λ1−1

e−(a/λ2)
λ1
. (2.12)

The shape and scale parameters, λ1 and λ2, consequently define M1, M2 and M3. The
statistical measurements of all PSDs are reported in table 1, which also includes φrcp as
calculated from an empirical formula based on the statistical moments (Desmond & Weeks
2014),

φrcp = φ∗
rcp + c1

√
M2

M1
+ c2

M2M3

M2
1
, (2.13)

where φ∗
rcp is the maximum random close packing concentration for monodisperse spheres

and c1 = 0.0658 and c2 = 0.0857 are empirically determined coefficients. P1, P2 and P3
are designed to have widely varying M1, M2, M3, and consequently φrcp, while P2, P2,1
and P2,2 have matching M1 but significantly different M2, M3 and φrcp, in order to isolate
any dependence on M1. Figure 6 plots the f (a) of all PSDs, while figure 7 re-plots the f (a)
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λ1 λ2 M1 M2 M3 φrcp

P1 0.6 1.0 1.58 0.30 1.50 0.672
P2 1.0 1.3 1.88 0.41 0.92 0.666
P3 1.8 2.0 2.47 0.48 0.17 0.654

P2,1 1.2 0.9 1.89 0.58 0.9 0.673
P2,2 1.0 1.7 1.89 0.28 0.78 0.658

Table 1. Statistical measurements of the five polydisperse PSDs used in this work. The Weibull parameters,
λ1 and λ2, define the distributions, which are subsequently characterised by their first three statistical moments,
M1, M2 and M3, and the random close packing solid volume fraction, φrcp.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1.0

1.5

a (µm)

f (a)

P1

P2

P3

P2,1

P2,2

Figure 6. Probability density functions for the five different PSDs tested.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

a (µm)

φ̄ j
P1

P2

P3

P2,1

P2,2

0

0.5

1.0

1.5

Figure 7. Concentration by particle size of each PSD. Note that φ̄j scales arbitrarily.

as the bulk concentration of each particle size, φ̄j, rather than the number of particles, to
give a more meaningful volumetric interpretation when analysing bulk migration and size
segregation.

The PSDs are shifted such that amin = 1 µm, and truncated at a maximum of amax =
3.9 µm, such that amax/amin = 3.9. It is acknowledged that Brownian and electrostatic
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forces could influence results at these particle sizes, however, this is considered outside
the scope of the present work. It is also noted that, in the absence of these forces, it is not
essential to designate physical length scales to the particles, however, this is done in this
work as a matter of style and to increase the ease of interpretation and discussion of the
results.

The continuous distributions of particle radii are implemented in the DEM as discrete
radii, but in sufficiently small increments of δa = 0.1 µm so as to closely approximate a
continuous distribution. Particle species are defined by particle size, such that all particles
comprising a single particle size are designated as a single species, j. With [amin, amax] =
[1, 3.9] µm and δa = 0.1 µm there are a total of K = 30 particle size species.

As well as varying the PSDs, φ̄ is varied between 0.2 and 0.55. G is varied between 1
and 16 MPa m−1 in order to analyse the competing effects of SIM and IM, and to maintain
Rec in the cases where φ̄ is varied. The degree of inertia is defined by the channel Reynolds
number,

Rec = ρ〈u〉W
η̄s

= 12ρ〈u〉2

GW
, (2.14)

where 〈u〉 is the mean channel suspension velocity. The bulk effective shear viscosity, η̄s, is
distinguished from the local effective shear viscosity, ηs(φ), as the latter varies locally with
the particle size composition. There is no single way to define the channel bulk effective
shear viscosity; here η̄s = GW2/(12〈u〉) is used, analogous to momentum conservation for
planar Poiseuille flow.

The numerical domain is held constant for all tests at W = 100 µm, X = 64 µm and Z =
38 µm. A domain dependence study was performed prior to determining these dimensions,
showing that migration is independent of the domain height for Z ≥ 20 µm. A lattice
spacing of δx = 0.4 µm is utilised, corresponding to amin/δx = 2.5 and amax/δx = 9.75.
According to (2.4), the inferred δt = δt,DEM is therefore 2.667 × 10−8 s, resulting in
C/cs ≤ 0.233 and δt,DEM/δt,DEM,max ≈ 0.2 (for linear collisions according to (2.7)).

It must also be noted that, between parametrically and statistically identical simulations
and distributions with different randomised particle injections, there is appreciable
difference in bulk migration and size segregation between the simulations. This reflects
the stochastic nature of the accumulated irreversible particle interactions which contribute
to SIM. These differences, however, average over all simulations. As such, in some cases
the data points are the median of up to ten simulations with randomised injection between
each.

3. Results

The degree of SIM of particles of a particular size (i.e. those comprising particle species
j) is conveniently measured by the scalar dispersion function,

Cj(t) = 1
Nj

Nj∑
i=1

∣∣∣∣yi

w
− 1

2

∣∣∣∣ , (3.1)

where Nj is the number of particles of species j and yi is the transverse ordinate of the
ith particle in species j. Overall, Cj is the distance from the mid-plane averaged over all
particles of species j at each time step. Cj = 0 if all particles are positioned exactly in the
middle of the channel, while Cj = 0.5 if all particles are positioned exactly on the channel
walls. It is defined for planar flows only under the assumption that the concentration
distribution is approximately symmetric about the mid-plane.
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The bulk scalar dispersion function,

C(t) =
∑K

j=1 Cjφ̄j

φ̄
, (3.2)

is calculated by weighting the Cj of each species by their bulk solid volume fraction, φ̄j.
Due to this weighting, C represents the total dispersion of mass across the channel. C → 0
denotes the channel-averaged particle mass approaching the mid-plane.

To quantify the relative transverse motion of particles of different sizes, and capture
the difference in transient behaviour between total and relative particle motion seen in
previous bidisperse studies, a scalar segregation function is also defined,

CΣ(t) = 4
K

K∑
i=1

⎛
⎝ 1

K

K∑
j=1

|Ci − Cj|
⎞
⎠ , (3.3)

which takes into account the difference in channel position between particles of all sizes.
It is constructed in such a way that, if all particle sizes are distributed in the same manner,
CΣ = 0. If all particles representing half of the size species are positioned in the channel
centre, and all particles of the other half of size species are at the channel wall, CΣ attains
a maximum value of 1.

The primary scale of interest is the mean length travelled along the channel, L, by the
suspension. Due to the discrete nature of the numerical model it may be calculated at each
time step,

L(t) =
t∑

i=0

〈u〉i�t, (3.4)

and is expressed throughout the results relative to the channel width, L/W.

3.1. Distribution (polydispersity)
The SIM of the five continuous PSDs are firstly compared, at constant parameters of φ̄ =
0.3 and G = 2 MPa m−1, to investigate the effect of polydispersity on bulk migration and
size segregation. This combination of φ̄ and G results in Rec ≈ 25 across all simulations
for all PSDs (at L/W ≈ 1800).

Firstly, the transient development of C depicted in figure 8 suggests that the bulk
migration for each PSD reaches steady state after L/W ≈ 600. The lowest steady state C
achieved by P3 indicates that a higher volume of particles have accumulated at the channel
centre, compared with all other PSDs. In other words, the suspension with the highest
mean particle size (P3) has attained the highest degree of bulk migration by particle
volume, while the suspension with the lowest mean (P1) has the most spread particle
concentration. While the suspensions with matching mean (P2, P2,1, P2,2) have closer C
compared with P1 and P3, their distinct difference indicates that bulk migration is also a
function of the variance and skewness (M2 and M3), but to a lesser degree than the mean
(M1).

The scalar bulk migration in figure 8 is commensurate with the plot of concentration
profiles for P1, P2 and P3 in figure 9. It is clear that P3 has a higher particle concentration
around the centre of the channel (0.4 < y/W < 0.6), but lower at the edges (y/W < 0.2,
y/W > 0.8), compared with P2 and P1. The concentration plots for P2,1 and P2,2 are
omitted from figure 9 on the grounds that they closely match that of P2, as their bulk
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Figure 8. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of each PSD at φ̄ = 0.3, G = 2 MPa m−1. Lower C indicates that the channel-averaged particle
mass is closer to the channel mid-plane.
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Figure 9. Concentration profiles plotted as solid volume fraction, φ, across the normalised channel width,
y/W. Comparison of P1, P2 and P3 at φ̄ = 0.3, G = 2 MPa m−1, with measurements taken at L/W ≈ 1800.

migration is similar. Compared with the concentration profile for the monodisperse case
in figure 4, the polydisperse suspensions attain significantly sharper concentration peaks
which drop away much more at the channel walls. The decreased wall concentration is due
to two factors. Firstly, particles become less uniformly distributed near the walls as W/a
decreases (Kazerooni et al. 2017), and the ratio of W/amax is relatively low in this work.
Secondly, interactions with wall particles cause a depletion of the particle concentration
near the wall. While decreasing the wall particle size would decrease this depletion effect,
at the limit of aw → 0 the virtually smooth wall would cause a single layer of wall particles
to form which is non-physical. In a similar vein a realistic surface roughness, especially of
naturally occurring fractures, is self-affine and comprises a range of wavelengths, posing
the question of what size is representative (Łaniewski-Wołłk & Leonardi 2020). The scope
of this investigation is narrowed by cutting the spectrum of the roughness to wavelengths
equal or lower than the smallest particle size, by setting aw = amin. Analysis of varying aw
merits further investigation, but is outside the scope of the current work.
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Figure 10. Velocity profile plotted as channel velocity, u, normalised by mean channel velocity, 〈u〉.
Comparison of P1, P2 and P3 at φ̄ = 0.3, G = 2 MPa m−1, with measurements taken at L/W ≈ 1800.
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Figure 11. Scalar dispersion function by particle size species, Cj. Comparison of each PSD at φ̄ = 0.3,
G = 2 MPa m−1, with measurements taken at L/W ≈ 1800. Particles are grouped into bins by radius of width
0.4 µm, recalling that δa = 0.1 µm, and are plotted at their median value, 〈a〉. Lower Cj indicates particles have
migrated closer to the channel mid-plane.

Blunting of the velocity profiles, which is also characteristic of SIM, is demonstrated
in figure 10. Unlike the concentration profiles, there is negligible dependence on the PSD
for the velocity profiles. This lack of variation due to concentration by particle size is in
line with prior bidisperse results (Lyon & Leal 1998b; Chun et al. 2019). The slip velocity
immediately adjacent to the walls is due to the wall depletion interaction just described.

To analyse the size segregation between individual size species, figure 11 shows Cj over
the full range of particle sizes measured at L/W ≈ 1800. It must first be noted that, while
particle sizes are implemented in the DEM in discrete increments of δa = 0.1 µm, Cj
is plotted here in particle bins of width a = 0.4 µm. This is primarily done for ease of
interpretation and visualisation. Further, the stochastic nature of SIM results in variation
of bulk migration and size segregation between parametrically identical simulations, as
explained in § 2.3. Consequently, only the median values of Cj are included. A full box
and whisker plot showing the variability in the data over all randomised simulations is
shown in the Appendix.
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Two significant observations can be made from figure 11. Firstly, for all PSDs, the largest
particles do not migrate most to the channel centre relative to all particle sizes. This is
especially pronounced for P1 and P2,2, for which the particles of size 2.5 ≤ a ≤ 2.9 µm
attain the highest occupancy at the channel centre. If interpreted via a concentration profile
plot, these particles would exhibit a larger peak at the channel centre compared with the
largest particles. Secondly, the migration of individual particle sizes differs significantly
between PSDs, with this difference being especially pronounced for P2,1 and P2,2.

The results presented thus far can be analysed in terms of the classical homogeneous
rheology description of SIM: as described in § 1, the bulk migration and size segregation
of polydisperse suspensions depend on both the particle self-diffusivity and viscous
suspension reordering. Due to scaling of the self-diffusivity (granular temperature) with
particle size, larger particles will preferentially migrate to the channel mid-plane, however,
their migration will be constrained by the local rheological requirements imposed by the
particle pressure gradient.

The strong dependence of bulk migration on M1, for example, is obviously a direct result
of the self-diffusivity scaling with particle size; a larger M1 indicates a higher number of
larger particles, and therefore greater bulk migration. The distinct (but smaller) difference
in bulk migration between suspensions with matching M1, however, also indicates a
(smaller) dependence of bulk migration on M2 and M3. This dependence is intrinsically
linked to the size segregation differences in figure 11, which are explained by the viscous
suspension reordering. Recalling that the polydisperse φrcp (and consequently ηn(φ))
given by (2.13) is a strong function of M2 and M3, the local ηn(φ) requirement induced
by the particle pressure therefore drives the local particle size composition. For P2,2, for
example, in order to satisfy the viscosity at every point across the channel width, the
few particles of size 3.5 ≤ a ≤ 4 µm must necessarily migrate away from the mid-plane.
Conversely, P2,1 contains a comparatively higher concentration of the largest particles,
which are therefore free to attain a position closest to the mid-plane, while the smallest
particles must be more spread.

Confirmation of this hypothesis requires interrogation of the particle pressure to obtain
the self-diffusivity of individual size species and the overall particle pressure gradient,
as well as the use of an adequate model of the local suspension rheology. Due to its
complexity, however, this type of analysis is left for a future work which may seek to
exactly quantify particle diffusion in relation to polydispersity.

To analyse the transient size segregation in greater depth, figure 12 plots the
development of Cj along the channel, separated into the same particle bins of width
a = 0.4 µm as in figure 11, for P1, P2 and P3. What emerges is a very different transient
response compared with C alone. Most notably, for all three PSDs, the largest particles
(3.5 ≤ a ≤ 3.9 µm) exhibit an initial SIM to a minimum Cj, evidently driven by the
self-diffusivity (which scales with particle size). After this initial SIM, however, the largest
particles reverse their overall SIM direction (i.e. Cj begins to increase) and they begin
to migrate back towards the channel walls due to the viscous suspension reordering. It
follows that this reordering of the local particle composition, and hence the long-term size
segregation, occurs on a longer time scale than the particle diffusion.

The transient size segregation development is also reflected in the scalar segregation
function. The values of CΣ in figure 13, are commensurate with the trends of Cj for
individual particle size species in figure 12. For P1, CΣ reaches a maximum at L/W ≈
400, which coincides with the reversal of the largest particles in figure 12(a). The value
of CΣ then slowly decreases, never reaching a clear steady state, which corresponds
to the slow increase of Cj of the largest particles. For P2, on the other hand, CΣ
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Figure 12. Transient development of scalar dispersion function by particle size species, Cj. Comparison of (a)
P1, (b) P2 and (c) P3 at φ̄ = 0.3, G = 2 MPa m−1. Particles are grouped into bins by radius of width 0.4 µm,
recalling that δa = 0.1 µm. Labels on lines indicate bin size in µm. Markers represent the bulk scalar dispersion
of the suspensions, C. Lower Cj and C indicates particles have migrated closer to the channel mid-plane.

appears to reach a constant value at L/W ≈ 800, which is also evident in figure 12(b).
As P3 is composed mainly of larger particles, a trend in CΣ is harder to distinguish,
however, it could reasonably be concluded in conjunction with figure 12(c) that steady
state is reached at L/W ≈ 600. Overall, viscous suspension reordering occurs on a longer
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Figure 13. Development of scalar segregation function, CΣ , along the normalised channel length, L/W,
highlighting the transient size segregation behaviour of polydisperse suspensions. Comparison of P1, P2 and
P3 at φ̄ = 0.3, G = 2 MPa m−1. Higher CΣ indicates greater size segregation.

time scale for suspensions containing a larger proportion of smaller particles. These
reordering/segregation development lengths also correspond to a range of 1.3–3 times
larger than the development lengths for suspension bulk migration. This range of time
scale differences is much lower than that previously observed for bidisperse suspensions
(Chun et al. 2019).

3.2. Concentration
The following results investigate the effect of bulk suspension concentration, φ̄, on particle
SIM in polydisperse suspensions. Firstly, concentrations of φ̄ = 0.2, 0.3, 0.4 and 0.5 are
tested for P2 only. The pressure gradient is increased with φ̄ as G = 1.1, 2, 4.25 and
10 MPa m−1 in order to obtain a similar Rec for all φ̄ (Rec = 25, 25, 25 and 20). The
lower value of Rec = 20 for φ̄ = 0.5 is the maximum achievable Rec while maintaining
numerical stability. In § 3.3, however, this small inertial difference is shown to have
negligible impact on SIM at φ̄ = 0.5.

Figures 14 and 15 summarise the effect of suspension concentration on bulk migration
and size segregation. According to figure 14, at the lowest concentration (φ̄ = 0.2) bulk
migration is low (i.e. C is high). There is still size segregation, as shown in the variation of
Cj for different particle sizes in figure 15, but the values of Cj are slightly higher compared
with φ̄ = 0.3. In figure 14, bulk migration is similar for φ̄ = 0.3 and φ̄ = 0.4, however,
as the concentration is further increased to φ̄ = 0.5, C significantly increases again,
suggesting that there is a critical bulk concentration at φ̄ ≈ 0.3 − 0.4 where a change
in behaviour occurs. Figure 15 shows that at this change in behaviour the larger particles
migrate closer to the channel walls, relative to smaller particles. This is accentuated as φ̄
increases. For φ̄ = 0.4, particles of size 2 ≤ a ≤ 2.4 µm migrate closest to the channel
centre, while for φ̄ = 0.5 particles of size 1 ≤ a ≤ 1.9 µm migrate closest to the channel
centre. Figure 16 illustrates this phenomenon, which has not been reported in the literature
for dense suspensions hitherto.

The velocity profiles for each φ̄ are plotted in figure 17. Total flattening of the velocity
profiles for φ̄ = 0.4 and 0.5 indicate the regions in which a plug has formed (i.e. φ has
reached φm such that the shear rate vanishes). A large plug spanning 1/5 of the channel
width forms for φ̄ = 0.5, while a smaller one forms for φ̄ = 0.4. These are indicated on the
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Figure 14. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of different φ̄ for P2. Lower C indicates that the channel-averaged particle mass is closer to the
channel mid-plane.
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Figure 15. Scalar dispersion function by particle size species, Cj. Comparison of different φ̄ for P2, measured
at L/W ≈ 1800. Particles are grouped into bins by particle radius of width 0.4 µm, recalling that δa = 0.1 µm,
and are plotted at their median value, 〈a〉. Lower Cj indicates particles have migrated closer to the channel
mid-plane.

velocity profiles with vertical dashed and dotted lines, respectively. This plug formation at
φ̄ = 0.4 coincides with the change in behaviour elucidated above.

It is evident that the plugs first form due to bulk migration, and preferentially comprise
the smallest sized particles. This then determines which particles compose the sheared
region outside the plug, where γ̇ > 0. The larger the plug, the more small particles
are required to compose the plug, meaning that more large particles will be closer to
the channel walls (i.e. the Cj of large particles, as well as the overall C, will gradually
increase as the plug size increases). Figure 18 illustrates how the small particles segregate
to form the plugs, and that the length scale on which this size segregation occurs increases
significantly as φ̄ increases.

Preferential formation of the plugs with small particles can be explained in terms of
particle fluctuations, which propagate into the plug (where γ̇ = 0) from just inside the
sheared region (where γ̇ > 0), causing particle rearrangements to persist (Lecampion &
Garagash 2014). In the plugged region, particle motions are completely defined by the

939 A30-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.166


Shear-induced migration of polydisperse suspensions

(a) (b)

(c)

Figure 16. Graphical representations of (a) φ̄ = 0.4 z-plane, (b) φ̄ = 0.5 z-plane, (c) φ̄ = 0.5 isometric,
captured at L/W ≈ 1800 for P2.
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Figure 17. Comparison of velocity profiles for increasing φ̄ for P2, measured at L/W ≈ 1800. Plugged
regions are indicated by vertical dotted lines for φ̄ = 0.4 and vertical dashed lines for φ̄ = 0.5.

amplitude of the root mean square of shear-rate fluctuations, γ̇rms (Gillissen & Ness 2020).
As γ̇rms scales inversely with the particle size (γ̇rms ∝ √

T/a), it is the small particles
which have the greatest motion within the plug (Pähtz et al. 2019). Consequently, as
the plug forms, it is the smallest particles which will preferentially fluctuate to within
the plug. Less formally, based on a simple momentum conservation view, the fluctuation
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Figure 18. Transient development of scalar dispersion function by particle size species, Cj, for (a) φ̄ = 0.4
and (b) φ̄ = 0.5. Particles are grouped into bins by radius of width 0.4 µm, recalling that δa = 0.1 µm. Labels
on lines indicate bin size in µm. Markers represent the bulk scalar dispersion of the suspensions, C. Lower Cj
indicates particles have migrated closer to the channel mid-plane.

propagation from the sheared region must cause the smaller particles to rebound towards
the channel mid-plane with a greater velocity. Consequently, as the plug grows, it is the
smaller particles which will be continually forced ahead of the larger particles and into the
plug.

Although not explicitly shown here, these phenomena occur for all PSDs at φ̄ ≥ 0.4.
An additional observation in figure 19 is that, as φ̄ increases, bulk migration becomes
independent of the particle distribution (i.e. the same C is attained). Here, a pressure
gradient of G = 16 MPa m−1 is applied to φ̄ = 0.55, resulting in Rec ≈ 13. Also plotted
in figure 20 is the increase in bulk effective shear viscosity, η̄s, with φ̄. Comparison
is made with the theoretical correlation of Krieger & Dougherty (1959), ηs/ηf = (1 −
φ/φrcp)

−2.5φrcp , where φrcp is obtained using (2.13). This general approach of substituting
an expression for the maximum packing fraction into an existing viscosity correlation
has been highly successful (Pednekar et al. 2018) and reproduces a dependence on the
PSD. The obtained η̄s in figure 20 exhibit this same dependence, which becomes more
pronounced at higher φ̄. Divergence of the simulation η̄s from the correlation at φ̄ ≥ 0.4
occurs as the former is a channel-averaged quantity and decreases with the presence of
a plug (where the mean shear rate is zero), while the correlation is for a locally sheared
suspension.
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Figure 19. Development of bulk migration, C, along the length of the channel, L/W, for (a) φ̄ = 0.4, (b)
φ̄ = 0.5 and (c) φ̄ = 0.55, indicating that as φ̄ increases, bulk migration becomes independent of the particle
distribution.

3.3. Inertia
As outlined in § 1, suspension migration is dependent on a combination of IM and SIM,
to varying degrees. Firstly, to quantify the contribution of inertia to the results in § 3.1, G
is varied between values of 1, 2 and 3 MPa m−1 for P2 at φ̄ = 0.3, corresponding to Rec =
13, 25 and 38. Figure 21 demonstrates an increase in bulk migration towards the channel
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Figure 20. Increase in bulk effective shear viscosity with bulk solid volume fraction, obtained from
simulations as η̄s = GW2/(12〈u〉). Comparison with theoretical correlation of Krieger & Dougherty (1959),
ηs/ηf = (1 − φ/φrcp)

−2.5φrcp , where φrcp is obtained using (2.13).
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Figure 21. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of different G for P2 at φ̄ = 0.3, demonstrating dependence of migration on inertia at moderate φ̄.

walls as Rec is increased. This is commensurate with the general effect of inertia causing
particles to migrate away from the channel mid-plane. Conversely, by decreasing Rec, IM
decreases relative to SIM, causing greater bulk migration to the channel mid-plane.

Figure 22, however, shows that the largest particles attain a position closer to the channel
centre as G (and hence inertia) increases, while the smallest particles migrate closer to the
channel walls. This behaviour can be explained by the dependence of SIM on the particle
Reynolds number, as discussed in § 1. As the particle self-diffusivity increases with Rep
(Kromkamp et al. 2005), it is the larger particles which will exhibit the greatest increase
in SIM (and hence closest position to the mid-plane) with increasing G.

Next, to compare the effect of inertia at the higher solid volume fractions tested in
§ 3.2, G is varied between values of G = 3, 5.5, 8 and 10 MPa m−1 for P2 at φ̄ = 0.5,
corresponding to Rec = 6, 11, 16 and 20. Figures 23 and 24 show that the variation in bulk
migration and size segregation with inertia is minimal. This is commensurate with the fact
that dependence of self-diffusivity on Rep disappears with higher φ̄, and also suggests that
SIM is generally dominating IM due to the high particle concentration.
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Figure 22. Scalar dispersion function by particle size species, Cj. Comparison of different G at φ̄ = 0.3 for
P2, measured at L/W ≈ 1200. Particles are grouped into bins by particle radius of width 0.4 µm, recalling that
δa = 0.1 µm, and are plotted at their median value, 〈a〉. Lower Cj indicates particles have migrated closer to
the channel mid-plane.
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Figure 23. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of different G for P2 at φ̄ = 0.5, demonstrating independence of migration on inertia at high φ̄.

3.4. Equivalence of bidisperse suspensions
Here, a quantitative comparison is made between the bulk migration and size segregation
of bidisperse and polydisperse suspensions, motivated by the recent finding that bidisperse
and polydisperse suspensions with matching first three statistical moments (mean,
variance, skewness – M1, M2, M3) exhibit matching viscosity (Pednekar et al. 2018).
To assess whether this equivalence translates to SIM in channel flows, the first three
statistical moments are also used here as a measure of equivalence. Table 2 defines
the five bidisperse PSDs (B1, B2, B3, B2,1, B2,2) which are statistically equivalent to
their respective polydisperse PSDs defined in § 2.3 (P1, P2, P3, P2,1, P2,2). Therefore,
M1, M2 and M3 exactly match those in table 1. These moments are then defined for
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Figure 24. Scalar dispersion function by particle size species, Cj. Comparison of different G at φ̄ = 0.5 for
P2, measured at L/W ≈ 1200. Particles are grouped into bins by particle radius of width 0.4 µm, recalling that
δa = 0.1 µm, and are plotted at their median value, 〈a〉. Lower Cj indicates particles have migrated closer to
the channel mid-plane.

aS aL NS M1 M2 M3 φrcp

B1 1.31 2.68 0.80 1.58 0.30 1.50 0.672
B2 1.47 2.88 0.71 1.88 0.41 0.92 0.666
B3 1.83 3.22 0.54 2.47 0.48 0.17 0.654

B2,1 1.40 3.07 0.71 1.89 0.58 0.9 0.673
B2,2 1.53 2.66 0.68 1.89 0.28 0.78 0.658

Table 2. The five bidisperse PSDs used in this work, with first three statistical moments, M1, M2 and M3, taken
to match their respective polydisperse distributions in table 2. Equations (3.5) are then solved simultaneously
to obtain the radii of small and large particles, aS and aL, and the number fraction of small particles, NS. Here,
φrcp is obtained from (2.13).

bidisperse PSDs,

M1 = aSNS + aL(1 − NS),

M2 = NS (aS − M1)
2 + (1 − NS) (aL − M1)

2 ,

M3 =
[
NS (aS − M1)

3 + (1 − NS) (aL − M1)
3
]
/M3/2

2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.5)

where aS and aL are the radii of small and large particles, respectively, and NS is the
number fraction of small particles. To obtain aS, aL and NS the system of (3.5) are
simultaneously solved for each PSD by substituting the respective values of M1, M2 and
M3 from table 2. With matching moments φrcp must also be equal according to (2.13).

Firstly, the five bidisperse suspensions are simulated at constant parameters of φ̄ =
0.3 and G = 2 MPa m−1 to facilitate comparison with their equivalent polydisperse
suspensions. Figure 25 shows that the bulk migration of the bidisperse suspensions
matches that of the polydisperse suspensions (figure 8) remarkably closely. Consequently,
it may confidently be concluded that the rheological equivalence of bidisperse and
polydisperse suspensions extends to SIM in channel flows. In this way, the first three
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Figure 25. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of each bidisperse PSD at φ̄ = 0.3, G = 2 MPa m−1, demonstrating close agreement to the bulk
migration of their respective polydisperse suspensions in figure 8.

statistical moments must also completely describe the shear-induced diffusivity of
a suspension. By extension, this supports the theory that a classical homogeneous
rheology description of SIM, such as the effective temperature SBM approach for
bidisperse suspensions (van der Sman & Vollebregt 2012), can be extended to
polydisperse suspensions, with the only requirement being adequate closure relations. It is
acknowledged, however, that this result is obtained empirically, for a relatively narrow set
of distributions. Consequently, generalisation remains to be shown.

Notwithstanding these similarities, two primary differences between figures 25 and
8 are evident: firstly, C is slightly higher for the bidisperse results compared with
the polydisperse, meaning slightly less bulk migration to the channel mid-plane; and
secondly, the bidisperse PSDs with matching mean (B2, B2,1, B2,2) are all slightly closer
compared with their equivalent polydisperse PSDs (P2, P2,1, P2,2). This suggests that there
exists some minor dependence on polydispersity which is not recovered in a bidisperse
approximation. One likely cause of this is that the size ratio of smallest-to-largest particles
in the polydisperse suspensions is larger than in the bidisperse suspensions, which is an
inherent requirement of statistical equivalence.

Finally, the effect of bulk solid volume fraction on bidisperse SIM is investigated by
simulating bulk concentrations of φ̄ = 0.2, 0.3, 0.4 and 0.5 for B2 only. As with the
polydisperse suspensions, the pressure gradient is increased with φ̄ as G = 1.1, 2, 4.25 and
10 MPa m−1 to obtain a similar Rec for all φ̄ (Rec = 25, 25, 25 and 20). Development of
the bulk migration and segregation of individual size species are shown in figure 26. As for
the dependence on PSD shown above, the bidisperse dependence on concentration agrees
nearly exactly with the polydisperse dependence on concentration (figure 14). The velocity
profiles in figure 27 also demonstrate the formation of a plugged region at φ̄ = 0.5, which
is slightly smaller compared with that of the polydisperse suspension, while it appears that
no plug exists at φ̄ = 0.4. Analogous to the polydisperse suspensions, however, the small
particles primarily form the plug at φ̄ = 0.5 and migrate closest to the channel centre, even
in this case where only two particle size species are present. This is reflected in figure 26,
where the Cj of the smallest and largest particles cross over at L/W ≈ 400, as well as in
the rendering of figure 28.
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Figure 26. Development of bulk scalar dispersion function, C, along normalised channel length, L/W.
Comparison of different φ̄ for B2, demonstrating close agreement with the dependence of bulk migration on φ̄
for P2 (figure 14). Solid lines represent Cj of small particles and dashed lines represent Cj of large particles.
Lines are labelled by their φ̄ for further clarity. Crossing over of Cj for φ̄ indicates small particles have migrated
closer to the channel mid-plane on average compared with large particles.
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Figure 27. Comparison of velocity profiles for increasing φ̄ for B2, measured at L/W ≈ 1800. Vertical
dashed lines indicate the plugged region for φ̄ = 0.5.

Figure 28. Graphical representation of φ̄ = 0.5 for B2, captured at L/W ≈ 1800, illustrating closer migration
to the channel mid-plane of small particles compared with large particles.
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4. Conclusions

The present work examines the bulk migration and size segregation behaviour of
continuously distributed (polydisperse), dense particle suspensions in pressure-driven,
planar channel flows. General dependence of bulk migration and size segregation on
the distributions is shown, which is described by a dual dependence on the particle
self-diffusivity and viscous suspension reordering; the largest particles will preferentially
migrate to the channel mid-plane due to quadratic scaling of the self-diffusivity with
particle size, which is in turn constrained by the local rheology imposed by the particle
pressure gradient. For φ̄ = 0.3 reordering occurs on a length scale of 1.3–3 times longer
than the initial shear-induced diffusion. Based on the recent finding that suspension
rheology can be characterised by the first three statistical moments of a particle size
distribution, the suspensions here are characterised in the same manner. By demonstrating
close agreement between the bulk migration of equivalent bidisperse and polydisperse
suspensions, it is confirmed that the statistical moments completely characterise a
suspension’s migration, and by extension its shear-induced diffusivity.

At bulk suspension concentrations of φ̄ > 0.3, the formation of a plugged region at
the channel centre occurs on the same length scale as suspension bulk migration, and
determines the size of the sheared (outer) regions of the channel. The smallest particles
of the suspension preferentially form the plugs, causing the largest particles to migrate
into the sheared regions at the channel walls. As φ̄ increases and the plug size increases,
more small particles are required to compose the plug, meaning that more large particles
will segregate closer to the channel walls. This behaviour has not been observed in the
literature hitherto, and also occurs in bidisperse suspensions where only two particle sizes
are present. It is theorised that small particles preferentially form the plugs due to their
higher shear-rate fluctuations, which completely dominate particle motion near the plug
where the mean shear rate vanishes.

Finally, the competing migration towards and away from the channel mid-plane due
to shear-induced migration and inertia, respectively, cause a greater bulk migration to
the walls as inertia is increased. Dependence of the particle self-diffusivity on the
particle Reynolds number, however, results in increased mid-plane migration for the largest
particles as inertia increases. These dependencies on inertia disappear as the bulk solid
volume fraction increases and shear-induced migration dominates. Similarly, dependence
on the PSD disappears as the bulk solid volume fraction increases.
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Figure 29. Reproduction of figure 11 showing statistic quartiles of Cj for each PSD in each particle size bin.
Each PSD is simulated ten times with randomised particle injection seeding.

Appendix

As described in § 2.3 SIM is stochastic in nature, which manifests in variation of the
bulk migration and size segregation between simulations with identical parameters but
randomised particle injection seeding. Figure 29 exemplifies this for the case of Cj of each
PSD, showing the statistic quartiles. These data were originally presented in figure 11,
showing only the median Cj for each point. In this case, ten different simulations with
randomised particle injection seeding are utilised for each PSD.
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