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We study the steady-state queue-length vector in a multi-class queue with relative pri-
orities. Upon service completion, the probability that the next served customer is from
class k is controlled by class-dependent weights. Once a customer has started service, it
is served without interruption until completion. We establish a state-space collapse for
the scaled queue-length vector in the heavy-traffic regime, that is, in the limit the scaled
queue-length vector is distributed as the product of an exponentially distributed random
variable and a deterministic vector. We observe that the scaled queue length reduces as
classes with smaller mean service requirement obtain relatively larger weights. We finally
show that the scaled waiting time of a class-k customer is distributed as the product of
two exponentially distributed random variables.

1. INTRODUCTION

In this paper, we study a multi-class M /G /1 queue with relative priorities. Service is non-
preemptive and upon service completion, the probability that the next customer to be served
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is from class k is

NPk
S o (1)
Zj njPj
wherep; > 0,7 =1,..., K, are given class-dependent weights, and n; is the number of class-

j customers at the decision epoch. The intra-class scheduling discipline is non-preemptive
and non-anticipating. A non-anticipating policy does not use information of the actual
service requirement of the customers.

The relative priority model is quite general, and it provides an appropriate framework
to provide service differentiation in non-preemptive systems. In fact, following the analysis
of Section 8.4.1 in [10] it could be shown that the family of relative priority policies as
studied in this paper is complete, that is, within this family of policies one can achieve any
performance vector in the achievable region of the non-preemptive M/G/1 queue.

The relative priority model can have application in various domains, in particular in
ATM networks [3], telecommunication networks [6], or genetic networks, where molecules are
analogous to customers, the enzyme is analogous to the server and protein species correspond
to classes; see [18]. In this paper, we do not focus on any application in particular. Instead,
our goal is to provide a thorough analysis in order to obtain insights into the performance of
the relative priority model that could potentially be applied to different contexts. We also
believe that our methodology can be of independent interest in the study of other queueing
networks.

A special case of the model under study is when the intra-class scheduling discipline is
uniform random, that is, within a class a customer is selected uniformly at random. This
model was proposed in [11] and it is referred to as discriminatory-random-order-of-service
(DROS). In recent years, several interesting studies have been published on DROS [12-14].
Expressions for the mean waiting time of a customer given its class have been obtained
in [12]. In [13,14], the authors derive differential equations that the transform of the joint
queue lengths and the waiting time in steady-state must satisfy, respectively, and this allows
the authors to find the moments of the queue lengths as a solution of linear equations.

In the single class case, DROS reduces to the well-studied random-order-of-service
(ROS) discipline. Classical papers on ROS are for example [16,17,19]. The Laplace trans-
form for the waiting time distribution was obtained in [16]. In [16,17,21], ROS is studied
in a heavy-traffic setting and for service requirements having finite variance it was shown
that (i) the scaled queue length converges to an exponential distribution, and (ii) the scaled
waiting time is equal in distribution to the product of two independent exponential random
variables. More recently, the authors of [7] obtained the waiting time distribution in heavy
traffic for certain service requirements having infinite variance. In addition, waiting time tail
asymptotics have been obtained in [7]. In [5], the authors derive the relationship between
the waiting time under ROS and the sojourn time under the processor-sharing discipline.

In the present study, we establish a state-space collapse for the scaled queue-length
vector in the heavy-traffic regime for a multi-class M/G/1 queue with relative priorities and
non-preemptive services, that is, in the limit the scaled queue-length vector is distributed as
the product of an exponentially distributed random variable and a deterministic vector. We
note that a similar state-space collapse result was observed in [20] for the discriminatory
processor sharing model. The result shows that in the limit, the queue-length vector is
the product of an exponentially distributed random variable and a deterministic vector.
In particular, this allows us to show that the scaled number of customers in the system
reduces as classes with higher value of ¢ /E[By] obtain a relatively larger weight, where ¢y,
is the cost associated with class k, and E[By] is the mean service requirement of a class-k
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customer. This can be seen as an extension of the optimality result of the cu-rule [10], the
strict priority discipline that gives priority in decreasing order of ¢ /E[By].

For DROS, that is, under the additional assumption that the intra-class discipline is
uniform random we study in addition the waiting time in the heavy-traffic setting. Using the
state-space collapse result, we obtain the distribution of the waiting time for a customer of a
given class in heavy traffic and prove that it is distributed as the product of two exponentially
distributed random variables. This generalizes [17] where this result was shown for the single-
class ROS queue. Moreover, we also find the value of the weights that minimizes the mth
moment of the waiting time for a customer of arbitrary class.

Finally, we simulate a system with two different classes of customers under a DROS
discipline and depict the queue-length distribution and the first and second moments of the
queue length and the waiting time in order to evaluate the analytical results outside the
heavy-traffic regime.

We note that in this paper we consider the heavy-traffic limit of the steady-state met-
rics. In the literature, there are state-space results available for the transient queue-length
processes, that is, when the heavy-traffic limit is directly taken of the queue-length pro-
cesses. See for example [8] for the heavy-traffic analysis of a multi-class system where all
classes receive simultaneously service. In general, the heavy-traffic and steady-state limits
cannot be interchanged, which explains the interest of our approach. Another important
difference is that our approach allows us to investigate the waiting time in the system, a
metric that does not have a clear counterpart in the “process” world.

The paper is organized as follows. In Section 2, the model is introduced and the heavy-
traffic scaling is defined. In Sections 3 and 4, the distribution of the scaled queue-length
vector at departure epochs and arbitrary epochs are presented, respectively. In Section 5,
the distribution of the scaled waiting time of a given customer is presented. In Section 6,
it is shown how the results presented in the previous sections can be used to optimize the
scaled holding cost and the moments of the scaled waiting time of an arbitrary customer.
In Section 7, we present our numerical results.

An extended abstract version of this paper appeared in [2].

2. MODEL DESCRIPTION

We consider a multi-class single-server queue with K classes of customers. Class-k customers,
k=1,..., K, arrive according to independent Poisson processes with rate A\ > 0. We denote
the overall arrival rate by A = Zszl Ak We assume that class-k customers have i.i.d. gen-
erally distributed service requirements By, with distribution function By (x) and Laplace—
Stieltjes transform Bj(s) = [;° e **dBy(z), and we define B;'(s) = (dBj(s))/(ds). We
assume E[B7] < oo, for all k. The traffic intensity for class-k customers is py = A\ E[Bj]
and

K K K
p=> pp=3 ME[Bi]=X> arE[B],
k=1 k=1 k=1

denotes the total traffic intensity, where ap = A /\ denotes the probability that an arrival
is of class k. Service is non-preemptive and upon service completion, the probability that
the next customer to be served is of class k is given as in (1). Once a class is chosen to be
served, an intra-class scheduling discipline determines, which customer in this class will be
served. We assume the intra-class discipline to be non-preemptive and not to make any use
of information on the actual service requirements of the customers.
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We investigate the queue when it is near saturation, that is, p T 1, which is commonly
referred to as the heavy-traffic regime. This regime can be obtained by letting

A= e, (2)

since then p = A Zk 1 o E[Bg] 1 1. When passing to the heavy—trafﬁc regime we keep the
fraction of class-k arrivals, ay, fixed and we define )\k = ak/\

We denote the steady-state number of class-k customers in the system at departure
epochs by @) and at arbitrary epochs by Nj. We denote the waiting time of an arbitrary
class-k customer by Wj. We note that, throughout the paper, we do not explicitly reflect
the dependence of the random variables on the traffic load p, in order to keep notation
compact. In Sections 3-5, we will analyze Qy, Ny and W}, respectively, in the heavy-traffic
setting.

3. QUEUE LENGTH AT DEPARTURE EPOCHS

In this section, we present the state-space collapse result for the steady-state queue-length
distribution at departure epochs. The next proposition states the main result of this section
and shows that in the limit, the queue-length vector is the product of an exponentially
distributed random variable and a deterministic vector. The proof is provided in Section 3.2.

PROPOSITION 3.1: When scaled by 1 — p, the queue-length vector at departure epochs has a
proper limiting distribution as (A1, ..., k) — (A1,..., k), such that as p 1 1,

(1= p) (@1, Qi) > (@1, Qx) = (MAK) v,
b1 PK

d o . ) )
where — denotes convergence in distribution and Y is some one-dimensional random
variable.

In Remark 2 of Section 4, we will show that, in fact, Y is exponentially distributed. To
show this we require additional results presented in Section 4, and thus we refer the reader
to Remark 2 for more details.

Before focusing on the heavy-traffic regime, we will introduce a system of equations
that is satisfied by the probability generating function of the queue-length distribution at
departure epochs, as obtained by Kim, Kim, and Kim [14]. Define

ﬂ-(qlw"?qK) _P((QhaQK) = ((Z1»-~-7QK))a
and let

p(2) =E[7 235 =Y Y ()

q1=0 qrk =0
be its joint probability generating function. We define

N D

7 1 K = Z .
K (X k=1 Qe>0) Z 1 K
> k=1 @Dk e a0y TP ARDE

r(2) =

In [14], the distribution of the queue length was studied assuming that the intra-class
scheduling is uniform random. However, since the service discipline is non-preemptive,
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non-anticipating and all class-k customers in the queue are stochastically equivalent, the
distribution of the queue-length vector does not depend on the particular choice of the intra-
class policy. Hence, for any arbitrary work-conserving intra-class policy we have the following
result from [14].

THEOREM 3.2 [14 Theorem 1 and 2]: (a) The probability generating function p(zy,...,
2 ) of the joint stationary queue lengths at departure epochs satisfies

p(z1, ..., 2K —1—p+2p122 r(z1,...,2K). (3)

(b) The function r(z1,...,2K) satisfies

K . ; )
;Pi zi—Bf()\—;)\ij) ar(zl,...,zl{): g

7

>\>/

K
F(A = Z Ajzj)
()

In Section 3.1, we will show that Egs. (3) and (4) simplify under the heavy-traffic
scaling, which we will use in Section 3.2 to prove Proposition 3.1.

3.1. Heavy-traffic scaling

In this section, we present three lemmas needed for the proof of Proposition 3.1. In the first
lemma, we show that the scaled queue length at departure epochs is tight. The proof may
be found in Appendix 8.

LEMMA 3.3: The random vector (1 — p)(Q1,...,QK) is tight for p close enough to 1, that
is, for all € there is a p € (0,1) and M > 0 such that P((1 — p)Qkr > M) <e, for all k =
1,...K, and p > p.

It will be convenient to use the change of variables z; = e with s; >0,i=1,..., K.
Denote 5= (s1,...,sx) and e~ (1=P)5 = (¢=(=p)s1 o =(=p)sx) [f
limp(e=(1=P%) = lim E[e=(1=P)1Q1 ... = (1-P)sx Qx| (5)
e Pl

exists, then there is a (possibly defective) random vector (Ql, Q2,...,Qx) such that (1 —

)(Ql, Q2,...,Qk) converges in distribution to (Ql, Qs, ..., QK) and the distribution of
(Ql, Qs, ..., QK) is uniquely determined by the limit in (5) (cf. the Continuity theorem,
see Feller [9]). For now, we assume that the limit exists; we come back to this assumption
in the last part of the proof of Proposition 3.1.

Below we give two lemmas that describe properties of lim,; p(e~(1=P)%) In particular,
in Lemma 3.5 we obtain a partial differential equation which will be the key element in the
proof of Proposition 3.1.

In order to describe the behavior of the generating function, we define

(—») E 1—6—51Q1 ...e—sKQK ( )
72 S) = i 1 . ) | 6
Zszl QrPk (X r=1 Qr>0)

The “1” in the numerator is to ensure that the expression between brackets remains
bounded when the Q);’s are all near zero.
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LEMMA 3.4: If limpq p(e=(=P)%) exists, then it satisfies
K

: —(1—p)5\ _ af‘(g‘)
1,%1])(6 (1=r) )—Zpi - (7)

0s;
i=1 v

PrOOF: From (3) we have

S or(2)
lim p(e (1_p)§)zlim2pi :

(8)

pil P10z lz=em0-07
By definition of r(2) we can write
ZQK
K
87’(5) . R |:Zk 1 Qrpk 1(ZkK:1 Qk>0):|
m-——= = lim
Pl 0z lz=e—0-p5  pI1 0% B
Z—e—(1—p)7
. Q, e—(1=p)s1Q1 ... o= (1—p)sk QK
- 1”1%11@ Z?ﬂ Qrpr . e—(1—p)si 1 . Qr>0)
Qi I T
" >y Qupr e e T L Qi)
=1
o7 (3)
= 5s (9)

In the third step, we wused that (Qi/(Zszl Qr))py - e~ 17P)sQ1 o= (1=p)sxQuc .
Lisx  Qu>0) is upper bounded by (1/(min;(p;)), and, cf. the continuous mapping theorem,
converges in distribution to (QZ/(Zle Qrpr)) - em1Q . K Qx . Lisx >0 From (8)
and (9) we obtain (7). [ |

In the following lemma, we show that the partial differential equation as given in (4)
simplifies considerably in the heavy-traffic regime.

LEMMA 3.5: Iflim,p p(e=(1=P)%) exists, then the function #(5) satisfies the following partial
differential equation:

o=i§_;Fi<st’>agS’=ﬁ<sf>-vf<§>, V5>,
where F(5) = (F1(5),...,Fx()), and
K
Fi(5) = pi(—s; + E[B Z wsp) i=1,... K, (10)

with \j = c;A and X as defined in (2).
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PrROOF: Taking 7 equal to e~ (1=?)% in (4), dividing both sides by (1 — p) and taking the
limit of p T 1, we obtain

K C(1—p)s: y K (e p)ss
lim Simy pile” TP — BE(A = 300 Ajem1m0s0)) g r(z 2K)
o1l 1— p aZZ 1y RK zi:e*u*/’)‘“i

K K
. Ai B C(1—p)s,
= lim — E X A= g Aje(1=P)ss =0, (11)
i=1 j=1

pT1

where the last equality follows by noting that B}(0) = 1, Vi. Making the change of variable
x; = e % we obtain

Siapile O - B =50 Aje0%)) 9

1/}‘1%1 1_ P aizzr(zﬂa e 7ZK) vime—(1=p)s;
g T BN A 0
pT1 lfp 821 b oK zi=z, °
P 1-p P
71;?1121)1 Z; 1HSC1+ EiB)i W;OLJI] 7]-721)\]':?] lnfEJ
= )
* l=p
x | B} )\—;)\ij 8zir(zl" V2K ) i
K K
i 07(6)
= i E 7 )\
Ln TR 2 )

where in the second step we used I'Hopital’s rule and in the third step we used (9) and that
¥ dB (s o .
B! (0) := %L:O = —E[B,] for all i.
Together with (11), we then obtain that

K K ;
izzlpi —s; + E(B g/\ 857 :O.

3.2. Proof of Proposition 3.1

This subsection contains the proof of Proposition 3.1. The proof is based on the fact that
the function 7(8) satisfies the partial differential equation as described in Lemma 3.5. From
this partial differential equation the following property for the function #(-) can be derived:

LEMMA 3.6: If limy; p(e”1=P)%) emists, then the function 7(s) is constant on the
(K — 1)-dimensional hyperplane
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The proof of Lemma 3.6 may be found in Appendix B. We can now give the proof of
Proposition 3.1.

PROOF OF PROPOSITION 3.1: Assume that lim,;; p(e”(17P)%) exists. We come back to
this assumption at the end of the proof. As #(S) is constant on H,., see Lemma 3.6, 7(-)

depends on § only through Zszl(j\k/pk)sk, so there exists a function 7#* : R — R such
that 7(3) = 7* (X0, (Ax/p)sk). From Lemma 3.4 and

0f(s) _ Ai di*(v)

Dsi  pi dv lu=si, e
we obtain
K o4 5 S r > Gl
Eje- Tl 5@ :;Lmlp(efuff%) :; 881 :;)\ do =i, B,
dr*(v)

5 12
d'U |’U:Z§=1 %Sk’ ( )

which again depends on § only through Zszl(j‘k /Dk)sk. Equivalently, we can write

A

Ble- B g, BT o (B0-80) i (0r-20).

Since (by (12)) this only depends on ZkK:l(;\k/pk)sk, it implies (p;/\i)Qi = (p;/2)Q;
almost surely for all 7, j, and we obtain that

(QA17"'7QAK)<)\17)\2V" AK) Qla

b1 P2 A1

almost surely. Writing Y £ ’)’\—1@1 we get,
1

(Ql,...,QK)(pl,m,...,pK)Y. (13)

Recall that we assumed that, for the sequence p, lim,1q p(e’(lfp)g) exists, thereby
showing that there is a unique limit (13). Since (1 — p)(Q1, ..., Qx) is tight, see Lemma 3.3,
and since for any converging subsequence of p we obtain the same limit, we obtain that the
limit itself exists (see Corollary on page 59, Billingsley [4]). This concludes the proof. =

4. QUEUE LENGTH AT ARBITRARY EPOCHS

In this section we focus on the number of customers in the system at arbitrary epochs,
(N1,...,Nk). The following result shows that in the limit the queue-length vector at
arbitrary epochs is the product of an exponentially distributed random variable and a
deterministic vector. We refer to the latter as a state-space collapse. The proof is presented
in Section 4.2

Remark 1: We note that a similar state-space collapse result was observed in [20] (Propo-
sition 2.1) for the discriminatory processor sharing model. In fact, the proof technique is
similar to that of [20].
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PROPOSITION 4.1: When scaled by 1 — p, the queue-length vector at arbitrary epochs has a
proper limiting distribution as (A1,..., k) — (A1,..., A\k), such that p 1 1,

S Vi W
(1= p)(Ny,...,Ng) % (N, ..., Ng) £ (1,2,...,K> X, (14)
p1 P2 PK
where % denotes convergence in distribution and X is an exponentially distributed random
variable with mean 1/v(p), where

2341 5EE[Bi]
2 k1 AE[BE]
Before focusing on the heavy-traffic regime, we will introduce a system of equations
that is satisfied by the probability generating function of the queue-length distribution, as
obtained by Kim et al. [14]. Let ¢(z1,...,2x) be the joint probability generating function
of (Nl, ceey ]\/VK>7 that iS,

V(21, ., 2x) o= Bl oo 2R,
As mentioned in Section 3, the distribution of the queue-length vector is independent

of the particular choice of the intra-class scheduling discipline. We can therefore use the
following result from [14].

THEOREM 4.2 [14, Theorems 3 and 4]: The joint  probability — generating  function
W(z1,...,2K) of the joint stationary queue lengths at arbitrary time epochs is given by

K K
1—Bf(\— L AR2k
B o) =1 p 4 S Az, a) LA Rk M) g
i=1 A =Dkt AkZk
where ¢;(z1,...,zK) (representing the joint probability generaling function of the stationary
queue lengths excluding the customer who has already started service, at service initiation
epochs of class-i customers) is given by

)\pi 0

di(z1,. . zx) =1—p+ (21,5 2K)- (17)

In Section 4.1, we will show that Eq. (16) simplifies under the heavy-traffic scaling, and
in Section 4.2 we will use this to characterize the distribution of the scaled queue-length
vector at arbitrary epochs, that is, to prove Proposition 4.1.

4.1. Heavy-traffic scaling

In the next lemma, we characterize Eq. (16) in heavy traffic.

LEMMA 4.3: The limit of 1(e=1=P)%) as p 1 1 exists and satisfies

K o %
lim ¢ (e~ (1=P)%) = Zpiar(é) = Xdr @) 5,

pT1

with #*(-) some function #* : R — R.
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PRrROOF: Since (1 — p)(Q1, ..., Q) converges in distribution to (Ql, A QK), we know that
the limit of p(e~(1=#)%) exists, and hence, by Eq. (8), the limit of
or(2)

07 lz=e—(-p)5

exists. It now follows directly from (17) that lim,; ¢;(e~(1)%) exists and it is given by
(Api/ i) (07 (s)/0s;).

As we have seen in Lemma 3.6, () is constant on H.. Therefore, it depends on § only
through Zszl()\k/pk)sk, so there exists a function 7#* : R — R such that

RV Y
V=30 i 5k

This, together with (16) gives that

Bi(A =Y, )\ke(lp)Sk))

-1
lim —(1=p)Fy — hm (1 —n+ i€ —(1=p)si —(1—p)5
(e (7)< 53 L e AW

i=1

P 5\2 881 Py dU =K i—:sk
_ 547 (w) i _ 54 (0)
dv o=y 1C, Jks. = dv o=y, Sks)
where in the first step we used I’Hopital’s rule and
/ dB;
B (0) := % o —E[B;], for all i.

|

In particular, Lemma 4.3 implies that there exists a vector (Nl, .. ,NK) such that the

scaled queue-length vector at arbitrary epochs converges in distribution to it.

4.2. Proof of Proposition 4.1

This subsection contains the proof of Proposition 4.1. It consists of two steps. Firstly, we
show that the queue-length vector is the product of a random variable and a deterministic
vector, and secondly, we determine the distribution of the random variable X, concluding
that it is exponentially distributed with mean as given in (15).

PROOF OF PROPOSITION 4.1: Since lim 1 1(e~(17P)%) exists, see Lemma 4.3 we know there

exists a random vector (N1, ..., Ng) such that
R « di*(v)
- skNk -1 —(1=p)5y — )\ o 18
Efe | =tmole 0N =ATRE] (18)
Using the same steps as in the proof of Proposition 3.1 we obtain that
- . AA A
(]\'717"'a]\[K')i 717727"' K)X (19)
b1 P2 PK

with X distributed as (p1 /A1) Ny

https://doi.org/10.1017/50269964814000278 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964814000278

A NON-PREEMPTIVE MULTI-CLASS QUEUE WITH RELATIVE PRIORITIES 163

In order to determine the distribution of X, we consider the total workload in the
queue at arbitrary epochs, denoted by VP, We first note that the total workload at the
system is independent of the work-conserving scheduling discipline being used. In [15],
Kingman considered a First-Come-First-Serve (FCFS) queue and showed that the scaled
total workload in an M/G/1 queue has a proper distribution as p T 1:

(1 o p)varb i Varb
where VP ig exponentially distributed with mean
K 4
Zk:l )‘kE[Bi]
5 .

Under the discipline DROS, the total workload at arbitrary epochs can equivalently be
represented as

E[V*"] = (20)

K Np—1

Vet =%y Bkh+ZBka

k=1 h=1
with By, j, the service requirement of the hth class-k customer and By, the remaining service
requirement of the first class-k customer in line. On the one hand, note that the service
requirements of all class-k customers are i.i.d., more precisely, By, p, 4 By, for all A. On the
other hand, By, is distributed as By, if the Nyth class-k customer is not being served, and
otherwise is given by the forward-recurrence time of Bj. Hence, for the scaled workload at
arbitrary epochs we can write

_g{rarb . (1) sy
E[e v ]zll}%lE[e (1=p)sV }

:hmE[ —(1=p)s(C 1 X2
P11

N 1 ~
kT BrntYh, Bk)]

ZNkilB
= limE[e 2 i (1PN D ZRE —(1=p)s T3, B
P11

:E[e—52£{:1 E[Bk]lvk]7 (21)

"By
where in the last step we used that e s T - (Ne-1) = (Nk D is bounded by 1 and
converges in distribution to e=% % i1 EB:INt From (21) we obtain that

K
Vet LN TR (BN, (22)
k=1
and together with (19) this gives
yarb L x Z )\kE [Bu. (23)
1 Pk

Since VP g exponentially distributed, the same is true for X. Hence, taking
expectations in (23) and applying (20) we obtain

E[x] = it ME[B]
K N )
20, AE(By]
which concludes the proof of Proposition 4.1. |
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Remark 2: In this remark, we show that the two random variables that characterize the
heavy traffic at departure and arbitrary epochs, Y and X, respectively, are equal in distri-
bution. Let us consider the arbitrary arrival of a class-k customer. By the PASTA property,
the number of class-k customers in the system at this time is equal to Nj. The number of
customers in the system after the first departure epoch is distributed as (Q1,..., Q). The
number of customers that arrive in the time it takes for the customer in service to depart
is of the order of p, since it is distributed as the number of arrivals in a residual service
requirement. It then follows that

Qr L N, + O(p).

Multiplying the above equation by (1 — p) and taking the limit p T 1 we get that Qs 4 Ni
and hence X £ V.

5. WAITING TIME

In this section, we investigate the waiting time in the heavy-traffic setting. We focus on the
random intra-class scheduling discipline, that is, we consider the specific model DROS.

Let W; denote a generic random variable for the waiting time of an arbitrary class-/
customer. We refer to this customer as the tagged class-l customer. Let ()j, denote the
number of class-k customers in the system (excluding the tagged customer) immediately
after service initiation of the tagged customer in case the tagged customer arrives while the
server is busy, that is, W; > 0. We now define the following joint transform:

Ti(u,21,...,2K) = ]E[e_“lei"21 - ~ng1{Wl>0}]. (24)
Note that the transform of the waiting time W, of the tagged class-I customer is given by
E[e=*W1] = Ele ™" 1w, —oy + e_u'Wll{W,>o}] =1—p+Ti(u,0), (25)

since 1 — p is the probability that the tagged class-l customer arrives in an idle period. For
the random intra-class scheduling discipline, we have from [14] the following result for the

transform 7T;(u, 2)

THEOREM 5.1 [14 Theorem 8]: For the random intra-class scheduling discipline, the joint

transform Ty(u, z1, . .., zx) satisfies
K /9 K
Z}%(Tz(%«zh---,zK)) zi — By U+)\—Z)\k2k +Ti(u, 21, ..., 2K)
= o\ 0z k=1
:T/Vll(U,Zh.-.,ZK), (26)
where W(u, z1, . .., 2k satisfies
V[/ll(ua Ly 7ZK)

ZK)) BE(A = S Aws) = B (u+ A= 35 i)
Y u N

i 9
= Z ((1 — PN +)\pi£r(zl, .

i=1 v

(27)
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In order to study the scaled waiting time, we will need to assume throughout this section
that (1 — p)Q5 is uniform integrable, for all k. As we mention in Section 7.2, numerics show
arguments to believe that this is indeed satisfied.

ASSUMPTION 1: For a random intra-class scheduling discipline, the family of random
variables {(1 — p)Qr} is uniform integrable for all k.

We can now state our result that shows that in the limit the waiting time of a tagged
class-l customer, W, is the product of two exponentially distributed independent random
variables.

PROPOSITION 5.2: Let Assumption 1 be satisfied and consider the random intra-class
scheduling discipline (i.e., DROS). Then, as p 11,

. . N . AMA A
(lfp)(VVtha"'vC?K)i’(vvlaC?h"-aC?K)g <Z171327"'3K> Xv

where % denotes convergence in distribution and X and Z; are exponentially distributed
independent random variables with E[X| = 1/v(p) and E[Z)] = 1/p;.

Remark 3: Proposition 5.2 is a generalization of Kingman’s result, see [17], where the
asymptotic waiting time distribution is obtained for the single-class DROS queue (i.e.,

ROS).

In order to prove Proposition 5.2, we will need the following three technical lemmas.
The first lemma states that the scaled vector (QF, ..., Q%) has a proper limit.

LEMMA 5.3: When scaled by 1 — p, the queue-length vector (Q3,...,Q%) has a proper
limiting distribution as (A1,..., k) — (;\1, e ;\K), such that as p 11,

NS A
1= D)@ Qi) S (O Ol) (x) .
p1 PK

where % denotes convergence in distribution and X is an exponentially distributed random
variable with mean 1/v(p).

PROOF: Denoted by Q; the class-i queue length at a service initiation epoch of a tagged
class-i customers (excluding the tagged customer). By definition the following equality is
satisfied:

Bule™, ... e ) = Ele~ a0y
=FE [6_25(:1 SiQil{WiZO}} +E [6_25{:1 SiQi]—{Wi>0}
=1—p+T(0,e ", ... e °K).

Hence, from Eq. (17) we obtain that

Ti(0,e7 % ... e %K) = 7(215 - 2K ) |75
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We have

lim 2 ( )
im—r(z1,... 2K )| s—o—(1-p)s = —
e 62,’ 15 K)|zZ=e—(1=r) i dv

(see proof of Lemma 4.3), hence

- dP
B 70,6, e~*x) = A9 (V) . (28)
pT1 dv =K p—:sk
From (18) we obtain
E(G*Z§:1 Ska) — xdf*(’l)) . .
dv ="K, ;—:sk
Together with Eq. (28) and Proposition 4.1 this concludes the proof. [ |

The following technical lemma characterizes the value that the function
Wl(u, 21, ..., 2K), as defined in (27), takes in heavy traffic.

LEMMA 5.4: We consider the random intra-class scheduling discipline (i.e., DROS). Then,
as p 11, the limit W((1 — p)u,e=1=P)s1 . e=(1=P)sK) exists and satisfies

lim W (1 — pu,e”1=Ps  em(mpsxy — v
P11 ’ B K.
v+ X sk

=1

with 1/v(p) as given in (15).

The result of Lemma 5.4 implies that in heavy traffic the function lim,; W}'((1 —
pu, e=(=rs1 e~ (1=p)sK) depends on s only through a linear combination of its com-
ponents. The proof of Lemma 5.4 may be found in Appendix C. In the following lemma,
we show that the scaled waiting time of a class-I customer has a proper limit.

LEMMA 5.5: Let Assumption 1 be satisfied and consider the random intra-class schedul-
ing discipline (i.e., DROS). Then, there exists a W, such that (1 — p)W; converges in
distribution to Wi as p T 1.

PrOOF: By definition, the following two equalities are satisfied:

Ti(u,1,...,1) =Ele """ 11,50y (29)
and

8 * _—u
aTz(u,zh Ce ZK) T E[Qfe Wll{Wl>0}]. (30)
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Now, considering Eq. (26) with Z =1 in heavy traffic we get:

Hm W) (1= p)us L, 1) (31)
P

K
. i 0
=1im Y P =) 5T = P,z 2)

R Rt n Z=1 (1—-p)
+limT;((1 - p)u,1,...,1)
a
K D
=lim Y ZuE[B]E[(1 - p)Qfe 1=PuWig +limE[e-(1-PvWig
o1l P ” [ ] [( p)Qz {Wz>0}] ol1 [ {Wz>0}}

K
= 1im]E[< PCuBB(1 - p)Q; + 1) 6_(1_’))“W11{Wl>0}]
P11 — Dl

K
—E {1[%1 ( %uE[Bi](l - p)Q: + 1) 6(1p)uW11{Wl>0}] : (32)
=1

where in the second step we used (29) and (30) and in the fourth step we used the hypothesis
that (1 — p)Q; is uniformly integrable (Assumption 1), [4, Theorem 3.5]. Note that W' ((1 —
p)u, e~ 1P which is defined in Eq. (27), has a proper limit when p 1 1; see Lemma 5.4.

K
Since (31) converges, the same must hold for (32). Besides ) %uE[Bi](l — p)QF converges
i=1

K 3
in distribution to > %UE[BA%X (see Lemma 5.3) and therefore, we conclude that the
i=1 ‘

waiting time of an ;rbi‘grary class-l customer in heavy traffic converges in distribution to
some random variable W;. |

From Lemma 5.4, we note that (32) should in fact be independent of u. It can be

checked that in case (1 —p)(W;,Q5,..., Q%) is distributed as X (Z;, 2—1, cee g—g), as we
want to show, see Proposition 5.2, this is indeed satisfied.

We can now prove Proposition 5.2 which consists in finding 7;(-) by solving Eq. (26)
after the heavy-traffic scaling.

PrROOF OF PROPOSITION 5.2: We know by Lemma 5.5 that there is a random variable

V:Vl such that (1 — p)W; converges in distribution to W,. Hence, we can define the function
T;(u, 8) as follows:

Ti(u, 8) := E[e_“wle_ Y SiQf]

= limE[ef(lfp)uwlef(lfp)‘“@i .. .ef(lfp)SKQ;(]
pT1

= h%rllTl((l — p)u, 6*(1*P)51’ o ef(lfp)sK).
P
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We will evaluate Eq. (26) in the point (u,z) =

focus on the first term. We have

A. lzagirre, U. Ayesta and |.M. Verloop

(u(1 — p),e==P%) as p 1 1. We first

0

lim(1 — Ti(u, Z
plgl( p) - i(u, 2) (1 e -7

L Qre~(1=P)uWie=(1=p)51Q1 ... o= (1=p)si(Qi—1) ... o= (1=p)sK Qi

= tm(1 % .

= E[Qfe™ W™ emox @k = o Ti(u, 5), (33)
S
where in the second step we used Assumption 1 and [4, Theorem 3.5].

Moreover, realize that 7T} (u, §) = Ele-“Wie~ X% 5:Q7] depends on § = (s1, ..., sx) only
through y = Zle()\k/pk)sk (see Lemma 5.3). Thus, we will write Tj(u, ) = T;(u,y) and
by the chain rule:

9 . dy N0 .
us-— u, —T(u,y)=— = ——T(u, . 34
95, Ti(u, 3) [i(u,y) = AR il y)yzklsﬁ (34)

Then, taking the heavy-traffic limit in Eq. (26) and using Egs. (33), (34), Lemma 5.4 and

the relation

(e=(1=pP)si B ((1 -

lim

phu+ A= S Ae”(1mP)sk))

pT1 1-p

—s; +E[B (u—l—Z/\ksk)

which follows from ’'Hopital’s rule, we arrive to the following ordinary differential equation

(ODE):

pz Di 3y A

(—sZ +E[B

— PR
y7¢§1 %%

v(p)
v(p)+y

+Z>\k5k>+Tzuy) i

. K
Since Zfil i <—si + E[B;] (u + > /\ksk)> = u, the latter can be written as
k=1

u aj—‘l(ua y) ‘ 7 V(ﬁ)
_agany) 4+ Ti(uyy) = 2 35
POy =g ek )=+ e
The solution of the ODE (35) is
- b P < m l/(ﬁ)
Ti(u,y) = —en¥ e w¥—————dx, 36
() = Bey [Tt (36)

see Appendix D for the details.
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Let Z; and X be two exponentially distributed random variables with E[Z;] = 1/n and
E[X] = 1/v(p). Then, the Laplace Transform of (Z; - X, %X, cee ;—II:X) is given by:

E[efuzrxfslﬁ—;xa..fw %X] _ [ A X% K | sy ;—:X} — EJe—tZeX-vX]
= E[E[e—uzLX—yX|Zl — Zl” —E & :/ ne—nzlAdzl
v(p) +uZi+y 0 v(p) +uz +y
B l/oo s v(p) VB s /oo el
U Jv(@)+y €T U (D) 4y x
QU R 57
U vty 1

u

Making the change of variable z = p;((v(p) + z)/u) in Eq. (36) we obtain
A P [ e 1 v(p) , vty /°° .1
T _ Pl p & P dr — p1 A Ea
) = vt [t o e = e [

Hence, it coincides with the Laplace Transform of (Z;- X, %X,...,;—;‘X) obtained in
(37) with p; =n. Since the Laplace transform of a probability distribution is unique,
(uniqueness theorem, [9]), we conclude that (1 — p)(W;,Q5,...,Q%) converges in dis-
tribution to (Z;- X, %X,...,%X), where, as we have previously mentioned, Z; and
X are exponentially distributed independent random variables with E(Z;) =1/p, and

E(X) = 1/v(p). n

6. OPTIMAL SELECTION OF THE WEIGHTS

In this section, we show how the results of Proposition 4.1 and Proposition 5.2 can be used
in order to optimize the performance. In particular, in Section 6.1, we focus on the holding
cost and in Section 6.2 we find the weights that minimize the moments of the waiting time
of an arbitrary customer.

6.1. Holding Cost

With each class of customers we associate a cost ¢ >0,k =1,..., K. As performance
measure we take the holding cost Z,If:l ¢xNg. In this section we will write Ny(5), Ni(7)
instead of Nk,Nk to emphasize the dependence on the weights p':= (p1,...,px). From
Proposition 4.1 we obtain that the scaled holding cost, (1 — p) Zszl ¢, N (p), converges in
distribution to an exponentially distributed random variable with mean

=1 b % i SRE[B2], (38)

as p 1 1. Using this expression, we obtain the following monotonicity result in the heavy-
traffic regime: The holding cost decreases “stochastically” as more preference is given to
customers with a large value of (¢;/(E[B;])). This can be seen as an extension of the cp-rule
for the heavy-traffic setting [10].
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PROPOSITION 6.1: Consider two policies with weights (p1,...,px) and (q1,-..,qK ), respec-
tively. Let ¢, > 0,k =1,..., K. Without loss of generality we assume that the classes
are ordered such that (c1/(E[B1])) > (co/E[B2]) > -+ > (¢ /(E[Bk])). If (px/(prs1)) <
(qx/(qk+1)), for allk=1,..., K — 1, then

K

_ > _
1;%1 (1 ;cka (P) >st hm 1 chNk

where >4 denotes the usual stochastic ordering, that is, X >4 Y if and only if P(X > z) >
P(Y > z) for all z.

Proor: We have that (1 — p) 22{:1 ¢, Nk (p) converges in distribution to an exponentially
distributed random variable with mean as stated in (38). Since exponentially distributed
random variables are stochastically ordered according to their means, it only remains to
check that
A A
Y DY
A - A '
Zk:l prE[Bk] Zk:l TEE[Bk]

This holds since

K
= Aehi cE[B;] + c,]EB>+ A ——cE[B
k;;# * (pqu VLB + g ELB ,; *pags K
K
> /A\k:\l ( ctE[B;] + ¢ E|By, ) + Y ctE| By
k%:;éz Pidk o ki B kz:; " prax (B
K .5 K 3
_ (Z k k) ZkE[BkO
1 Ik i1 Pk
Here we used that Ci]E[Bk](plqk pquz) > ckE[Bl-](mlqk - pquz ), which follows from the fact
that%ﬁ%andﬁzlgﬁ;k],forigk. [ |

6.2. Moments of the waiting time

In this section, we will give the optimal values for the weights that minimize the mth
moment of the limit of the scaled waiting time of a tagged class-k customer, Wj. From
Proposition 5.2 we know that

Wi £ X - Z, (39)

where X and Z, are exponentially distributed independent random variables with E(Z;) =
1/pr and E(X) = 1/v(p). Now taking the expression in (39) and using that X and Zj, are
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independent random variables we observe that the mth moment of W, is given by

. I m! m! 1 [ S8 MEB
EW] = B[X™ Z7] = BX™E[Z]"] = — = D0 = (mi)?— | b=t
v(p)™ P} PP\ 2500, 2 E[By
Hence the mth moment of the waiting time for an arbitrary customer is given by
K 3 K K 3 m
Trm A Tm /\k Z )‘kE[Bz}
E(W™ =Y ZEW"] = (m))? (Z - m) ST p— : (40)
=1 A =1 AP 2Zk 1 k]E[ k]

In what follows, we will write W(ﬁ) instead of W to emphasize the dependence on the
weights p.

Note that E[W (p)] = N Zszl E[N(7)]. Hence, by applying Little’s law to the result
obtained in Proposition 6.1, we obtain the following corollary, which means that the mean
waiting time decreases as more preference is given to customers with a small value of

E[B],i= 1,...,K.

COROLLARY 6.2: Without loss of generality we assume that the classes are ordered such that
E[B\] <--- <E[Bk]. If (pj/pj+1) < (¢j/qj+1), for all j=1,...,K —1, then E[W(p)] >
EW(q)]-

Remark 4: The monotonicity result for the waiting time holds in the heavy-traffic setting.
In the case of two classes, K = 2, Corollary 6.2 is true for any stable system, that is, for
any value of p, not necessarily close to one. This can be seen as follows. The expression for
the mean waiting time for K = 2 is the following:

2
V) = 3 YRV

_ ME[B}] + \E[B]] AL(L = pp1) + A2(1 — pp2)
2) (1= p1 —p2p2)(1 — p2 — p1p1) — P1P2p1p2’

(41)

where the expression of E[W;],i = 1,2, was obtained in [14], Eq. (38). Without loss of
generality we assume that p; + pa = 1. Then, taking the derivative of (41) with respect to
p1 we obtain the monotonicity result as stated in Corollary 6.2.

Moreover, we have written a code to calculate the mean waiting time as given in [14] for
any value of K, that is, for any number of classes of customers. We choose the weights such
that (p;/pj+1) = %,Vj . In the figures, we chose exponentially distributed service require-
ments; however, the monotonicity observed holds for any service requirement distribution
(with the same first moment). The results obtained are shown in Figures 1 and 2, for K’ = 3
and K = 4, respectively, for different values of the load. It can be seen for these examples
that as more priority is given to customers with small mean service requirement (i.e., as
(1/7) becomes large), the mean waiting time decreases for any value of the load.

In Corollary 6.2 we considered the first moment of the scaled waiting time. In Proposi-
tion 6.3 we will investigate the mth moment of the scaled waiting time and find the optimal
value for the weights, which is non-trivial.
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$=0.2610, E[B }=0.0143, E[B,}=0.0167, E[B}=0.02 p=0.6083, E[B,}=0.025, E[B,|=0.0333, E[BJ=005 p=0.99, E[B,=0.04, E[B,|=0.05, E[B,}=0.0833
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FIGURE 1. The mean waiting time for three classes of customers in the system, K = 3,
under DROS for the loads p = 0.2610, p = 0.6083 and p = 0.99, respectively. The horizontal

axis corresponds to + = 2 j=1,... K —1.
r Pj+1

p=0.2535, E[B, ]=0.0083, E[B,}=0.0067, E[B,}=0.0091, E[BJ=0.009  =0.6304, E[B ]=0.0125, E[B J=0.0143, E[B}=0.025, E[B}=00286  p=0.9951, E[8,}=0.0182, E[B,}=0.0294, E[B }=0.0345, E[B }=0.0476
136 33 400,

a2
1.355} 31 350
3
- 1.35) 5 300|
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FIGURE 2. The mean waiting time for four classes of customers in the system, K = 4,
under DROS for the loads p = 0.2535, p=0.6304 and p = 0.9951, respectively. The

horizontal axis corresponds to + = 2 j=1,..., K — 1.
T P+’ R

PROPOSITION 6.3: The mth moment of the limit of the scaled waiting time, E[W™ ()], is
minimized in p* = (p3,...,p5%), with

1/E[By)"/ ™!
SK /BB

*

Py =

(42)

foreach ke {l,..., K}, m=23....

PrOOF: We need to show that E[W™ (p*)] < E[W™(p)]. This holds if and only if

Sty ME[B (Eﬁil &E[Bﬂ)m
Ay ARE[ByJm/m—1)m 2

K ) .
2km1 g . (Zf_l AkE[Bg])m
2 )
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which follows by definition. This is equivalent to

K A
1 _ Yot o

S < <
(Zk:l /\k]E[Bk]m/m_l)m_l (25:1 %E[Bk])m

and rewriting it we obtain

K 5\ m K = K m—1
(Z p:]E[Bk]> <> =k <Z 5\kﬂ*z[Bk]m/m1> : (43)
The latter holds by Holder’s inequality. |

Remark 5: By Eq. (42) we get that the ratio of two optimal weights is the following:

p* - E[BJ] 1/(m—1)
w-(emn) “

In general, the optimal choice for the weights is non-trivial. However, note that when m — 1
we deduce that under the optimal weights (for the mth moment) a class-k customer has
strict priority over a class-j customer if E[By| < E[B;]. This is exactly the result that the
cp-rule states. In addition, when m — oo, from (44) we see that the ratio of the optimal
weights converges to 1. This implies that as m gets larger, it becomes optimal (for the mth
moment) to treat all classes equal.

7. NUMERICAL RESULTS

In this section, we present numerical experiments related to the results obtained in this
paper. We consider a system under the discipline DROS with two classes of customers
(K = 2) and assume exponentially distributed service requirements. For each experiment
of the order of 10° busy periods are simulated. A busy period refers to the period of time
between two consecutive time epochs in which the system is empty, and every busy period is
a regenerative point of the stochastic process. In Section 7.1, we present the numerical results
corresponding to the distribution of the number of customers in the queue; in Section 7.2
we focus on the moments of the queue length and waiting time; and in Section 7.3 we
investigate the optimal weights.

7.1. State-space collapse for the queue lengths

In this section, we simulate the distribution of the joint queue-length vector. As param-
eters we chose A\; = 2.15,\y = 2.85,E[B;] =1/4 and E[By] =1/6, so that p = 0.9994.
In Figure 3, we plot the joint queue-length probabilities (obtained by simulation) for the
weights p; = 0.7, po = 0.3. The horizontal and vertical axis correspond to N1 and N5, respec-
tively. As a consequence of the state-space collapse stated in Proposition 4.1, in heavy
traffic the probabilities will lie on a straight line with slope (No/Ny) = (p1/A1)(Aa/p2) ~ 3.1,
starting from the origin. This result coincides with the slope of the figure obtained.

7.2. Moments of waiting time and queue length

In Figure 4, we plot (1 — p)E[N] (using Little’s Law and Eq. (41)) and (1 — p)2E[N?]
(obtained by simulation) for different values of the load p. When doing so, we keep the
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FIGURE 3. Joint queue-length probability. The darkness of the points specifies the prob-
ability of being into a particular state. The darker the point is, the higher the probability
of being in that state.
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FIGURE 4. First and second moments of the scaled queue length obtained for different
values of the load p. The dots in both pictures are calculated using (14) giving as a result
E[N] = 0.9589 and E[N?] = 1.9510.

mean service requirements fixed, E[B;] = 1/4 and E[Bs] = 1/6, and take Ao = 1.5A;. More-
over, we calculate the first and second moment of the limit of the scaled queue length,
that is, E[lim,,(1 — p)”N™] = E[N™],m = 1,2, using (14), giving as a result the val-
ues indicated with a dot in Figure 4, which are E[N] = 0.9589 and E[N?] =1.9510. As
it can be seen in Figure 4, in both cases, as the load gets close to one the functions
E[(1 —p)™N™],m = 1,2, converge to the values indicated with the dot. This would imply
that an interchange of the limit and expectation holds for the random variable (1 — p) Ny,
ie., lim,1 E[(1 — p)" NJ] = Ellim,11(1 — p)" NJ*],m = 1, 2.
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FIGURE 5. First and second moments of the scaled waiting time obtained for different
values of the load p. The dots in both pictures are calculated using Eq. (40) giving as a
result E[W] = 0.1906 and E[W?] = 0.1713.

0.45

0.4 — Eq. (36) for m=2

FIGURE 6. The second moment E[(1— p)?W?] for different values of the weights
(p1,p2) = (p1,1 = p1).

We note that if the limits are indeed interchangeable, together with the convergence in
distribution of the scaled queue lengths this would imply the uniform integrability of the
scaled queue length (see [4, Theorem 3.5]), as assumed in Assumption 1.

In Figure 5, we plot (1 — p)E[W] (using Eq. (41)) and (1 — p)?E[W?] (obtained by
simulation) for different values of the load p. The simulation setting is the same as the
one used for the queue length. We calculate the value of Eq. (40) for the cases m =1
and m =2 giving as a result the values indicated with a dot in Figure 5, which are
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E[W] =0.1906 and E[W?] =0.1713. In both cases, as the load gets close to one the
functions converge to the value obtained in Eq. (40), which would imply again that an
interchange of the limit and expectation holds for the random variable (1 — p)Wy, that is,
lim,1 E[(1 — p)"W;"] = E[lim,11(1 — p)"W;"],m = 1, 2. In fact, for the first moment, tak-
ing the limit as p T 1 in Eq. (41) it is easy to see that it indeed converges to the heavy-traffic
limit as characterized by Eq. (40) when K = 2.

7.3. Optimal values for the weights

In Proposition 6.3, we presented the optimal choices for the weights p* in order to minimize
the moments of the scaled waiting time W. In this section, we numerically evaluate the
validity of the optimal weights outside the heavy-traffic regime. We set E[B;] = 0.2439 and
E[Bs] = 0.1667 and plot (1 — p)?E[W?(p1,1 —p1)] for three different values of the load,
p=20.7,p=0.8 and p = 0.9; see Figure 6. The value of pj is in this particular case equal to
p = 0.4059 (see (42)). It can be seen that the weight pj = 0.4059 is a good approximation for
the minimizer of (1 — p)?E[W?(p1,1 — p1)] for load equal to p = 0.9. As the load decreases
the approximation becomes worse, but it is still close to the minimum of the function. We
also plot E[lim,1(1 — p)2W2(p1,1 —p1)] = E[W2(p1, 1 — p1)], which is seen to be a good
approximation for (1 — p)?E[W?(p1,1 — p1)] as the load gets close to 1.
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APPENDIX A: PROOF OF LEMMA 3.3

The total workload at departure epochs can be represented as

K Qg

VAP =3 N" B,

k=1h=1

with By j, the service requirement of the hth class-k customer. Note that the service requirements of all

class-k customers are i.i.d., and By p, 4 By, for all h.

For ¢ > 0, we have
P((1 = p)Qp > M)

—]P(Q > M )
-
QL [M/(1—p)]

SP( By,n > > Bk,h)
h=1 h=1
K Q (1 - p) LM/A=p)]
S]P’((l—P)Z > B> M—= Bk,h)
k=1h=1 M h=1
(1 _ p)vdep (1 _ p) [M/(1-p)]
=P ———— —E[Bp] > — B — E[B
( i [Bk] = o hzz:l k.h [ k])
(1~ pyvdep (1 - py LM/A=0)] (1 - p) LM1/a=p)] )
=Pl ———— —E[Bp] > — By, — E[Br], —— B — E[By] > —
( ; [Bi] > v hZ::1 k.h [By] v; }12::1 k.h [B] €
(1 - pyvdep (1= py LM/A=0)] (1 - p) M1/a=p)]
Pl ————— —E[B] > — B — E[B B — E(B < —
+ ( v [Br] > v };1 k.h [By] v P> k.h (Br) < 6)
= =1
[M/(1—p)]
1 —
(( ?) By, — E[Bg] < —€>
M h=1
1— pyvder
< (( 2 E[Bk]>—)+e
- ( 1 - pyyder >M(]E[Bk]7e)) T
<€+ € e , for p close enough to 1 and M large enough. (A.1)

In the fifth step, we used that ((1 — p)/M)X:LM/(1 P By, converges in distribution to E[By] as

p 11, hence P((1 — p)/M) E}Lf\:/[l/ufpﬂ By, — E[Bg] < —¢) <& for p close enough to 1. In the last step, we
used the fact that the workload, independently of the work-conserving scheduling discipline being used, is
tight in heavy traffic, see Kingman [15], that is Yé 3M’ such that P((1 — p)VP > M’) < € From (A.1) we
conclude that (1 — p)(Q1,Q2,...,QKk) is tight.
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APPENDIX B: PROOF OF LEMMA 3.6

The proof of Lemma 3.6 is based on the proof of Lemma 3 in [20]. We have

K 5\1 K R
Z ZLR(5) = Z —pi | —si + E[Bj] Z Ak Sk

-1 Pi i=1 Pt k=1

K R K R K R
— Z Nis; + Z )\Z]E[B’L] Z Ak Sk
i=1 i=1 k=1

This implies that for all §€ H., the vector ﬁ(E) is parallel to the hyperplane H.. Since Fis C1, for each
state §> 0 there exists a unique flow f(u) = (f1(u),..., fK(w)), parametrized by u > 0, such that

Ofi(u)
ou

Since ﬁ(é’) is parallel to H. for all §€ H., when started in H., the flow _'(u) will stay in H.. Another

important property of this flow f(u) is that

f(0)=5 and = Fy(f(w)), for all i and u > 0. (B.1)

K

(u) fi(u) OF(3)
=0
; 9si |s=f(u)

which follows from the chain rule, Lemma 3.5 and Eq. (B.1). Hence, along each flow f(u), which lies in
H., the function 7(f(u)) is constant. We will now show that each flow in H. converges to a certain point
c-§>0asu— oo.

From (10) we get that (B.1) can be written as f(0) = 5 and f/(u)T = Af(u)T with

pi(—1+E[Bi]A1) piE[BiAs - PiE[Bi]Ak
p2BE[Ba]A1 p2(—1+E[B2]A2) --- p2B[B2] Ak
A= . . ) . . (B.2)
prE[Br]M PKE[Br]A2 -+ pr(—1+E[Bk]Ak)
In Lemma B.1 below it is proved that one eigenvalue of A is 0 with eigenvector §* > 0, 3 € Hj, and all the

other eigenvalues have a strictly negative real part. Hence, the solution of f7(u)? = Af(u)T with f(0) € He
can be written as f(u) = c- §* + §(u), where limy 0o g(u) = 0 and §* > 0. This implies that all the flows
in the hyperplane H. converge to one common point ¢ - §* > 0.
Since the continuous function #(8) is constant along each flow, and all flows in the hyperplane H. converge
to ¢+ §* € H., we obtain that the function #(5) is constant on H..

The following technical lemma is used in the proof of Lemma 3.6.

LEMMA B.1: Consider the matriz A as defined in (B.2). One eigenvalue of A is 0 (with multiplicity 1),
and all the other eigenvalues have a strictly negative real part. In addition, there exists a vector 7] =
(m,...,nK) > 0 with Z]K:1 nj = 1 such that 5 = (s7,...,s}) with s7 := (p;/A;j)n; is an eigenvector of A
corresponding to the eigenvalue 0, and §* € Hj.

PROOF: Define D as the diagonal matrix diag[di,ds,...,dx]| with d; 2L and let S be the matrix
p1(=1+E[Bi]A1) p2ME[B] - prAE[B1]
p1A2E[Bs] p2(—1+E[B2]A2) --- pr A2E[Ba]
S=DAD™ ! = _ , , . . (B.3)
P AKE[Bk] P2 Ak E[Bk] < pr(=1+E[Bk]Ak)

The matrix A is similar to ,5: and therefore A, S and ST have the same eigenvalues. The sum of each row of
ST is 0 because Ef;l E[B;]A\; = 1, and the off-diagonal elements in S are all strictly positive. This implies
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that the matrix ST is a generator corresponding to a finite-state continuous-time irreducible Markov chain.
Hence, it has a unique equilibrium distribution 7, that is, 77 = 0 and 25:1 n, = 1. In particular, 0 is
an eigenvalue of the matrix ST, with multiplicity 1 and corresponding to the left eigenvector 7, and (cf.
Proposition 6.2, [1]), the real parts of all other eigenvalues are strictly negative. Since the eigenvalues of A
and ST coincide, the same holds for the matrix A. The eigenvector of A corresponding to the eigenvalue 0
is given by ' = D177 since A7 = D 'DAD 1T = D177 = ¢7. |

APPENDIX C: PROOF OF LEMMA 5.4

Taking (u, z1, ..., 2x) = (1 — p)u,e= =51 e=(1=P)SK) in (27) we get

Wll((l _ p)u7e*(1*P>517_”76*(1*0)51()

0
((1=p)Ni + Api—r1(z1, ..., 2K)
0z;

o

Il
-

zi:g*(lfp)si, ) ’
i

K K
Br(A— 3 Me=(1=Psk) — BX (1= plu+A— 3 Age(1=P)sk)
k=1 k=1
x

(1-pu
By applying 'Hopital’s rule we get the expression below:

li%l Wll ((1 — p)u, e~ (1=p)s1 e, e—(l—P)SK)
P

<

1 & (- .0 / Ko ' Ko
=—-) (Ai~0+kpi(%f(81»--~7sK) (Bf (0) <— > Aksk> - B (0) (‘u— > Ak%)))
v k=1

i=1

= Xi E[Bi]pi&if*(v) K 5 = j\if* (v)
= pi dv v=3 kg, dv

k=1 Pk

K AR
V=30 P ok

with 7(8) as defined in (6) and 7#*(3) as defined in the proof of Lemma 4.3. The result now follows from
Eq. (18), together with the fact that the latter is equal to (v(7)/(v(F) + 5, sr(An/pk)) (since

(Ny,...,Ng) 4x. ((M/p1)s---,(Ak/PK)), with X exponentially distributed with mean 1/v(p)).

APPENDIX D: SOLUTION OF THE ODE (35)

The solution of (35) is given by the sum of the solution of the homogeneous case, ’le (u,y), and a particular
solution, TlP (u,y). The homogeneous solution is given by:

P

TZH(u,y) =C(u)ew?, (D.1)

where C(u) is an arbitrary function of u. In order to find the particular solution we rewrite (35) as

>

T (u,y) P p v(p
it B a7 x ,iTlP(u’y):,ii.
oy y=13 sk u uv(p)+y

k=1 P

(D.2)

=

Let us solve the new equation using the integrating factor technique. In order to do so, we define the function
p
w(y) = e~ w¥ and multiply (D.2) by it. The derivative of u(y) satisfies (du(y))/dy = —p(y)(pi/u).
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Then, our equation becomes

v ATF (u,y .
P YA la( )‘ 5 2T (uy)
u V(ﬁ) +y Y y:kgl Sk pZ u
oTF (u, . d,
— e 2 y)‘ () 2
9y ly=35 sk dy
k=1 Pk
0 .

which can be solved by integration. Integrating each side with respect to y gives us a particular solution for
(35), which is,

)

. P PL Y _p, v(p
TlP(u,m:-ieuy/O e %dw

which is identically written as

oo
TF (u,y) = PLotty / ef%mﬂdx. (D.3)
u Jy v(p) + =

In conclusion, the general solution of the ODE (35) is given by

o0
i,y) = T () + B () = Clu)e¥0 4+ Doty [T emite 2Dy, (D.4)
u y v(p) + =z

We will now show that the constant C'(u) is equal to zero. First, note that TZH (u,y) — oo as y — oo. Second,
since 71(0,y) = (v(7)/(v(P) + v)) (from Eq. (24) and Lemma 5.3) it is immediate that 7} (u,y) converges to
0 when y = Zle sk (Ak/pr) — oo. Moreover, if we take the particular solution (D.3), applying I’'Hopital’s
rule for y — oo we obtain that it also converges to zero, namely:

Py,

; vty ¢ v = v(7)
lim Tj(u,y) = lim Y P = lim PTY — lim
y—o0

y—oo  w e—2ky y—oo  u —p1 ,—"Lly y—oo v(p) +y
u

p
Then, the necessary condition for C(u)eT}y to converge to zero as y — oo is C'(u) = 0. As a consequence,
we conclude that the solution of (35) is

~ P 0 P
Ty (u,y) = ﬂe#y/ e*ﬁ@ﬂdz
u v v(p) + =
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