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ABSTRACT. The two-dimensional wavelet transform is a highly efficient band-pass
filter, which can be used to track features in satellite images from sequential paths. Wavelet
analysis of NASA scatterometer and Special Sensor Microwave/Imager data has been used
to obtain daily sea-ice drift information for the Arctic region. Comparison with ice motion
derived from ocean buoys shows good quantitive agreement. Furthermore, the scatterom-
eter results definitely complement passive-microwave radiometer results when there are
cloud or surface effects. This outcome allows three sets of sea-ice-drift daily results from
scatterometer, radiometer and buoy data to be merged as a composite map by data-fusion
techniques. Based on the composite maps, the ice-flow streamlines are highly correlated
with surface air-pressure contours. In order to quantify the wind effects on ice motion,
empirical orthogonal functions are used in the principal-component analysis to isolate
generalized patterns inherent in 6 months (fall/winter) of daily sea-ice motion data. It is
found that 30% of sea-ice motion is highly correlated with 50% of the pressure field in
modes 1 and 2. For the higher modes, sea-ice motion is also affected by ocean current, bathy-

metry and coastal boundary and therefore is not highly correlated with the wind field.

1. INTRODUCTION

Satellite imagery provides a full view of sea-ice motion in the
polar region every day. Because of this unprecedented
capability, it has frequently been used to study polar sea-ice
motion and has made an important contribution to better
understanding it. Emery and others (1991) used sequential
satellite images obtained from the Advanced Very High
Resolution Radiometer (AVHRR) to determine ice motion
through ice-feature tracking, Using different approaches,
Kwok and others (1998) and Liu and Cavalieri (1998)
demonstrated that sequential imagery from the Defense
Meteorological Satellite Program (DMSP) Special Sensor
Microwave/Imager (SSM/I) 85GHz could provide ice-
motion observations, where Kwok and others based their
method on cross-correlation, and Liu and Cavalieri on
(1998) reported
unexpected success in using the NASA scatterometer
(NSCAT) to measure sea-ice motion, even though NSCAT
was not designed for this purpose. However, satellite
imagery has limitations too. For example, AVHRR images
are obscured by cloud cover and seasonally varying low light
level. Radar systems such as European Remote-sensing
Satellite 1 (ERS-1) synthetic aperture radar (SAR) and
RADARSAT are independent of weather conditions and
should provide good estimates of ice drift (Kwok and others,

wavelet transform. Liu and others

1995), but less than daily coverage makes them unsuitable for
some applications. SSM/I 85 GHz radiance data have
atmospheric emission effect at this frequency, as well as
surface effects that may give a false indication of ice drift.
NSCAT is an active sensor and 1s not affected by cloud cover,
but its resolution is relatively low. So, the combined use of
several satellite imageries is obviously important in order to
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obtain more accurate and complete ice-motion data. Liu and
others (1999) reported that sea-ice motion derived from
wavelet analysis of SSM/I and NSCAT for November and
December 1996 gave good quantitative agreement with the
ice motion derived from buoy data, and ice-motion values
from these two satellite datasets were compatible and
complemented each other when SSM/I data had cloud or
surface effects. Therefore, three sea-ice-motion daily results
from SSM/I, NSCAT and buoy data could be merged by
data-fusion techniques to produce a composite map with more
complete coverage of sea-ice motion than a sea-ice motion
map from a single data source. It was also found that sea-ice
flow streamlines constructed from the merged sea-ice motion
data were highly correlated with the surface pressure contours,
implying that sea ice was dominated by wind forcing.

This paper is focused on quantifying the wind effects on
Arctic sea-ice motion using our merged sea-ice motion data
from sea-ice tracking results of SSM/I, NSCAT and buoy
data for the period October 1996—March 1997. Thorndike
and Colony (1982) studied the response of Arctic sea-ice
motion to geostrophic winds using buoy datasets collected
during the First Global Atmospheric Research Program
Experiment in 1979 and 1980, and the Arctic Ice Dynamics
Joint Experiment in 1975-76. They found that only about half
of the long-term (several-month) average ice motion is dir-
ectly related to the geostrophic wind, the other half being
due to the mean ocean circulation. Compared to the existing
array of ocean buoys, the merged Arctic sea-ice motion data
provide improved spatial coverage. It is therefore worth
taking a fresh look at the wind effects on Arctic sea-ice
motion. Also, instead of estimating a direct relationship
between the ice velocity, the geostrophic wind and the mean
ocean current, principal-component analysis (PCA) 1is
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applied to merged sea-ice-motion and pressure-field data for
the period October 1996—March 1997 to derive correlation
information about wind and sea-ice motion patterns.

In section 2 we describe a two-dimensional Gaussian
wavelet transform and present the wavelet analysis for ice-
feature tracking and sea-ice motion from SSM/I and
NSCAT data, along with some discussion of algorithms and
techniques. In section 3 we describe the PCA for merged
sea-ice motion data and the pressure field. In section 4 we
discuss the results and applications of satellite-derived sea-
ice motion and the extension of the ice-tracking procedure

to be used with QuikSCAT.

2.WAVELET ANALYSIS OF SSM/I AND NSCAT
IMAGERIES

An ice-tracking procedure based on wavelet transform has
been developed at NASA Goddard Space Flight Center,
where it has been used for the past few years. Basically, wave-
let transforms are analogous to a Fourier transform but are
localized in both frequency and time (e.g. Combes and
others, 1989). A two-dimensional wavelet transform is a
highly efficient band-pass filter. It has been used in various
applications in physical oceanography (see, e.g., Liu and
others, 1994, 1997a, b, 1998, 1999; Peng and others, 1995; Liu
and Cavalieri, 1998).

In general, the two-dimensional continuous wavelet
transform Wy(a,b) of a function s(r), where r = (z,y), is
expressed in terms of the complex valued wavelet function
w(r) as follows:

We(a,b) = %JS(E)U}* (f — b) dr, (1)

a

where the wavelet function is dilated by the factor @ and
shifted by the vector b. The function w(r) is the basic wavelet
(Combes and others, 1989). The superscript * indicates
complex conjugate. Two frequently used wavelet functions
are the Morlet wavelet, a Gaussian modulated sine and
cosine wave packet, and the Mexican hat, the second
derivative of a Gaussian function. In this study, we use the
Mexican hat that can be expressed as follows:

LtQ 2
w(z,y) = 2 — (2 +y2>]exp(— gl )

2)

Since convolution is commutative with respect to
differentiation, the resulting wavelet transform is the
Laplacian of a Gaussian smoothed function. Thus, zeroes
correspond to the inflection points of the original function.
The contours of zero crossing indicate the edges in the
pattern of the input function.

Now we outline our ice-tracking procedure based on
wavelet transform. We refer readers to Liu and Cavalieri
(1998) and Liu and others (1999) for detailed description of
the procedure. Daily satellite images (in this case, SSM/I 85
GHz and NSCAT 14 GHz) of the entire Arctic region are
first constructed and interpolated to fit the numerical grid,
with land masked out. Then the wavelet transform defined
by Equations (I) and (2) is applied to the interpolated
satellite images at various scales to separate various ice
textures or features. In this case, for NSCAT images scale
a = 1.0, 121 and 1414, and for SSM/I images a = 2.0, 242
and 2428, since pixel spacing for interpolated NSCAT
images 1s twice as large as for interpolated SSM/I images.
The choice of the scales for wavelet transform depends on
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Fig. 1. Arctic sea-ice motion maps n a grid of
100 km x 100 km derived from wavelet analysis of (a)
SSM/I data and (b) NSCAT data, on 18 December 1996.
White arrows are ice velocities derived from SSM/I or
NSCAT data; black arrows are ice velocities derived from
buoy data.

the physical scales of the ice signatures (brightness tempera-
ture for SSM/I and backscatter/roughness for NSCAT) to be
extracted. The effect of this wavelet transform is a band-pass
filter with a threshold for feature detection. Then template
matching is performed to determine ice velocities. Figure la
shows an Arctic ice-motion map in a grid of 100 km x 100 km
derived from wavelet analysis of SSM/I on 18 December
1996, and Figure 1b shows an Arctic ice-motion map derived
from wavelet analysis of NSCAT data on the same day. The
Arctic buoy data are obtained from the International Arctic
Buoy Program (IABP) datasets via the Web (http://iabp.apl.
washington.edu/data.html). Notice that the ice circulation
has been clearly derived and agrees with the ice velocities
derived from buoy data. Also, the flow patterns in these two
images are extremely similar and complement each other
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Fig. 2. Merged Arctic sea-ice motion map from SSM/I,
NSCAT and buoy data.

well, where the areas with no ice velocities in one motion
map are not empty areas in another map. The areas with no
ice velocities indicate failure of the template to identify dis-
placement within a threshold value. Liu and others (1999)
compared sea-ice motion derived from wavelet analysis of
SSM/I and NSCAT data as described above with the ice
motion derived from the buoy data for November and
December 1996 and found good quantitative agreement.
They also found that the flow patterns were very similar
and complemented each other well. Therefore, the results
from SSM/I, NSCATand buoy data could be merged to form
composite maps with more complete coverage of sea-ice
motion by data-fusion techniques, and ice-flow streamlines
constructed from merged ice motion were highly correlated
with surface air-pressure contours. Figure 2 shows a merged
ice-motion map on 18 December 1999 from ice-motion
results derived from SSM/I and NSCATdata and from buoy
data. It is obvious from Figures 1 and 2 that the merged ice-
motion map provides more complete coverage of sea-ice
motion than the ice-motion map from only one data source.
We use the merged sea-ice motion data in the next section to
quantify wind effects on sea-ice motion.

3. PCA OF ICE DRIFT AND PRESSURE

PCA as used by meteorologists and oceanographers is a tool
for analyzing the spatial or temporal variability of physical
fields and has long been used in the research community. Its
attraction as a diagnostic tool is its ability to reduce the
many-dimensional complexity of the observed fields to
relatively easily visualized low-dimensional representations
using eigenvectors (empirical orthogonal functions (EOFs))
generated from the given dataset (Preisendorfer, 1988). Its
mathematical essential is to find a set of EOFs to decompose
the original centered dataset exactly as a sum of scale pro-
ducts of EOFs and principal components (also called ampli-
tudes), where principal components depend only on time and
therefore can be thought of as time series. We refer readers to

Preisendorfer (1988) for a detailed treatment of PCA. In the
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Fig. 5. Modes1 (a) and 2 (b) of PCA of merged sea-ice drift
derived from wavelet analysis of SSM/I and NSCAT data for
the period October 1996—March 1997. The empty spot in the
center of the plots is around the North Pole.

following two subsections, we describe our PCA algorithm
for ice-drift and pressure-field data.

3.1. PCA of ice drift

In this subsection we first describe our PCA algorithm for ice-
drift data. The ice-drift data used are merged sea-ice motion,
as described in the previous section, for the period October
1996-March 1997. Since these data are obtained from the
ice-tracking procedure, there are locations in the daily map
where no ice-motion information is provided because track-
ing results do not meet the criteria imposed. 1o minimize the
number of missing data points in the PCA, we first determine
the area where we perform PCA by including only those
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Fig. 4. Principal components of modes I (a) and 2 (b) of
PCA of merged sea-ice drift (dashed line) and of pressure
Jield (solid line) for the period October 1996—March 1997.

locations where non-zero ice motion is registered by our
tracking procedure for at least half of the study period. Then
we construct the raw-data array for PCA where each row
represents daily ice-drift data at the selected locations, and
the row number corresponds to the day number within the
period. Since each ice velocity has two components, the U-
components of ice velocities are stored in the first half-row
and the V-components in the second half-row. We can thus
take advantage of the simplicity of the PCA for a real-valued
scale dataset while studying a vector-valued dataset. How-
ever, in interpreting the PCA results, we must take it into
account that the first half of each row of the data array cor-
responds to U-components of ice velocities, and the second
half of each row to V-components of ice velocities. Therefore,
we can pair eigenvector components that correspond to U-
components with those corresponding to V-components so
that an eigenvector can be viewed as a set of ice velocities at
the observation locations. Figure 3 shows the plots of modes 1
and 2 of the PCA, interpreted in this way, for the period
October 1996-March 1997. Mode 1 in Figure 3 is basically
transpolar motion, while mode 2 has a variety of motions
that include a general circular motion around a center north-
east of the North Pole and a motion going out to Greenland
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Fig. 5. Contours of modes 1 (a) and 2 (b) of PCA of pressure
Sield in the Arctic for the period October 1996—March 1997,

and a convergent zone in the Beaufort Sea. Modes 1 and 2
account for 16.2% and 13.2% of variance of the entire dataset,
respectively. These percentages of variance are consistent
with the results in Wang and Ikeda (2000) where the modes 1
of the PCAs of sea-level pressure, surface air temperature and
sea-ice area account for 16.9%, 14.9% and 40.7% of variance
of entire datasets, respectively. The dashed lines in Figure 4
show the principal components of modes 1 and 2 of sea-ice
motion. For higher modes, the percentages of variance that
they account for decay exponentially.

3.2. PCA of pressure field

To quantify the wind forcing on sea-ice motion, we apply the
PCA to the pressure-ficld data obtained from the TABP
program. The IABP pressure-field data are given in longitude
and latitude and have a resolution of 10° x 2°."I6 find pressure
values at pixels of the rectangular coordinate system of sea-ice
motion data, the IABP pressure data are first projected to the
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Ing. 6. Overlaidmodes 1 (a) and 2 (b) of PCA of merged ice-
motion data derived from satellite data (vectors) and PCA of
pressure-field data (contours) for the period October 1996—
March 1997.

rectangular coordinate system. After projection, the pressure
data points may not locate at the pixel points. For each pixel
point in the target area, the four closest pressure data points
are found, then four-point bilinear interpolation is used to
compute pressure value at the pixel point. The PCA for
general real-valued scale datasets is then performed for the
interpolated pressure field in the target area. Figure 5 shows
contours of modes 1 and 2 of the PCA of the pressure field for
the period October 1996-March 1997. The principal com-
ponents of modes 1 and 2 of the pressure field are shown in
Figure 4 as solid lines. The contours of mode 1 in Figure 5
indicate that mode 1 wind motion is basically transpolar, and
the contours of mode 2 reveal that the general wind motion is
circular around a center near the North Pole. Modes I and 2
account for 31.7% and 17.1% of the variance of the entire
dataset, respectively. For higher modes, the percentages of
variance that they account for show exponential decay.
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3.3. Estimation of wind effects on sea-ice motion

It is clear from Figures 3 and 5 that for modes 1 and 2 of the
two PCAs the ice-motion patterns are very similar to the
wind patterns. To see this more clearly, Figure 6 shows
overlaid modes 1 and 2 of the PCA of pressure-field data
and of the PCA of merged sea-ice drift, respectively. The
rms of angles between sea-ice motion and pressure contours
is 42° and 34° for modes 1 and 2, respectively, which is
consistent with the Ekman effects of wind drag for sea-ice
drift. For principal components, one can see from Figure 4
that the principal components of modes 1 and 2 from the
two PCAs are highly correlated. Actually, the correlation
coefficient for principal components of mode 1 from the
two PCAs 1s 0.5 and for principal components of mode 2 is
0.7. Notice that modes 1 and 2 of sea-ice motion data account
for 30% of the variance of the entire sea-ice motion dataset,
and modes 1 and 2 of the pressure-field data account for
50% of the variance of the entire pressure-field dataset.
Therefore, those correlation coefficients indicate that 30%
of sea-ice motion is highly correlated with 50% of the
pressure field in modes 1 and 2. Thus, wind forcing is clearly
a driving force of ice drift. However, modes 3—5 of the PCAs
of ice drift and pressure field do not show overall agreement
between the wind pattern and the sea-ice motion pattern.
The correlation coefficients for principal components of
modes 3-5 of the two PCAs are only 0.3, 044 and 0.17,
respectively. These three modes account for 7.5%, 6.3%
and 4.4% of the variance of the entire dataset for ice drift,
and 11.9%, 9.8% and 84% of the variance of the entire
dataset for pressure field, respectively. The poor agreement
between the ice-motion pattern and the wind pattern for
modes 3-5, and the small correlation coefficients for the
principal components of these modes indicate that the wind
forcing is not the only driving force for ice drift. For the
higher modes, sea-ice motion is also affected by ocean
current, bathymetry and coastal boundary and is therefore
not highly correlated with the wind field.

4. DISCUSSION

In this paper, a two-dimensional Gaussian wavelet transform
1s used to derive sea-ice motion in the Arctic from SSM/I and
NSCAT data for the fall/winter period October 1996-March
1997. This technique provides improved spatial coverage over
the existing array of Arctic Ocean buoys and better temporal
resolution than techniques using data from satellite SAR. This
new source of ice-motion data offers a potential solution to the
problem of inadequate temporal sampling. Liu and others
(1999) compared sea-ice motion results derived from wavelet
analysis of SSM/I and NSCAT for November and December
1996 with the ice drift derived from buoy data. It was found
that results from both NSCAT and SSM/I gave good quanti-
tative agreement with ice drift derived from buoy data, and
the flow patterns from results of SSM/I and NSCAT were
extremely similar, and the two sets of results complemented
each other well. Therefore, the ice-motion results from SSM/
I, NSCATand buoy data could be merged by data-fusion tech-
niques to form composite maps with more complete coverage
of sea-ice motion than the results from a single data source. It
was also found that sea-ice flow streamlines constructed from
the merged sea-ice motion data were highly correlated with
the surface pressure contours, implying that sea-ice motion
was dominated by wind forcing. o quantify the wind effects
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on sea-ice motion, PCA is applied to merged sea-ice motion
data and to pressure-field data in this paper. It is found that
30% of sea-ice motion is highly correlated with 50% of the
pressure field in modes 1 and 2. The rms of angles between
sea-ice motion and pressure contours is 42° and 34° for modes
1 and 2, respectively, which is consistent with the Ekman
effects of wind drag for sea-ice drift. For higher modes, sea-
ice motion is probably also affected by ocean current, bathy-
metry and coastal boundary and therefore is not highly corre-
lated with the wind field. We shall continue research in this
direction.

QuikSCAT, a “quick recovery” mission to fill the gap
created by the loss of data from NSCAT when the ADEOS-1
satellite lost power in June 1997, was launched on 19 June
1999. It will continue to add to the important ocean-wind
dataset begun by NSCAT in September 1996. QuikSCAT
has 25km resolution with 5km resolution from enhanced
processing. The finer resolution will reduce the uncertainty
of the ice-motion product that inherits from satellite data,
and therefore may improve its accuracy. For a discussion on
error sources of ice-tracking results, we refer readers to
Kwok and others (1998), Liu and others (1999) and Zhao
and others (2000). The wavelet-analysis algorithms for daily
sea-ice motion have been extended to use QuikSCATdata in
the automated near-real-time processing. The limitations of
QuikSCAT backscatter data for sea-ice motion during the
summer months have been investigated by optimizing the
scales chosen in the wavelet transform. We will report the
ice-motion results from wavelet analysis of QuikSCAT data
in the near future. Because of good quantitative agreement
between sea-ice motion values from wavelet analysis of
SSM/I and NSCAT data and from buoy data, the daily sea-
ice motion map can also be used to improve our current
knowledge of sea-ice dynamics and process through data
assimilation of an ocean—ice numerical model.
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