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This paper is concerned with the optimal upper bound on mean quantities (torque,
dissipation and the Nusselt number) obtained in the framework of the background method
for the Taylor–Couette flow with a stationary outer cylinder. Along the way, we perform
the energy stability analysis of the laminar flow, and demonstrate that below radius ratio
0.0556, the marginally stable perturbations are not the axisymmetric Taylor vortices
but rather a fully three-dimensional flow. The main result of the paper is an analytical
expression of the optimal bound as a function of the radius ratio. To obtain this bound,
we begin by deriving a suboptimal analytical bound using analysis techniques. We use a
definition of the background flow with two boundary layers, whose relative thicknesses are
optimized to obtain the bound. In the limit of high Reynolds number, the dependence of
this suboptimal bound on the radius ratio (the geometrical scaling) turns out to be the same
as that of numerically computed optimal bounds in three different cases: (1) the perturbed
flow only satisfies the homogeneous boundary conditions but need not be incompressible;
(2) the perturbed flow is three-dimensional and incompressible; (3) the perturbed flow
is two-dimensional and incompressible. We compare the geometrical scaling with the
observations from the turbulent Taylor–Couette flow, and find that the analytical result
indeed agrees well with the available direct numerical simulations data. In this paper,
we also dismiss the applicability of the background method to certain flow problems and
therefore establish the limitation of this method.

Key words: variational methods, Navier–Stokes equations, Taylor–Couette flow

1. Introduction

An important problem in the study of turbulent flows is to estimate the functional
dependence of global properties (such as energy dissipation, drag force, heat and mass
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transport, and mixing efficiency) on input parameters. The lack of analytical solutions
of the Navier–Stokes equations in the fully turbulent regime has forced the scientific
community to adopt a multi-faceted approach to this problem, in which simple physical
theories and reduced models are proposed, and then corroborated by direct numerical
simulations (DNS) and/or results from laboratory experiments. However, the inability to
perform simulations and experiments in the extreme parameter regimes that often concern
atmospheric, oceanic and astrophysical flows and engineering applications leaves these
theories unsubstantiated.

In these extreme parameter regimes, an alternative approach that can provide meaningful
information is to obtain rigorous bounds on the aforementioned global properties. The first
method to obtain bounds was developed by Howard (1963) and Busse (1969), but it was not
until the 1990s that bounding techniques gained general popularity, with the introduction
of the so-called ‘background method’ by Doering and Constantin (Doering & Constantin
1992, 1994, 1996; Constantin & Doering 1995). The background method is based on ideas
from Hopf to produce a priori estimates for the solutions of the Navier–Stokes equations
with inhomogeneous boundary conditions (Hopf 1955). So far, it has been applied to
many different fluid mechanics problems (Doering & Constantin 1992, 1996; Constantin
& Doering 1995; Caulfield & Kerswell 2001; Tang, Caulfield & Young 2004; Whitehead
& Doering 2011; Goluskin & Doering 2016; Fantuzzi 2018; Fantuzzi, Pershin & Wynn
2018; Kumar & Garaud 2020; Arslan et al. 2021a,b; Fan, Jolly & Pakzad 2021; Kumar
et al. 2022). See Fantuzzi, Arslan & Wynn (2022) for a recent review.

In the background method, we write the total flow field as a sum of two flow fields:
the background flow and the perturbed flow. To obtain a bound on the desired bulk
quantity requires choosing a background field that satisfies a certain integral constraint
(extracted from the governing equations of the perturbed flow). Generally, one takes
one of the following two routes. The first route is to specify a functional form of the
background flow and then use standard inequalities. This route leads to an analytical but
suboptimal bound on the bulk quantity as a function of system parameters. The second
route is to find the best possible bound (optimal bound) through a variational formulation
of the background method in which one solves the corresponding Euler–Lagrange
equations, usually numerically. Numerous studies pertaining to the background flow
have concentrated on the scaling of optimal bounds as a function of the principal flow
parameter, such as the Reynolds number and the Rayleigh number. However, only a
handful of them studied the variation of these bounds with the shape of the domain.
One such study is by Wen et al. (2013), where the authors were interested in determining
the dependence on aspect ratio of the optimal bound on heat transfer in porous medium
convection.

In this paper, we are concerned with the question of whether it is possible to obtain the
analytical expression for the dependence of optimal bounds on the geometrical parameters
of the system. Indeed, while the numerically obtained optimal bounds usually follow an
easily identifiable simple power law in the principal flow parameter, the variation of the
optimal bounds with geometrical parameters is not so readily apparent. Furthermore, we
also aim to determine whether this analytical form bears any resemblance to the actual
dependence of the corresponding bulk quantity on system geometry in fully turbulent
flows. This question is motivated by engineering applications where the geometry plays
an important role.

In a recent study, we attempted to provide bounds on the friction factor in the context
of pressure-driven helical pipe flows (Kumar 2020). We focused in particular on the
dependence of this bound on the geometrical parameters: the curvature and torsion of
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the pipe. We took the first route described above, and used standard functional inequalities
to find a suboptimal bound on the friction factor. In order to account for the geometry, we
constructed a background flow in which we allowed for a boundary layer thickness that
varies along the circumference of the pipe, and optimized the shape of that boundary layer
to find the best possible bound for any curvature and torsion. Without giving any further
evidence, we hypothesized that the suboptimal bound thus produced might have the same
geometrical dependence as the optimal bound.

This paper demonstrates that this hypothesis holds true for Taylor–Couette flow; i.e. the
analytical geometrical dependence of the suboptimal bound obtained using traditional
functional inequalities (but with a definition of the background flow with optimized
boundary layer thickness) is the same as for the optimal bounds obtained using the
variational approach.

There are several reasons why we choose to work with the Taylor–Couette flow to
test this hypothesis. The Taylor–Couette flow is one of the most extensively investigated
problems in fluid mechanics, going back to the seminal paper of Taylor (1923) and
laboratory experiments of Wendt (1933), which are some of the early major contributions
to the field. It is known that the Taylor–Couette system exhibits rich flow structures and
complex fluid dynamical phenomena, and has served as a testing ground for the theories of
turbulent flows. The simplicity of the Taylor–Couette set-up makes it amenable to conduct
direct numerical simulations and experiments with high precision at high Reynolds
numbers. As a result, starting with the work of Lathrop, Fineberg & Swinney (1992a,b),
the last two decades have seen tremendous activity in the study of high-Reynolds-number
Taylor–Couette flow from the computational and experimental points of view (see a review
by Grossmann, Lohse & Sun 2016).

Concurrently, progress has also been made on obtaining rigorous bounds in
Taylor–Couette flow. Nickerson (1969) was the first to derive an upper bound on the torque
in Taylor–Couette flow using the technique developed by Howard (1963) and Busse (1969).
Constantin (1994) later revisited the problem using the background method of Doering and
Constantin, and also derived an analytical upper bound on the torque. More recently, Ding
& Marensi (2019) computed the corresponding optimal bounds numerically for systems
where the ratio of the inner to outer cylinder radii, called the radius ratio hereafter, is
0.5, 0.714 and 0.909. Note that these three studies concentrated on the dependence of the
bounds on the Reynolds number.

The primary goal of this paper is to obtain the correct functional dependence of the
optimal bounds on the torque with respect to the radius ratio. To do so, we will begin
by obtaining an analytical bound using standard inequalities, with the aim of optimizing
this bound simultaneously for all values of the radius ratio. Subsequently, we obtain
numerical optimal bounds for several values of the radius ratio considering three different
scenarios for the perturbations, which are as follows. Case 1: the perturbations satisfy
the homogeneous boundary conditions but are not necessarily incompressible. Case 2:
additionally, the perturbations are three-dimensional and incompressible. Case 3: the
perturbations, along with satisfying the boundary conditions and being incompressible,
are only two-dimensional (invariant in the axial direction).

We note that while formulating the background method, we do use the incompressibility
condition on the perturbed flow. These three separate cases are considered once the
background method has been formulated. These scenarios impose increasingly stringent
constraints on the type of admissible perturbations, and allow us to test systematically
the hypothesis described above. We will demonstrate that not only the optimal bounds
computed in each case have the same dependence in the radius ratio in all scenarios as the
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Reynolds number tends to infinity, but also that this dependence is the same as the one
obtained from the suboptimal analytical bound.

The arrangement of the paper is as follows. We begin by describing the problem
configuration, the definitions of the relevant mean quantities, and the relations between
those quantities in § 2. In § 3, we perform the energy stability analysis of the laminar
flow. In § 4, we obtain analytical bounds on the mean quantities. Section 5 presents
optimal bounds obtained in the three cases listed above and compares the results with
the analytical bounds from § 4. In § 6, we show that the background method cannot be
applied to certain flow problems past certain Reynolds numbers. Finally, § 7 presents a
discussion, comparison with DNS results, the broad applicability of the present study and
open problems.

2. Problem set-up

Consider the flow of an incompressible Newtonian fluid of density ρ and kinematic
viscosity ν between two coaxial circular cylinders, where the inner cylinder rotates with
constant angular velocity Ω and the outer cylinder is stationary. The radius of the inner
cylinder is Ri, and the radius of the outer cylinder is Ro. The quantity η = Ri/Ro is referred
to as the radius ratio hereafter, and d = Ro − Ri is the gap width. We non-dimensionalize
the variables as follows:

x = x∗

d
, u = u∗

ΩRi
, t = t∗

d/(ΩRi)
, p = p∗−p0

ρΩ2R2
i
, (2.1a–d)

where p0 is the reference pressure, and x, u, t and p denote the non-dimensional position,
velocity, time and pressure, respectively. The starred variables are the corresponding
dimensional quantities. In non-dimensional form, the governing equations are

∇ · u = 0, (2.2)

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (2.3)

where

Re = ΩRid
ν

(2.4)

is the Reynolds number, which, along with the radius ratio η, characterizes the flow field
fully. Note that instead of the Reynolds number, one can also use the Taylor number

Ta = (1 + η)4

64η2
d2(Ri + Ro)

2Ω2

ν2 = (1 + η)6

64η4 Re2 (2.5)

to characterize the flow field. We use a cylindrical coordinate system (r, θ, z). The
boundary conditions are

(ur, uθ , uz) = (0, 1, 0) at r = ri, (2.6)

(ur, uθ , uz) = (0, 0, 0) at r = ro, (2.7)

where ri and ro are the non-dimensional inner and outer cylinder radii. In this paper, we
will assume that the flow is periodic in the z direction with non-dimensional length L. The
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domain of interest, denoted by V , is therefore given by

V = {(r, θ, z) | ri � r � ro, 0 � θ < 2π, 0 � z < L}. (2.8)

At sufficiently small Reynolds numbers, or equivalently, at small Taylor numbers, the
flow is laminar and can be expressed as

ulam = 1
1 − η2

(
ri

r
− rri

r2
o

)
eθ . (2.9)

Before proceeding further, it is useful to introduce a few convenient notations. We use
angle brackets for the volume integration, and overbar for the long-time average of a
quantity:

〈[·]〉 =
∫

V
[·] dx, [·] = lim

T→∞
1
T

∫ T

t=0
[·] dt. (2.10a,b)

The L2-norm of a quantity is henceforth denoted as

‖[·]‖2 =
〈
[·]2

〉1/2
. (2.11)

In what follows, the three quantities that we are interested in bounding are the energy
dissipation rate, the torque and the equivalent of a Nusselt number (defined based on the
transverse current of azimuthal velocity). These quantities are not independent, as we now
demonstrate. We start by writing the dimensional expression of the time-averaged torque
required to rotate the inner cylinder:

G∗=−Ri ×
∫ L∗

0

∫ 2π

0
τ ∗

rθ

∣∣∣
r∗=Ri

Ri dθ∗ dz∗, (2.12)

where τ ∗
rθ denotes the shear-stress. In non-dimensional form, the torque is given by

G = G∗

ρν2L∗ = −Re r2
i

L

∫ L

0

∫ 2π

0

[
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

]
r=ri

dθ dz. (2.13)

In a statistically stationary state, the work done by the torque to rotate the inner cylinder
eventually dissipates in the fluid, i.e.

G∗Ω = ε∗, (2.14)

where ε∗ is the time-averaged total dissipation given by

ε∗=2ρν
∫

V∗
∇∗u∗ : ∇∗u∗

sym dx∗, (2.15)

where

∇∗u∗
sym = ∇∗u∗+∇∗u∗T

2
. (2.16)

The total kinetic energy of the fluid can be shown to be bounded uniformly in time
within the framework of the background method (see Doering & Constantin 1992, for
example). The identity (2.14) can therefore be obtained by taking the long-time average
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of the evolution equation of the total kinetic energy. The dissipation per unit mass
non-dimensionalized by Ω3R3

i /d is given by

ε = ε∗

Ω3R3
i /d

= 2
(πr2

o − πr2
i )L Re

〈∇u : ∇usym
〉
. (2.17)

From the divergence-free condition (2.2), and the boundary conditions (2.6) and (2.7),
along with the use of the divergence theorem, one finds that〈∇u : ∇uT〉 = 〈∇ · ∇ · (u ⊗ u)〉 = 2πL. (2.18)

As a result, the non-dimensional dissipation can also be written as

ε = 1
(πr2

o − πr2
i )Re

[
1
L

‖∇u‖2
2 + 2π

]
. (2.19)

Using (2.13), (2.14) and (2.17), we finally obtain a relation between the non-dimensional
torque and the non-dimensional dissipation as

G = π(ri + ro)ri Re2 ε, (2.20)

which is the non-dimensional version of (2.14).
Another quantity of interest is the transverse current of azimuthal velocity as defined in

Eckhardt, Grossmann & Lohse (2007), given by

Jω∗ = 1
2πL∗

∫ L∗

0

∫ 2π

0
r∗3 [u∗

rω
∗ − ν ∂r∗ω∗] r∗ dθ∗ dz∗, (2.21)

where ω∗ = u∗
θ /r

∗ is the local angular velocity. As shown by Eckhardt et al. (2007), Jω∗ is
independent of the radial direction. In an analogy with Rayleigh–Bénard convection, one
defines the Nusselt number as the ratio of the transverse current of azimuthal velocity to
its corresponding value in the laminar regime, i.e.

Nu = Jω∗

Jω∗
lam
. (2.22)

Substituting r∗ = Ri in the right-hand-side of (2.21), one obtains the following relation
between the torque and the transverse current of azimuthal velocity:

Jω∗ = G∗

2πL∗ρ
, (2.23)

implying that the Nusselt number can also be written as

Nu = G
Glam

= ε

εlam
, (2.24)

where Glam and εlam are the values of the non-dimensional torque and dissipation in the
laminar regime, respectively.
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3. Energy stability analysis

We begin by discussing the energy stability of the laminar flow ulam. The importance
of energy stability analysis in the context of bounding theories comes from the fact that
bounds on mean quantities introduced in the previous section are by definition saturated by
the laminar state below the energy stability threshold. The energy stability of the laminar
Taylor–Couette flow has been studied before both theoretically and numerically, by e.g.
Serrin (1959) and Joseph (1976). In these studies, the general conclusion was that at the
energy stability threshold, the least stable perturbations are axisymmetric Taylor vortices.
However, as we will demonstrate in this section, this commonly accepted result does
not hold below a certain radius ratio (η < 0.0556). Instead, we find that the least stable
perturbations at the energy stability threshold in that case are fully three-dimensional.

We begin by defining the functional

H(ṽ) =
[

1
2 Re

‖∇ṽ‖2
2 +

∫
V

ṽ · (∇ulam)sym · ṽ dx
]
, (3.1)

where ṽ is a perturbation over the laminar flow that satisfies the homogeneous boundary
conditions at the inner and outer cylinders. From the governing equations, one can
show that the laminar flow ulam is energy stable when H(ṽ) is non-negative (see e.g.
Serrin 1959; Ding & Marensi 2019). We will consider three types of constraints on the
perturbations ṽ: no constraints, other than the homogeneous boundary conditions (case
1); three-dimensional (3-D) incompressible perturbations (case 2); and two-dimensional
(2-D) (z-invariant) incompressible perturbations (case 3). We perform an energy stability
analysis for each of these cases, and present the results as a function of the radius ratio. We
note that recently, Ding & Marensi (2019) also studied the energy stability of the laminar
state in Taylor–Couette flow but only for the axisymmetric perturbations.

The critical Taylor number Tac defining the energy stability threshold is the largest
Taylor number for which the functional H(ṽ) is non-negative. For clarity, we add
superscripts and use the notation Tanc

c , Ta3D
c and Ta2D

c when referring to case 1, case 2
and case 3, respectively. The statement of the non-negativity of the functional H(ṽ) can
be posed as a convex optimization problem, where we require the minimum value of H to
be non-negative. Then it can be shown using the corresponding Euler–Lagrange equations
that the non-negativity of the functional H(ṽ) is equivalent to the non-negativity of the
smallest eigenvalue in the eigenvalue problem

∇ · ṽ = 0, (3.2a)

2λṽ = 1
Re

∇2ṽ − 2ṽ · ∇(ulam)sym − ∇p̃. (3.2b)

Note that for case 1, the eigenvalue problem corresponds just to (3.2b) without the pressure
term. The eigenvalue problem (3.2) is standard in the energy stability analysis (see e.g.
Serrin 1959; Ding & Marensi 2019).

Actually, we can obtain the critical Taylor number analytically for case 1. Indeed, in
this case, we first simplify the eigenvalue problem using two pieces of information. From
lemma B.1 (see Appendix B), we note that the least stable perturbed flow (which optimizes
H) is a function of the radial direction only. Furthermore, the laminar flow ulam satisfies
the required condition in lemma B.1, therefore the least stable perturbation also satisfies
ṽr = ṽθ . Using these two facts, we find that the marginally stable solution of (3.2b) that
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satisfies the homogeneous boundary condition at r = ri is given by

ṽr = ṽθ = c sin
(
ξ log

r
ri

)
, ξ =

√
η

(1 + η)(1 − η)2
Re + 1. (3.3a,b)

The critical Reynolds number for energy stability is the smallest value of Re for which this
solution also satisfies the homogeneous boundary condition at r = ro. We then obtain the
critical Taylor number using (2.5), which leads to

Tanc
c = (1 + η)8(1 − η)4

64η6

(
1 + π2

log2 η

)2

. (3.4)

In case 2 (3-D incompressible ṽ) and case 3 (2-D (z-invariant) incompressible ṽ), we
must turn to numerical computations to calculate the critical Taylor number. To find the
eigenvalues of (3.2), we first transform the equations into a generalized eigenvalue problem
using the spatial discretization described in § 5, and then use the DGGEV routine by
LAPACK for the computation. Let us call the critical wavenumbers of the least stable
perturbation at the energy stability threshold 2π/Lc (where Lc would then be known
as the critical aspect ratio) in the z-direction, and mc in the θ -direction. We use the
bisection algorithm in the Taylor number, and the ternary search algorithm in aspect ratio
or azimuthal wavenumber (depending on the case at hand), to determine accurately Tac,
Lc and mc.

The dependence of the critical Taylor number for energy stability on the radius ratio η
is shown in figure 1 for all three cases. The critical axial wavenumber (2π/Lc) and the
critical azimuthal wavenumber (mc) of the corresponding perturbations in case 2 and case
3 are shown in figure 2. From figure 1(a), we see that the critical Taylor number increases
as we go from case 1 (green line) to case 3 (red line), which is not surprising since we
increase correspondingly the number of constraints on the perturbations. In all three cases,
the critical Taylor number increases monotonically with decreasing η, and tends to infinity
as η → 0. By contrast, the critical Taylor number tends to a constant in the small gap
width limit (η → 1): in case 1, Tanc

c → 4π4 ≈ 389.6364, whereas in case 2 and case 3,
Ta3D

c → 6831 and Ta2D
c → 31 641, which are, respectively, 17.5 and 81.2 times larger than

in case 1. In this limit, the marginally stable perturbation in case 2 recovers the well-known
axisymmetric Taylor vortices (Serrin 1959; Joseph 1976). In case 3, the marginally stable
perturbation is composed of vortices whose axis is parallel to the cylinder axis (Harrison
1921).

Figure 1(b) shows a zoomed-in version of figure 1(a) for small values of η. We also
show, for case 2 (blue line), a separate curve that assumes that perturbations are axially
symmetric (dashed blue line). For large radius ratio, the two are identical, confirming that
the axisymmetric Taylor vortices are indeed the least stable perturbations. However, we
note that below radius ratio ηs = 0.0556, the marginally stable perturbation switches from
the axisymmetric Taylor vortices to being fully 3-D.

Figure 3 shows the marginally stable 3-D flow and Taylor vortices at η = ηs.
A distinctive feature of the marginally stable 3-D flow, compared to marginally stable
axisymmetric Taylor vortices, is that one end of a typical vortex lies near the outer
cylinder, but the other end lies at one of the two lines that are offset from the inner
cylinder. Also, the critical aspect ratio corresponding to marginally stable 3-D flow is
larger than the one corresponding to the Taylor vortices. In fact, with further decrease
in the radius ratio, the axisymmetric critical aspect ratio corresponding to the marginally
stable 3-D flow grows, whereas the one corresponding to Taylor vortices shrinks, as can
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Figure 2. Variation of the critical axial wavenumber 2π/Lc and critical azimuthal wavenumber mc with radius
ratio η for (a) case 2, and (b) case 3. In (a), the critical azimuthal wavenumber changes from mc = 0 above
η = ηs = 0.0556 to mc = 1 below ηs, as discussed in the main text.

been seen from figure 2(a). The decrease of the aspect ratio of the critical perturbations
implies that the term ‖∇ṽ‖2

2 increases rapidly as η → 0, which causes the corresponding
critical Taylor number for axisymmetric flows to do the same. This explains why the
axisymmetric perturbations are no longer preferred for very low η. At η = 0.0188, the
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Lc
≈ 1.588

2
Lc

≈ 0.802
0

0.33

0.66

1

2

|ṽ|

(b)(a)

Figure 3. (a) Selected streamlines of the marginally stable 3-D flow. (b) Selected streamlines of the marginally
stable axisymmetric Taylor vortices. In both cases, the radius ratio is ηs = 0.0556, and the corresponding
critical Taylor numbers are equal. The streamlines are coloured according to the magnitude of the velocity. In
both the cases, the velocity field has been scaled such that the maximum magnitude is 1. A typical vortex is
shown using relatively thicker lines in both cases. Note that only half the vortex is shown in the axial direction.

critical Taylor number for the marginally stable Taylor vortices becomes even larger than
the one corresponding to the two-dimensional flow (Ta2D

c ).
Given that we were able to compute the critical Taylor number in case 1 analytically as

a function of η, it is worth investigating whether the dependence of Tac on η in cases 2 and
3 is similar to that of case 1. To do so, we look at figures 1(c) and 1(d), which show the
ratios Ta3D

c /Tanc
c and Ta2D

c /Tanc
c , respectively. One striking observation is that Ta3D

c /Tanc
c

remains within 3.6 % of 16.92 for a fairly large range of radius ratio 0.0556 � η � 1. So
for this range of η,

Ta3D
c ≈ 16.92(1 + η)8(1 − η)4

64η6

(
1 + π2

log2 η

)2

. (3.5)

However, the same is not valid for case 3, where Ta2D
c /Tanc

c varies substantially with η.
The spikes in figure 1(d), which are not visible in figure 1(a), correspond to the discrete
change in critical azimuthal wavenumber when η varies, shown in figure 2(b).

For small radius ratio, it is possible to predict the asymptotic behaviour of Ta3D
c and

Ta2D
c . We find that both Ta3D

c /Tanc
c and Ta2D

c /Tanc
c decrease as η → 0, as can be seen in

figures 1(c) and 1(d). By construction, the asymptotic values of the ratios have to be larger
than 1. Therefore, in the small radius ratio limit, we can obtain the asymptotic behaviour
of Ta3D

c and Ta2D
c as

Ta3D
c = C3D

0 lim
η→0

Tanc
c = C3D

0 π4

η6 log4 η
, Ta2D

c = C2D
0 lim

η→0
Tanc

c = C2D
0 π4

η6 log4 η
, as η → 0,

(3.6a,b)
where 1 � C3D

0 ,C2D
0 < ∞ are two constants.

4. An analytical bound

In this section, we obtain a simple, suboptimal, analytical bound on the torque, the rate
of energy dissipation and the Nusselt number defined in § 2. We use the well-known
background method (Doering & Constantin 1992, 1994) whose exact formulation in the
context of the present problem is given in Appendix A. As usual, we define U to be the
background flow and v to be the perturbed flow, such that the total flow is u = U + v.
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The background flow U is divergence-free and satisfies the same boundary conditions as
u, so the perturbed flow v satisfies the homogeneous version of the boundary conditions.
For mathematical convenience (see Appendix A), we further define the so-called ‘shifted
perturbation’ ṽ = v − φ (see (A17)), and we simply refer to ṽ as the perturbation from
here onward. As shown in Appendix A, a bound on the rate of energy dissipation,

ε � 1
(πr2

o − πr2
i )Re L

[
1

a(2 − a)
‖∇U‖2

2 − (1 − a)2

a(2 − a)
‖∇ulam‖2

2 + 2πL
]
, (4.1)

can be obtained for any choice of the background flow for which the functional

H(ṽ) = 2 − a
2 Re

‖∇ṽ‖2
2 +

∫
V

ṽ · ∇U sym · ṽ dx︸ ︷︷ ︸
II

(4.2)

(see (A22)) is positive semi-definite. In (4.1), the constant a is a balance parameter that
takes values between 0 and 2. This bound is identical to the one obtained by Ding &
Marensi (2019), after noting that they used a different non-dimensionalization. While
showing that H(ṽ) is non-negative, we do not impose the incompressibility constraint on
the perturbations ṽ and assume only that ṽ satisfies the homogeneous boundary conditions.
We make a choice of the background flow U for which

∇U sym = ∇U + ∇UT

2
(4.3)

is non-zero only in boundary layers, which are assumed to have thicknesses δi and δo near
the inner and outer cylinders, respectively. In particular, the selected background flow U
is then

U(r, θ, z) = U(r) eθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Λ(ri + δi)(r − ri)− (r − ri − δi)

δi
eθ if ri � r � ri + δi,

Λreθ if ri + δi < r � ro − δo,
Λ(ro − δo)(ro − r)

δo
eθ if ro − δo < r � ro,

(4.4)

where Λ is an O(1) constant, i.e. independent of Re. The decision to allow for different
boundary layer thicknesses is inspired from the work of Kumar (2020), who speculated
in the context of helical pipe flows that by doing so, it is possible to capture important
geometrical aspects of problems that would otherwise not appear. As we are interested
primarily in deriving bounds at asymptotically high Reynolds numbers, for convenience,
we define rescaled boundary layer thicknesses as

hi = δi

δ
and ho = δo

δ
, where δ = 1

Re
, (4.5a,b)

where, by construction, hi, ho are greater than 0 and are O(1). Our goal in this section
is to adjust the relative size of the boundary layers (hi/ho) to optimize the bound (4.1)
simultaneously for different values of η in the limit of high Reynolds number.
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We start by obtaining a simple estimate for the quantity∫ ri+δi

ri

|ṽr| |ṽθ | dr =
∫ ri+δi

ri

∣∣∣∣
∫ r

ri

∂ṽr

∂r′ dr′
∣∣∣∣
∣∣∣∣
∫ r

ri

∂ṽθ

∂r′ dr′
∣∣∣∣ dr

�
∫ ri+δi

ri

(r − ri)

[∫ ri+δi

ri

(
∂ṽr

∂r′

)2

dr′
]1/2 [∫ ri+δi

ri

(
∂ṽθ

∂r′

)2

dr′
]1/2

dr

= δ2
i
2

[∫ ri+δi

ri

(
∂ṽr

∂r′

)2

dr′
]1/2 [∫ ri+δi

ri

(
∂ṽθ

∂r′

)2

dr′
]1/2

� δ2
i
4

∫ ri+δi

ri

(
∂ṽr

∂r′

)2

dr′ + δ2
i
4

∫ ri+δi

ri

(
∂ṽθ

∂r′

)2

dr′. (4.6)

In deriving the result, we have used the fundamental theorem of calculus in the first line
and Hölder’s inequality in the second line, followed by an integration in r to obtain the
third line. Finally, we used Young’s inequality to obtain the last line. In a similar manner,
one can also show that∫ ro

ro−δo

|ṽr| |ṽθ | dr � δ2
o

4

∫ ro

ro−δo

(
∂ṽr

∂r′

)2

dr′ + δ2
o

4

∫ ro

ro−δo

(
∂ṽθ

∂r′

)2

dr′. (4.7)

Next, we note that∣∣∣∣
∫ ri+δi

r=ri

ṽrṽθ

(
dU
dr

− U
r

)
r dr

∣∣∣∣ � max
ri<r<ri+δi

∣∣∣∣dU
dr

− U
r

∣∣∣∣ (ri + δi)

∫ ri+δi

r=ri

|ṽr| |ṽθ | dr (4.8)

and∣∣∣∣
∫ ro

r=ro−δo

ṽrṽθ

(
dU
dr

− U
r

)
r dr

∣∣∣∣ � max
ro−δo<r<ro

∣∣∣∣dU
dr

− U
r

∣∣∣∣ ro

∫ ro

r=ro−δo

|ṽr| |ṽθ | dr. (4.9)

Using estimates (4.6)–(4.9) along with the expression of the background flow (4.4), we
finally obtain a simple bound on term II in (4.2) as

|II| � M
Re

‖∇ṽ‖2
2, (4.10)

where

M = max
{

hi

4
|1 −Λri|, ho

4
|Λ|ro

}
+ O(δ). (4.11)

This shows that the functional H is positive semi-definite as long as

M � 1 − a
2
. (4.12)

Using (2.9) and (4.4) in (4.1), we then obtain an upper bound on the dissipation as follows:

ε � εa
b = 2

a(2 − a)(r2
o − r2

i )

(
(1 −Λri)

2ri

hi
+ Λ2r3

o

ho

)
+ O(δ). (4.13)

The upper bound obtained is called εa
b; we use ‘b’ in the subscript to signify that it is a

bound, and use ‘a’ in the superscript to signify that it is obtained analytically. In the final
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Optimal bounds in Taylor–Couette flow

step of the procedure, we adjust the values of the unknown parameters hi, ho, Λ and a to
optimize the bound (4.13) while satisfying the constraint (4.12). The optimal values of the
parameters, in the limit of high Reynolds number, are

Λ = ri

r2
i + r2

o
, a = 2

3
, ho = 8

3Λro
and

hi

ho
= η. (4.14a–d)

Using (4.5a,b) and (2.5), we can now write the optimal choice of boundary layer
thicknesses δi and δo in the limit of Re → ∞ (or equivalently Ta → ∞) as

δi = 8(1 + η2)

3 Re
= (1 + η2)(1 + η)3

3η2 Ta1/2 , δo = 8(1 + η2)

3η Re
= (1 + η2)(1 + η)3

3η3 Ta1/2 . (4.15a,b)

The corresponding bound on the dissipation in the limit of Re → ∞ is then given by

εa
b,∞ = 27

32
η

(1 + η)(1 + η2)2
. (4.16)

Here, we added ‘∞’ in the subscript to indicate that it is the main term of the bound in the
limit Re → ∞. Using the relationship (2.24), we obtain an equivalent upper bound on the
Nusselt number in the high-Reynolds-number limit as

Nua
b,∞ = 27

16
η3

(1 + η)2(1 + η2)2
Ta1/2. (4.17)

This expression contains a dependence on both the Taylor number (the principal
flow parameter) and the radius ratio (the geometrical parameter). To separate out the
geometrical dependence in (4.17), we define

χ(η) = 16η3

(1 + η)2(1 + η2)2
, (4.18)

and call it the geometrical scaling of the bound on Nu. This geometrical scaling is defined
in such a way that χ(1) = 1 (the relevance of η = 1 being that it corresponds to the plane
Couette flow case).

Finally, by combining (4.16) with the relation (2.20), we obtain an upper bound on the
torque as a function of the Reynolds number:

Ga
b,∞ = 27π

32
η2(1 + η)2

(1 − η4)2
Re2. (4.19)

Constantin (1994) had previously obtained a bound on the torque in Taylor–Couette flows
by considering a background flow with a single boundary layer. The bound obtained
by Constantin is also proportional to Re2, as in (4.19). But the coefficient in front has
a different dependence on the radius ratio η. The reason for this difference is that we
chose a background flow with two boundary layers and adjusted their relative thicknesses
to optimize the bound. We will see later that this optimization procedure enables us to
capture the actual dependence of optimal bounds on the radius ratio.

5. Optimal bounds

In this section, we now proceed to obtain optimal bounds on the bulk quantities, i.e. the
best possible bounds within the framework of the background method. As described
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in § 1, we consider three scenarios, case 1, case 2 and case 3, in which we impose
constraints incrementally on the perturbed flow field and obtain numerically the optimal
bounds in each case, which allow us to examine systematically the hypothesis stated in the
Introduction.

The general development of the background method for Taylor–Couette flow is
presented in Appendix A. In what follows, we first describe our numerical algorithm, then
proceed to present the results.

5.1. Numerical algorithm
Here, we first describe the general numerical framework used to compute the optimal
bounds, and then provide further details of the algorithm in each of the specific cases.
Finding the optimal bound begins with the same background method applied to the
Taylor–Couette flow as in § 4, which is described in Appendix A. However, instead of
using functional inequalities, we now follow the standard route toward optimal bounds,
and derive a set of Euler–Lagrange equations that optimal solutions satisfy, given specific
constraints in each case. The derivation is presented in Appendix A, and the equations are
given in (A28a–d). In general, the Euler–Lagrange equations can have multiple solutions.
However, we are interested in finding the unique solution that also satisfies the spectral
constraint (A23). To find this particular solution, we use the two-step algorithm first
introduced by Wen et al. (2013) in the context of porous medium convection. A remarkable
property of this algorithm is that it eliminates the requirement of numerical continuation
(Plasting & Kerswell 2003). As the two-step algorithm can be implemented at any value
of the flow parameter, this flexibility has led to wider usage in several other studies of the
background method to obtain the optimal bound numerically (Wen et al. 2015; Wen &
Chini 2018; Ding & Marensi 2019; Lee, Wen & Doering 2019; Souza, Tobasco & Doering
2020). The first step of the algorithm uses a pseudo-time stepping scheme in which the
Euler–Lagrange equations (A28a–d) are converted into a time-dependent system of partial
differential equations (PDEs) as follows:

∂ṽi

∂t
= a

2(2 − a)
δL
δṽi
,

∂Uθ
∂t

= −a(2 − a)
4πL

1
r
δL
δUθ

,
∂a
∂t

= −δL
δa
, ∇ · ṽ = 0,

(5.1a–d)

where the index i ranges over the r, θ and z components of ṽ. Steady-state solutions
of (5.1a–d) are equivalently solutions of the Euler–Lagrange equations (A28a–d). Note
that we multiply the Fréchet derivatives with certain coefficients before introducing the
time derivatives on the left-hand side. This makes the coefficient of the linear term (the
Laplacian) a constant in the resultant time-dependent PDEs. Also, note that the coefficient
in front of the Fréchet derivative with respect to ṽ is positive, while the coefficients in front
of the Fréchet derivatives with respect to Uθ and a are negative. The reason is that we are
maximizing the bound with respect to ṽ while minimizing it with respect to Uθ and a.

Ding & Marensi (2019) proved that if the pseudo-time stepping scheme leads to
a steady-state solution, then that solution must be the globally optimal solution of
the Euler–Lagrange equations (A28a–d), i.e. the one that leads to optimal bounds.
Conveniently, the same proof extends to the case where the perturbed flow satisfies
only the homogeneous boundary conditions, and to the case where the perturbed flow
is two-dimensional and incompressible. The proof of Ding & Marensi (2019) does not
guarantee the existence of a steady-state solution to (5.1a–d). But in all the cases that we
investigated, the pseudo-time stepping scheme did relax to a steady-state solution.
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The second step of the two-step algorithm is a Newton iteration (see Wen et al. 2015)
that has a faster convergence rate than the pseudo-time stepping scheme but requires a
good initial guess. Naturally, we use the solution obtained at the end of the pseudo-time
stepping scheme as the initial guess.

Solving the Euler–Lagrange equations in case 1 comes with two major simplifications.
First, the pressure gradient term in (A28a) disappears, as we do not impose the
incompressibility constraint on the perturbation. Second, it can be shown that the
optimal perturbation depends only on the radial direction (see Appendix B). With these
simplifications, the convergence of the pseudo-time stepping scheme is so rapid that the
subsequent Newton iteration is not needed. Therefore, we use only the first step of the
two-step algorithm described above. Furthermore, we found that it is also possible to
solve the simplified Euler–Lagrange equations analytically in the limit Re → ∞ using
the method of matched asymptotics (solutions are presented in Appendix B).

In case 2, it is also possible to make a simplification. Indeed, Ding & Marensi (2019)
presented numerical evidence that the optimal solution does not depend on θ when the
aspect ratio L (i.e. the height of the cylinder) is large enough. Therefore, we choose
L = 20, which is sufficiently large to guarantee that the optimal flow is axisymmetric.
To solve the system of time-dependent PDEs (5.1a–d), we consider the following Fourier
decomposition in the z-direction:

ṽ =
N∑

n=1

⎡
⎣ṽr,n(r, t) cos(knz)
ṽθ,n(r, t) cos(knz)
ṽz,n(r, t) sin(knz)

⎤
⎦ , p̃ =

N∑
n=1

p̃n(r, t) cos(knz), where kn = 2πn
L
. (5.2a,b)

The radial direction is further discretized using the Chebyshev collocation method. We
use a semi-implicit Crank–Nicolson scheme for the time integration, where we treat the
linear terms implicitly and use the second-order Adams–Bashforth extrapolation for the
nonlinear terms. We use an influence matrix method to solve for the pressure at each time
step (see Peyret 2013, p. 236). The code is parallelized using MPI. Note that the pressure p̃
in (5.2a,b), as compared to the one in Appendix A, has been multiplied with an appropriate
factor such that it is precisely the gradient of p̃ that appears in the time-evolving PDEs
(5.1a–d). Depending on the radius ratio and Taylor number considered, we vary the
number modes in the z-direction from N = 200 to N = 6000, and the number collocation
points in the r-direction from 120 to 320.

The numerical strategy for solving the Euler–Lagrange equations in case 3 is similar
to case 2 described above. The only difference is that for the 2-D incompressible
perturbations, the flow quantities depend on the θ direction but are independent of z.
Therefore, we consider the following decomposition instead:

ṽ =
M∑

m=−M
m /= 0

[
ṽr,m(r, t) eimθ

ṽθ,m(r, t) eimθ

]
, p̃ =

M∑
m=−M
m /= 0

p̃m(r, t) eimθ . (5.3a,b)

In this case, depending on the radius ratio and Taylor number considered, we vary the
number modes in the θ -direction from M = 40 to M = 3000, and the number collocation
points in the r-direction from 120 to 320.

5.2. Optimal bound results
In this subsection, we present the optimal bounds obtained using the numerical schemes
described above for each of the three different sets of constraints on the perturbations.
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Figure 4. The optimal background flow Uθ (r) at parameter values Ta = 106 and η = 0.6. The orange colour
is used for case 1, brown for case 2 and blue for case 3. Also shown, as a black thick line, is the background
flow (4.4) used to construct the analytical bound in § 4, with the values of Λ, δi and δo given by (4.14a–d) in
definition (4.4).

We begin by showing a typical optimal background flow profile at η = 0.6 and Ta = 106

in each case in figure 4. For comparison, we have also included the background flow profile
constructed in (4.4) to derive the original analytical bound. As can be seen in figure 4, all
four background flow profiles vary as cr, for some constant c, in the bulk region. This
is expected intuitively as this type of background profile makes the sign-indefinite term
(which is, in a loose sense, the hardest to control in the bulk region) in the spectral
constraint (A23) zero. Near the cylinders, the background flows consist of two thin
boundary layers. In order to meet the prescribed boundary conditions, the gradients in
these thin layers are large, which makes the sign-indefinite term non-zero. However, as
the perturbation has to satisfy the homogeneous boundary conditions, the net contribution
from this term will still be smaller than the positive term in (A23) as long as the boundary
layer thickness is small enough. In the optimal state, the boundary layers are of just the
right size so that the positive term and the sign-indefinite term balance each other and
the spectral constraint is marginally satisfied. When moving from case 1 to case 3, the
restrictions on the perturbations increase, and this decreases the possibilities in which
the sign-indefinite term can be negative. Therefore, the boundary layers become thicker,
protruding more into the bulk region.

Figure 5 shows the optimal bounds on the Nusselt number Nub, as a function of the
Taylor number Ta. We denote the bounds as Nunc

b for case 1 (figures 5a,b), Nu3D
b for case

2 (figures 5c,d), and Nu2D
b for case 3 (figures 5e,f ). We cover a wide range of parameters

both in radius ratio (from η = 0.1 to η = 0.99) and in Taylor number. In figures 5(a), 5(c)
and 5(e), the bound Nub has been scaled with its expected asymptotic dependence on Ta,
namely Ta1/2. The colour and shape of the symbols each correspond to a different radius
ratio, as shown in the legend. The symbols in the plots in figure 5 correspond to data points
computed using the numerical algorithm from the previous subsection, whereas the solid
lines connecting the data points are calculated using interpolation, providing a guide to the
eye. For every radius ratio value, the solid line is extended up to the highest Taylor number
for which the computation is performed. Beyond this point, we extrapolate using a best fit
of the form

f (η) = A(η)+ B(η)
Taα(η)

(5.4)
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Figure 5. (a,c,e) The optimal bound Nub compensated with Ta1/2 in case 1, case 2 and case 3, respectively, as
functions of the Taylor number for a wide range of radius ratios. (b,d, f ) The same plots but further scaled with
the analytical geometrical scaling χ(η) given by (4.18). The collapse of the curves at high Taylor numbers
suggests that the bound on Nusselt number Nub asymptotes to cχ(η) Ta1/2 in all three cases, where the
unknown constant c is given in (5.5a–c).

applied to the data of Nub/Ta1/2 computed from the last two decades in Ta. For each
value of η, we thus define A(η) as the asymptotic limit of Nub/Ta1/2 as Ta → ∞. Table 1
summarizes the values of A(η) obtained from this fitting procedure for different radius
ratios. We have added appropriate abbreviations in the superscript of A(η) to signify
the case at hand. We remark that these extrapolations were necessary, especially for the
small radius ratios, where the bound on the Nusselt number Nub converges slowly to its
asymptotic scaling in the Taylor number Ta.
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η Anc(η)/χ(η) A3D(η)/χ(η) A2D(η)/χ(η)

0.1 0.0694315 0.00832565 0.00376439
0.2 0.0700607 0.00830294 0.00377039
0.3 0.0702631 0.00840836 0.0038083
0.4 0.0699845 0.00843543 0.0038438
0.5 0.0698495 0.00846619 0.00381451
0.6 0.0697773 0.00847018 0.0038186
0.7 0.0697175 0.00847478 0.00381908
0.8 0.069738 0.00846118 0.00381454
0.9 0.0697065 0.00846983 0.00380973
0.99 0.0697082 0.0084623 —

Table 1. Variation of the ratio A(η)/χ(η), where A(η) is from the relation (5.4), and χ(η) is given in (4.18),
in case 1, case 2 and case 3, where we have respectively added ‘nc’, ‘3D’ and ‘2D’ in the superscript to signify
the case. Notice that A(η) when scaled with χ(η) becomes almost invariant in η.

In figures 5(b), 5(d) and 5( f ), the bound Nub has been scaled by Ta1/2 as well as the
geometrical scaling χ(η) obtained in (4.18). Note the striking collapse of the different
radius ratio curves at high Taylor numbers in all three cases. Correspondingly, we also
see from table 1 that the ratio A(η)/χ(η) is nearly independent of η, with less than 1.1 %
variation in the average between the largest and smallest values. This suggests that the
geometrical dependence of the bound on the Nusselt number at high Taylor number is
χ(η) irrespective of the case considered. In case 1, the value of Anc(η)/χ(η) is close to
9/128, which is the exact asymptotic result that we obtained from the method of matched
asymptotics in Appendix C. We also observe from table 1 that the value of A/χ(η) in cases
2 and 3 is very close to a constant for η > 0.5, but varies a little more for η < 0.5. This
is likely due to the fact that the extrapolation is less accurate at small radius ratio because
the computed data are further from being in the asymptotic regime compared with the
case when the radius ratio is not small. For this reason, we assume that the average of A(η)
calculated for η � 0.5 is the correct asymptotic limit of Nub/Ta1/2 as Ta → ∞, and obtain

Nunc
b,∞ = 9

8
η3

(1 + η)2(1 + η2)2
Ta1/2, (5.5a)

Nu3D
b,∞ = 0.1354η3

(1 + η)2(1 + η2)2
Ta1/2, (5.5b)

Nu2D
b,∞ = 0.0610η3

(1 + η)2(1 + η2)2
Ta1/2. (5.5c)

Here, we have added ‘∞’ in the subscript to point out that these are the main terms of the
optimal bounds in the limit Ta → ∞.

In summary, we have shown that for case 1, case 2 and case 3, the optimal bounds are
respectively a factor of 1.5, 12.46 and 27.66 better than the suboptimal bound (4.17) in
the high Taylor number limit. Crucially, this improvement is uniform in the radius ratio
η. We had obtained the analytical expression for the geometrical scaling χ(η) from a
fairly simple suboptimal analytical bound calculated using a choice of background flow
with two boundary layers whose thicknesses were adjusted to optimize the bound. During
this procedure, we had not applied any constraint on the perturbed flow ṽ (other than the
homogeneous boundary conditions), and further, used standard calculus inequalities that
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are known to overestimate the bound on Nub. Consequently, it is not at all self-evident why
the optimal bounds should have the same geometrical scaling. The fact that the optimal
bounds (5.5a–c), which are up to an order of magnitude better than the suboptimal bound
(4.17), preserve the same geometrical dependence on radius ratio is therefore a simple yet
remarkable result.

5.3. Wavenumber spectrum of perturbation
In this subsection, we investigate the wavenumber spectrum of the perturbed flow ṽ with a
particular focus on the small-scale structures present in ṽ. In the optimal state, ṽ contains
only a finite number of modes, called the critical modes, in either the z- or θ -direction,
depending on the case considered, i.e.

ṽ =
∑
n∈K2

⎡
⎣ṽr,n(r) cos(knz)
ṽθ,n(r) cos(knz)
ṽz,n(r) sin(knz)

⎤
⎦ in case 2, ṽ =

∑
m∈K3

[
ṽr,m(r) eimθ

ṽθ,m(r) eimθ

]
in case 3, (5.6a,b)

where K2 ⊂ N and K3 ⊂ Z \ {0} are finite sets. Moreover, as we will demonstrate below,
the smallest scales in the perturbation are present only near the boundaries. It is thus
reasonable to hypothesize that the smallest length scale in the perturbation ṽ is similar to
the boundary layer thickness of the background flow U . To pursue this idea further, we
divide the critical modes present in the perturbation into four different categories. If, for
a given critical mode, more than 90 % of the contribution to its L1(dr) norm comes from
the region

Sin :=
{

r | ri � r � ri + ro − ri

3

}
, (5.7)

then we say that mode is active only near the inner cylinder. Similarly, if it comes from the
region

Sout :=
{

r | ro − ro − ri

3
� r � ro

}
, (5.8)

then we say that it is active only near the outer cylinder. Finally, if more than 90 % of
the contribution comes from regions Sin and Sout together, then we say that the mode is
active near both the cylinders; otherwise, we say that the mode is active in the bulk. This
way of categorizing the modes may seem somewhat arbitrary at first, but looking at the
shape of different critical modes, it becomes readily apparent that any other appropriate
definition would have led to the same conclusion. We use the following colour scheme
to differentiate modes according to our classification: blue for the modes that are active
near the inner cylinder, red for the modes that are active near the outer cylinder, green for
the modes that are active near both the cylinders, and black for the modes that are active
in bulk. Figures 6(b,d, f ,h) show the plots of ṽθ,nc(r) for critical modes at Ta = 108 and
for radius ratios η = 0.2, 0.4, 0.6 and 0.8. We now see that the plots of ṽθ,nc(r) provide
an unambiguous visual justification of our earlier classification of critical modes into four
categories, therefore our classification is robust.

We first apply this categorization to the optimal perturbations found in case 2, denoting
the wavenumber of the critical mode with smallest length scale that is active near the inner
cylinder as ks

in, and the one that is active near the outer cylinder as ks
out. Assuming that our

hypothesis about the similarity of the boundary layer thickness in the background flow and
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Figure 6. (a,c,e,g) Wavenumbers of the critical modes in the optimal perturbation as a function of Ta at
η = 0.2, 0.4, 0.6 and 0.8, respectively. The colour indicates if the critical mode is active near the inner cylinder
(blue), outer cylinder (red) or both cylinders (green), and in the bulk (black), according to the classification
given in the main text. The blue and red solid lines are the theoretical predictions for the critical mode
with the largest wavenumber active near the inner and outer cylinders (see (5.11a,b)), respectively. (b,d, f,h)
Corresponding azimuthal components ṽθ,nc (r) of critical modes at the same radius ratios, at Ta = 108.

the smallest length scale in the perturbation made above is correct, we may expect

ks
in ∝ 1

δi
, ks

out ∝ 1
δo
, (5.9a,b)
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where δi and δo are given by (4.15a,b). Substituting their expressions in the above relation
leads to

ks
in ∝ η2

(1 + η2)(1 + η)3
Ta1/2, ks

out ∝ η3

(1 + η2)(1 + η)3
Ta1/2. (5.10a,b)

From these relations, we obtain the dependence of ks
in and ks

out not only on Ta, but also
on the radius ratio η. In particular, we predict that the smallest length scales in the
perturbation should become larger as η → 0. Furthermore, at a given η, the small-scale
structures near the outer cylinder are predicted to be 1/η times larger than the ones near
the inner cylinder.

Figures 6(a,c,e,g) show the wavenumbers of the critical modes in the optimal
perturbations as a function of the Taylor number for four different radius ratio values
η = 0.2, 0.4, 0.6 and 0.8, respectively. By fitting these plots, we find that the constant
of proportionality in (5.10a,b) that best fits the data at high Taylor numbers is C = 0.244,
therefore we expect

ks
in = 0.244

η2

(1 + η2)(1 + η)3
Ta1/2, ks

out = 0.244
η3

(1 + η2)(1 + η)3
Ta1/2. (5.11a,b)

These two relations are plotted in figures 6(a), 6(c), 6(e) and 6(g) with solid blue and
red lines, respectively. We see that the smallest length scales in the critical perturbation
near the inner and outer boundaries, respectively, indeed follow the relations (5.11a,b).
Furthermore, these smallest scales achieve their asymptotic scaling in Taylor number
quicker than the corresponding optimal bounds on Nusselt number shown in figure 5,
without any need for extrapolation of the data. We therefore argue that (5.11a,b) and
figure 6 together provide a strong validation of the analytical predictions from § 4.

We can use similar ideas to predict the scaling of the smallest length scales in optimal
perturbations in case 3. Using (4.14a–d), one would anticipate ms

i ∝ ri/δi and ms
o ∝ ro/δo,

where ms
i is the largest wavenumber of a critical mode active near the inner cylinder, and

ms
o is the largest wavenumber of a critical mode active near the outer cylinder. The plots in

figures 7(a,c,e,g) show the wavenumbers of critical modes in the 2-D optimal perturbations
as a function of the Taylor number at radius ratios 0.2, 0.4, 0.6 and 0.8. We apply the same
mode identification method, and use the same colour scheme to differentiate the critical
modes, as before. From these plots, we can fit the data at high Taylor numbers, to measure
the constant of proportionality in the expressions for ms

i and ms
o, leading to

ms
i = ms

o = 0.126η3

(1 − η4)(1 + η)2
Ta1/2. (5.12)

We see that the wavenumbers of the critical mode with smallest length scale that is active
near the inner and outer cylinders are equal. The relation (5.12), shown as a solid green line
in figures 7(a,c,e,g), does seem to predict the largest wavenumbers at high Taylor numbers
correctly.

As in figure 6, figures 7(b,d, f ,h) show the function vc
θ,mc

(r), defined as the coefficient
of cos mcθ in the expression

ṽθ,mc(r) eimcθ + ṽθ,−mc(r) e−imcθ , (5.13)

where mc refers to a critical mode. The main difference between the shapes of modes
ṽθ,nc(r) in figure 6 compared with vc

θ,mc
(r) in figure 7 is that the mean of ṽc

θ,mc
(r) is zero,
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Figure 7. (a,c,e,g) Wavenumbers mc of the critical modes that constitute the 2-D optimal perturbation as a
function of the Taylor number for radius ratios η = 0.2, 0.4, 0.6 and 0.8, respectively. We use the same colour
scheme as in figure 6 to distinguish different critical modes. The solid green line is the relation (5.12), which
predicts the largest critical wavenumber. (b,d, f,h) Plots of ṽc

θ,mc
, the coefficient of cos mcθ in the azimuthal

component of the velocity, at Ta = 108 and the same radius ratios as in the (a,c,e,g) plots.

i.e. ∫ ro

ri

ṽc
θ,mc

(r) dr = 0. (5.14)

This condition comes from incompressibility, which leads to (5.14) in two dimensions, but
does not in three dimensions because the z-component, ṽz, is non-zero. As a result, in two
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dimensions, modes that are active solely near the cylinders oscillate in the boundary layer
to ensure that (5.14) is satisfied.

6. A note on the applicability of the background method

In one of our previous studies (Kumar 2020), we presented a sufficient criterion to
determine when the background method can be applied, for a given flow geometry
and boundary conditions. We demonstrated that it can be used with any flow problem
(tangential-velocity-driven or pressure-driven) with impermeable boundaries, provided
that the boundaries have the shape of streamtubes of the flow

V = Ax + V 0, (6.1)

where A is a constant skew-symmetric tensor, V 0 is a constant vector, and x is the position
vector. For these types of problems, one can further show that the upper bound on the
dissipation becomes independent of viscosity at high Reynolds numbers. In this section,
we explore the complementary question of whether there exist flow configurations for
which the background method cannot be applied.

Indeed, the applicability of the background method depends on the existence of
an incompressible background flow (which also satisfies the inhomogeneous boundary
conditions) such that the following functional is positive semi-definite:

H(v) =
[

1
2 Re

‖∇ṽ‖2
2 +

∫
V

ṽ · ∇U sym · ṽ dx +
∫

V
U · ∇U · ṽ dx

]
, (6.2)

for any perturbations ṽ that satisfy the homogeneous boundary conditions. Consequently,
proving that the background method cannot be applied reduces to the problem of finding
a perturbation or a family of perturbations such that there is no background flow U for
which H is positive semi-definite.

We start by giving a few examples where the applicability of the background flow can
be dismissed rigorously. We first consider the case of Taylor–Couette flow with suction at
the inner cylinder. The energy stability analysis of this problem was considered by Gallet,
Doering & Spiegel (2010). The boundary conditions for this problem are

u = −er + ωirieθ at r = ri, u = − ri

ro
er + ωoroeθ at r = ro, (6.3a,b)

where the Reynolds number Re is defined such that u · er = −1 at the inner cylinder.
The non-dimensional angular velocities of the inner and outer cylinders are ωi and ωo,
respectively. In this problem, the flow is constricted to a narrow area as it moves from the
outer cylinder (inlet) to the inner cylinder (outlet). We restrict ourselves to two dimensions,
but the arguments given below are valid in three dimensions as well. The domain of interest
is V = [ri, ro] × [0, 2π].

We consider a perturbation ṽ of the form

ṽ = (ṽr, ṽθ ) = (0, v0r(r − ri)(r − ro)) , (6.4)

whose amplitude is v0. Note that ṽ satisfies the homogeneous boundary conditions and is
incompressible. We now demonstrate that for this perturbation, the spectral constraint can
never be satisfied above a certain Reynolds number regardless of the choice of background
flow U .

To show that the spectral constraint (6.2) is not satisfied, we have to show that the second
term is negative and that its absolute value is larger than the first term. Being linear in ṽ,
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the last term can be made arbitrarily small compared with the first two terms by choosing
v0 in (6.4) to be large enough for any given background flow U . As such, it does not play
any role in the following argument.

The calculation of the first term is straightforward:

1
2 Re

‖∇ṽ‖2
2 = π

60 Re
(ri + ro)(5r2

i + 5r2
o + 2)v2

0 . (6.5)

In the calculation of the second term, we take advantage of the fact that the chosen
perturbation (6.4) is independent of θ , so

∫
V

ṽ · ∇U · ṽ dx =
∫ ro

ri

ṽ2
θ

[∫ 2π

0

(
1
r
∂Uθ
∂θ

+ Ur

r

)
dθ

]
r dr. (6.6)

Now, using periodicity as well as the incompressibility condition satisfied by the
background flow U , the following hold:

∫ 2π

0

∂Uθ
∂θ

dθ = 0,
∫ 2π

0
Ur dθ = −2πri

r
. (6.7a,b)

Using (6.4) and (6.7a,b) in (6.6) gives∫
V

ṽ · ∇U · ṽ dx = − π

30
(r2

i + riro)v
2
0 . (6.8)

From (6.5) and (6.8), we deduce that the spectral constraint (6.2) will not be satisfied if

Re >
5r2

i + 5r2
o + 2

2ri
, (6.9)

a condition that is, remarkably, independent of the choice of U . Note that in the limit of
ri/ro → 1, the Reynolds number beyond which the method fails goes to infinity. This limit
recovers the case of a plane Couette flow with suction and injection at the walls (Doering,
Spiegel & Worthing 2000), where the background method can indeed be applied, so (6.9)
is consistent with these results.

A similar type of condition on the Reynolds number can be derived in the problem of
the Taylor–Couette flow with injection at the inner cylinder, i.e.

u = er + ωirieθ at r = ri, u = ri

ro
er + ωoroeθ at r = ro. (6.10a,b)

In this problem, the flow overall expands into a larger area as it moves from the inner
cylinder (inlet) to the outer cylinder (outlet). For this case, we can use similar arguments
but with the new perturbed flow

ṽ = (ṽr, ṽθ ) = (v0r(r − ri)(r − ro), 0) . (6.11)

The perturbation this time is not incompressible but can be shown to yield a negative H(ṽ)
regardless of the background flow U , for sufficiently large Reynolds number. However,
noting that the perturbation (6.11) is radial, one may then expect that an incompressible
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perturbation, which is composed of vortices stretched in the radial direction, will also yield
a negative H(ṽ). This observation led us to consider the streamfunction

ψv = v0r2(r − ri)
2(r − ro)

2 sin mθ, where m ∈ N. (6.12)

We define the corresponding velocity field ṽ = (ṽr, ṽθ ) as

ṽr = 1
r
∂ψv

∂θ
, ṽθ = −∂ψv

∂r
. (6.13a,b)

This velocity field is divergence-free and satisfies the homogeneous boundary conditions
at the surface of the cylinders. The streamlines of ṽ are depicted in figure 8. Next, define
a family of rotation operators Qϕ : Dσ (V) → Dσ (V), indexed with ϕ, on the space of
divergence-free vector fields that satisfies the homogeneous boundary conditions at ∂V as

Qϕ(ṽ)(r, θ) = ṽ(r, θ + ϕ) ∀(r, θ) ∈ V. (6.14)

A tedious calculation, first involving an integration in ϕ, and then using the arguments
similar to the suction problem above, shows that∫ 2π

0
H(Qϕ(ṽ)) dϕ

= π(ri + ro)

1260

[
246r4

i + 138r4
o + 108r3

o + 120r2
i r2

o + 108r2
i ro + 8m2(r3

o − r3
i )+ m4

2 Re

− ri(m2 − 6(r2
i + r2

o))

]
. (6.15)

This calculation implies that if

m >

⌈√
6r2

i + 6r2
o

⌉
, (6.16)

where �·� is the ceiling function, then for

Re >
246r4

i + 138r4
o + 108r3

o + 120r2
i r2

o + 108r2
i ro + 8m2(r3

o − r3
i )+ m4

2ri
(
m2 − 6r2

i − 6r2
o
) , (6.17)

the integral (6.15) is negative, which implies that there is at least one ϕ ∈ [0, 2π] such
that H(Qϕ(ṽ)) < 0. More generally, there exists a set S ⊂ [0, 2π], depending on the
background flow U , of positive measure (μ(S) > 0) such that H(Qϕ(ṽ)) < 0 for any
ϕ ∈ S, i.e. the spectral constraint is not satisfied. Note that condition (6.16) is basically
saying that the vortices in the incompressible perturbed flow field (6.13a,b) should be
stretched in the radial direction, which we expected from the example of the compressible
perturbed flow (6.11).

The key message from these two problems is that if there is a converging flow, then one
can rule out the applicability of the background method by creating a perturbation whose
streamlines are perpendicular to the direction of the mean flow, while in the case of a
diverging flow, one can use a perturbation whose streamlines are parallel to the direction of
the mean flow instead. Of course, in both cases, we need to make sure that the perturbation
satisfies the homogeneous boundary conditions.
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I

O

Figure 8. A cartoon of the streamlines of the flow field given by (6.13a,b).

Combining these ideas suggests that one cannot apply the background method to flows
in a converging–diverging nozzle, because one can choose the perturbation to be composed
of vortices that stretch either in the perpendicular direction to the flow in the converging
section or parallel to the flow in the diverging section. Using the same arguments, one
would then also conjecture that the background method can in general not be applied
to flows between rough walls. Indeed, in this case, one can always find vertical sections
where the flow expands or compresses, and then one could use the same strategy to choose
perturbations for which H(ṽ) < 0. However, note that in this case, the compression or
expansion is small, i.e. the gap width on averages decreases by only a factor (1 − ε) in
the converging part, or increases by a factor (1 + ε) in the diverging part, where ε is the
non-dimensional roughness scale. This problem is analogous to the converging–diverging
nozzle if the Reynolds number is based on the surface roughness ε. Therefore, for the
Reynolds number based on the average gap width, we expect that the spectral constraint
(6.2) will not be satisfied if Re � ε−1.

This still leaves the problem open for the flow systems that do not have a converging or
diverging section, for example, flow in tortuous channels. We believe that even for these
problems, the spectral constraint will fail to hold past a certain Reynolds number for any
background flow. Therefore, we conjecture that the sufficient condition for the applicability
of the background method mentioned in the beginning of this section is also a necessary
condition.

7. Discussion and conclusion

7.1. Summary and implications
In this paper, we computed optimal bounds on mean quantities in the Taylor–Couette flow
problem with a stationary outer cylinder, with particular focus on the dependence of these
bounds on the system geometry. Along the way, we studied the energy stability of the
laminar flow in § 3. The main finding of this section was that for a value of radius ratio ri/ro
below 0.0556, the marginally stable flow at the energy stability threshold is not composed
of the well-known axisymmetric Taylor vortices but is instead a fully 3-D flow field.

To uncover the functional dependence of the optimal bounds on the radius ratio at large
Taylor number, we began by deriving a suboptimal but analytical bound with the use of
standard inequalities and a choice of background flow with two boundary layers (one near
the inner cylinder and one near the outer cylinder) whose thicknesses were then adjusted
to optimize the bound. We then argued that the dependence on the radius ratio captured
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by this analytical bound should also be the same for the optimal bounds at large Taylor
numbers. We verified this statement systematically by obtaining distinct optimal bounds
in three circumstances. In the first case, we imposed no constraints on the perturbation
other than the homogeneous boundary conditions (case 1). Next, we allowed for 3-D
incompressible perturbations (case 2). And finally, we considered 2-D incompressible
perturbations (case 3). In the high Taylor number limit, we see an improvement of 1.5,
12.46 and 27.66, respectively, over the analytical bound as we move from case 1 to
case 3, and that improvement is the same for all radius ratios. This result is striking
and non-trivial because there is no known transformation of variables that makes the
Euler–Lagrange equations (A28a–d) of the optimal bounds independent of the radius
ratio.

In § 6, we rigorously dismissed the applicability of the background method for two flow
problems. The limitation of the background method is previously known in the context
of Rayleigh–Bénard convection at infinite Prandtl number (Nobili & Otto 2017), where it
was shown that using a different method, a tighter bound can be obtained as compared
to the background method. Here, we have shown that past a certain Reynolds number, no
bound can be obtained using the background method applied to Taylor–Couette flow with
suction or injection at the inner cylinder, i.e. there is no background flow that satisfies
the spectral constraint even when the incompressibility condition on the perturbation is
imposed. Generalizing these results then suggests that the spectral condition may not be
satisfied for flow problems that contain converging or diverging sections, such as flow in
a converging–diverging nozzle or flow between the rough walls. Possibly, the auxiliary
functional method (Chernyshenko et al. 2014) could be a way forward to obtain bounds
for such problems. The current best-known implementation of this auxiliary functional
method to obtain a bound on energy dissipation in flow problems uses only quadratic
functionals, in which case it has been shown to be equivalent to the background method
(Chernyshenko 2022). However, Chernyshenko (2022) also proposed potential ways to
implement non-quadratic functionals, which might be able to produce a finite bound on
the energy dissipation in the problems stated above. Another possible approach, this time
numerical, is to consider finite-dimensional truncated models of the actual flow problem,
where there is a systematic way to use higher-than-quadratic auxiliary polynomials with
the help of the sum-of-squares method (Goulart & Chernyshenko 2012; Huang et al. 2015;
Fantuzzi et al. 2016; Goluskin 2018; Kumar 2019; Olson et al. 2021).

Our study brings to light the significance (or lack of significance, to be more precise)
of the incompressibility constraint on the perturbation while calculating optimal bounds,
especially in the limit of high Reynolds number, which is generally of interest in turbulent
flows. As we showed in the present study, dropping the incompressibility constraint
on the perturbations altogether (case 1) still recovers the correct dependence of the
bounds on both the principal flow parameter (Ta, or equivalently Re) and the domain
geometry (through the radius ratio). One cannot help but wonder whether the same
holds true for other flow problems, including, for instance, the case of convection. It
is a fundamental question of concern, as not imposing the incompressibility constraint
tremendously decreases the computational cost of the optimal bound calculation. In the
particular example studied here, in fact, not imposing the incompressibility condition
allowed us to solve the Euler–Lagrange equations analytically using the method of
matched asymptotics. This could also be potentially helpful in other studies involving
the background method where it is relatively difficult to establish the scaling of the
optimal bound even numerically, perhaps because the bounds involve logarithms (Fantuzzi
et al. 2018; Fantuzzi, Nobili & Wynn 2020) or a scaling other than a simple power law
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(Kumar et al. 2022). In such situations, from an analysis point of view, it is usually
challenging to decide what combination of the background field and calculus inequalities
might be required to obtain the correct asymptotic scaling of the optimal bound. When the
bound is obtained numerically instead, it can be difficult to establish its actual functional
dependence on the principal flow parameter. Therefore, in these situations, considering
case 1 can be very useful as one can try solving the Euler–Lagrange equations analytically
using the method of matched asymptotics. These ideas can also be of relevance to other
variational approaches, such as the wall-to-wall transport problem (Hassanzadeh, Chini
& Doering 2014; Tobasco & Doering 2017; Motoki, Kawahara & Shimizu 2018a,b;
Doering & Tobasco 2019; Souza et al. 2020; Tobasco 2022; Kumar 2022), which asks
the question of what is the maximum heat transfer for a fixed energy or enstrophy
budget.

Finally, assuming that the conclusions of this study apply more broadly, case 3 is also
relevant to flow problems that are frequently investigated not just in three dimensions
but in two dimensions as well, such as Rayleigh–Bénard convection or internally heated
convection. For example, it could be interesting to determine how the optimal bounds
depend on the shape of the roughness of the wall in 2-D Rayleigh–Bénard convection with
rough boundaries, a problem investigated previously by Goluskin & Doering (2016) using
the background method.

Before proceeding further, we note that one can also use the direct method of Seis
(2015) to derive an upper bound on the Nusselt number with the same Taylor number
dependence as in this paper. However, a question of interest could be if a bound with the
same geometrical scaling can also be derived. We would expect that if one makes estimates
near both the cylinders in Seis’s approach, and uses an analogous optimization procedure
(similar to this paper), then one may be able to derive a suboptimal bound with the same
geometrical scaling as in this paper.

7.2. Comparison with the DNS
We now analyse briefly our results from a more practical point of view, and ask the
question of whether the dependence of the Nusselt number on the radius ratio obtained
in this paper bears any relationship with that of the actual turbulent flow. Note that
the asymptotic dependence of the optimal bound on the Taylor number is known to
overestimate the actual Nusselt number in turbulent Taylor–Couette flows by a logarithmic
factor in Ta (Grossmann et al. 2016). As such, we cannot compare directly our results to
the data, but instead merely ask the question of whether the geometric prefactor g(η) in the
expression Nu(η, Ta) = g(η) f (Ta) measured in turbulent Taylor–Couette flows bears any
resemblance to the prefactor χ(η) obtained in our optimal bound calculation; see (4.18).

We first test this idea on the direct numerical simulations (DNS) data from
Ostilla-Mónico et al. (2014) and Froitzheim et al. (2019). In figure 9(a), we have plotted Nu
versus Ta from these DNS, and in figure 9(b), we show the same data divided by χ(η). We
see that the rescaled data do become more compact and appear to fall on a single curve.
This observation gives us confidence that the geometrical dependence of the bound χ(η)
obtained in this paper is a good approximation to that of the actual Nusselt number Nu
measured in turbulent Taylor–Couette flows. However, we note that the data have not yet
reached the asymptotic scaling corresponding to the high Ta regime, so the comparison
at this point remains tentative. We also note that a different prediction for Nu(η, Ta) has
been obtained recently by Berghout et al. (2020) using the idea of Monin–Obukhov theory
for thermally stratified turbulent boundary layers. Their scaling of the asymptotic limit of
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Figure 9. (a) The Nusselt number (Nu) from DNS as a function of the Taylor number (Ta). (b) The Nusselt
number scaled with the geometrical scaling χ(η) given by (4.18) as a function of Taylor number. In these plots,
the DNS results are taken from Ostilla-Mónico et al. (2014) for η = 0.5, 0.714, 0.909, and from Froitzheim
et al. (2019) for η = 0.357.

high Ta is given as

Nu ∼ 4κ2 η3

(1 + η)2
Ta1/2

log2 Ta
= 0.6084

η3

(1 + η)2
Ta1/2

log2 Ta
, (7.1)

where κ = 0.39 is the von Kármán constant. The geometrical dependence in (7.1) differs
from χ(η) by a factor (1 + η2)2. However, it is reassuring to see that both expressions are
proportional to η3 in the limit of small radius ratio. A definitive answer to the question of
whether the geometrical scaling χ(η) given by our bound is exact or just an approximation
would require a precise comparison with the turbulent data at very high Taylor numbers
collected for a range of radius ratios spanning the entire interval (0, 1), which is at present
a challenge for the numerical computations.

7.3. Further generalizations
We end this paper by discussing a few important consequences and generalizations of our
study as well as future outlooks. The first of these consequences concerns the bound on
dissipation. The optimal bound on the Nusselt number for case 2 (3-D incompressible
perturbations) combined with the relations (2.24) and (2.5) gives us the optimal bound on
the dissipation

ε3D
b,∞ = 0.0677

η

(1 + η)(1 + η2)2
. (7.2)

This bound tends to 0.00846 in the limit η → 1, which is within 1 % of the optimal bound
obtained by Plasting & Kerswell (2003) for the plane Couette flow, namely 0.008553. The
consistency between the two results shows that our work can, in retrospect, be viewed as
a generalization of the result of Plasting & Kerswell (2003) to Taylor–Couette flow for an
arbitrary radius ratio.

The second item is related to our previous work (Kumar 2020) on the dependence
of the bound on the friction factor λ on the radius of curvature κ and torsion τ for
a pressure-driven flow in a helical pipe. We were able to employ a boundary layer
optimization technique together with standard inequalities similar to that used here to
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obtain the following analytical bound on the friction factor in high Re limit:

λa
b,∞ = 27

8 I(κ, τ ), (7.3)

where

I(κ, τ ) = 1
2π

∫ 2π

0
((1 − κ cosα)2 + τ 2)3/2(1 − κ cosα) dα. (7.4)

However, the complexity of the helical pipe geometry makes it impossible in practice to
compute the corresponding optimal bound. Nevertheless, in the light of results from the
present study, and assuming that we captured the geometrical dependence correctly, one
can in principle compute the prefactor in a limit where the optimal bound can be computed,
namely the case of a straight pipe, for which κ = τ = 0. This bound was computed by
Plasting & Kerswell (2005) to be λ3D

b,∞(0, 0) = 0.27, and using this result, we then expect
that the optimal bound for helical pipes in the limit of high Reynolds number is

λ3D
b,∞ = 0.27I(κ, τ ). (7.5)

Finally, the results presented in this paper potentially open the door to solving many
important outstanding problems in engineering. Indeed, within that context, we are often
interested in finding the optimal geometry of the system or the object involved that
minimizes or maximizes a certain flow quantity subject to some physical constraint. These
types of problems therefore demand a careful study of the effect of the domain shape on
a flow quantity. From this perspective, our study has broader implications. Even though
we ruled out the applicability of the background method to a large class of problems (see
§ 6), this still leaves a number of interesting problems open for analysis. For example,
two problems that have been investigated using DNS before, but where an application
of the background method can provide further insights, are the Taylor–Couette flow with
axisymmetric grooved walls (Zhu et al. 2016), and pressure-driven flow in a pipe with an
elliptic cross-section (Nikitin & Yakhot 2005). Another problem where the background
method has been used previously but capturing the exact domain shape dependence in
the bounds was not the primary focus is the flow of fluid in an arbitrary domain driven by
moving boundaries (Wang 1997). Our study suggests an interesting avenue towards solving
these problems, by using the background method together with perturbations that are not
assumed to be incompressible, which, as we demonstrated here, can greatly simplify the
calculation.
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Appendix A. The background method

In this appendix, we formulate the background method to obtain an upper bound on the
quantity

1
Re

‖∇u‖2
2 (A1)
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in Taylor–Couette flow. It is clear from (2.19) that an upper bound on this quantity
immediately provides an upper bound on the dissipation ε.

We begin by writing the total flow field u as a sum of two divergence-free flow fields:

u = U + v. (A2)

We call U the background flow, and require that it satisfies the same boundary conditions
as u, and is a function of only space. We call v the perturbation, or perturbed flow, which
satisfies homogeneous boundary conditions. The governing equation for the perturbation,
obtained by substituting (A2) in (2.3), is given by

∂v

∂t
+ U · ∇U + U · ∇v + v · ∇U + v · ∇v = −∇p + 1

Re
∇2U + 1

Re
∇2v. (A3)

We then obtain the evolution equation of the energy in the perturbed flow by taking the
dot product of (A3) with v and integrating over the volume:

d‖v‖2
2

dt
= 1

Re

∫
V

∇2U · v dx − 1
Re

‖∇v‖2
2 −

∫
V

v · ∇U · v dx −
∫

V
U · ∇U · v dx.

(A4)
Now using integration by parts, we can write

∫
V

∇2U · v dx = −a
∫

V
∇U : ∇v dx + (1 − a)

∫
V

∇2U · v dx, (A5)

where, in the index notation,

∇U : ∇v = ∂ivj ∂iU j. (A6)

At the same time, one also has the identity

∇U : ∇v = |∇u|2 − |∇U |2 − |∇v|2
2

. (A7)

Using (A5) and (A7) in (A4) leads to

d‖v‖2
2

dt
+ a‖∇u‖2

2
2 Re

= a‖∇U‖2
2

2 Re
− 2 − a

2 Re
‖∇v‖2

2 + 1 − a
Re

∫
V

∇2U · v dx

−
∫

V
v · ∇U · v dx −

∫
V

U · ∇U · v dx. (A8)

The introduction of a balance parameter a in the background formulation goes back to
Nicodemus, Grossmann & Holthaus (1997). Now it can be shown within the framework of
the background method that the quantity ‖v‖2

2 is uniformly bounded in time (see Doering
& Constantin 1992, for example). As a result, the long-time average of the time derivative
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of ‖v‖2
2 vanishes. Therefore, taking the long-time average of (A8) leads to the bound

1
Re

‖∇u‖2
2 � 1

Re
‖∇U‖2

2 − 2
a
F(v), (A9)

where

F(v) =
[

2 − a
2 Re

‖∇v‖2
2 − 1 − a

Re

∫
V

∇2U · v dx

+
∫

V
v · ∇U · v dx +

∫
V

U · ∇U · v dx.
]

(A10)

This formulation of the background method is general, until this point. From here onwards,
we restrict the background flow U to be unidirectional, of the form

U = Uθ (r) eθ . (A11)

At this point, we give the proof of a straightforward but important lemma.

LEMMA A.1. Let the domain V be given by (2.8). Then for a continuous function f :
[ri, ro] → R and a divergence-free vector field w : V → R

3 such that w|r=ri = w|r=ro = 0
and w is periodic in the z-direction, the following holds:∫

V
f (r)wr dx = 0, (A12)

where wr is the radial component of w.

Proof . Let

F(r, θ, z) =
∫ r

r′=ri

f (r′) dr′. (A13)

Then we can write∫
V

f (r)wr dx =
∫

V
∇F · w dx =

∫
V

∇ · (Fw) dx = 0, (A14)

where we used the divergence theorem and the boundary conditions on w to obtain the last
equality. �

The assumption (A11) combined with lemma A.1 implies∫
V

U · ∇U · v dx = 0. (A15)

The functional F therefore takes the form

F(v) =
[

2 − a
2 Re

‖∇v‖2
2 +

∫
V

v · ∇U · v dx − 1 − a
Re

∫
V

∇2U · v dx
]
. (A16)

If the infimum of this functional F over all the divergence-free vector fields v is finite,
then it may not be zero as F is not homogeneous due the presence of a linear term.
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Therefore, similar to Doering & Constantin (1998) and Plasting & Kerswell (2003), we
define a shifted perturbation as

ṽ = v − φ, (A17)

where both ṽ and φ are divergence-free and satisfy homogeneous boundary conditions at
the surface of the cylinders, and we select φ to eliminate the linear term when the bound
(A9) is written in terms of ṽ.

We substitute (A17) in (A9) and use (A11) and lemma A.1 whenever required. We obtain
the following linear term in ṽ:

2
a Re

∫
V

[
(2 − a)∇2φ + (1 − a)∇2U

]
· ṽ dx. (A18)

Therefore, for this linear term to be zero, we require

(2 − a)∇2φ + (1 − a)∇2U = 0. (A19)

Without loss of generality, we can select the unidirectional solution

φ = −1 − a
2 − a

[
Uθ − ulam,θ

]
eθ . (A20)

Using this expression for φ, the bound in terms of ṽ now reads

1
Re

‖∇u‖2
2 � 1

a(2 − a)Re
‖∇U‖2

2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2 − 2
a
H(ṽ), (A21)

where

H(ṽ) =
[

2 − a
2 Re

‖∇ṽ‖2
2 +

∫
V

ṽ · ∇U · ṽ dx
]
. (A22)

If we choose a background flow U such that the functional H is positive semi-definite on
the space of divergence-free vector field ṽ, i.e.

inf
ṽ∇·ṽ=0

H(ṽ) � 0, (A23)

then the bound (A21) is simply

1
Re

‖∇u‖2
2 � 1

a(2 − a)Re
‖∇U‖2

2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2. (A24)

The positive semi-definite condition (A23) on H is referred to as the spectral constraint.
Since the functional H is quadratic and homogeneous, we can rewrite the spectral
constraint as

H(ṽ) � 0 ∀ṽ such that ∇ · ṽ = 0 and ‖ṽ‖2 = 1. (A25)

Using the Euler–Lagrange equations, the spectral constraint (A25) is equivalent to the
non-negativity of the smallest eigenvalue λ of the following self-adjoint spectral problem:

∇ · ṽ = 0, (A26a)

2λṽ = 2 − a
Re

∇2ṽ − 2ṽ · ∇U sym − ∇p̃. (A26b)

Here, p̃ and λ are the Lagrange multipliers for the constraints ∇ · ṽ = 0 and 1 − ‖ṽ‖2
2 = 0.
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Now, to optimize the bound (A21) under the incompressibility constraint on ṽ, we write
the following Lagrangian:

L = 1
a(2 − a)Re

‖∇U‖2
2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2 − 2
a
H(ṽ)+

∫
V

p̃ ∇ · ṽ dx. (A27)

Letting the first variation (the Fréchet derivative) of this functional with respect to ṽ, p̃, U
and a tend to zero leads to

δL
δṽ

= 2(2 − a)
a Re

∇2ṽ − 4
a

ṽ · ∇U sym − ∇p̃ = 0, (A28a)

δL
δp̃

= ∇ · ṽ = 0, (A28b)

δL
δUθ

= − 4πL
a(2 − a)Re

(
r

d2Uθ
dr2 + dUθ

dr
− Uθ

r

)
+ 1

r
d
dr

(
2r2

a

∫ 2π

θ=0

∫ L

z=0
ṽrṽθ dθ dz

)
= 0,

(A28c)

δL
δa

= 2(a − 1)
a2(2 − a)2 Re

(
‖∇U‖2

2 − ‖∇ulam‖2
2

)
+ 2

a2

(
1

Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx

)
= 0.

(A28d)

In general, these equations do not have a unique solution. However, the solution to these
equations for which the background flow also satisfies the spectral constraint (A23), or
equivalently, all the eigenvalues of the eigenvalue problem (A26a,b) are non-negative, is
unique.

Appendix B. A useful lemma

Here, we prove that the marginally stable perturbations in the energy stability analysis of
§ 3 or optimal perturbations in § 5 depend on radius only when they are not required to be
incompressible.

LEMMA B.1. Let D(V) be the set of smooth velocity fields (not necessarily
incompressible) that satisfy the homogeneous boundary conditions. For a given choice
of the balance parameter 0 < a < 2 and of the unidirectional background flow
U = Uθ (r) eθ , the functional H(ṽ) (given by (A22)) achieves a minimum when ṽ is
a function of the radial direction only. Furthermore, if the background flow satisfies
dUθ /dr − Uθ /r � 0, then the optimal perturbed flow corresponds to ṽr = ṽθ .

REMARK B.2. Although we do not prove that the optimal background flow satisfies
dUθ /dr − Uθ /r � 0, this condition was found to hold in every numerical computation
of optimal bounds in all the three cases considered in our paper, as well as for the choice
of the background flow in analytical construction presented in § 4. Therefore, it is natural
to make the assumption that dUθ /dr − Uθ /r � 0.
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Proof . In the first part of the lemma, it is sufficient to show that for every ṽ ∈ D(V) there
exist ṽ0 ∈ D(V) with ṽ0(x) = ṽ0(r) such that H(ṽ0) � H(ṽ):

H(ṽ) =
[

2 − a
2 Re

‖∇ṽ‖2
2 +

∫
V

ṽ · ∇U · ṽ dx
]

=
[∫ L

z=0

∫ 2π

θ=0

(∫ ro

r=ri

2 − a
2 Re

|∇ṽ|2 + ṽ · ∇U · ṽ r dr
)

dθ dz

]

�

⎡
⎣∫ L

z=0

∫ 2π

θ=0
inf

0�θ�2π
0�z�L

(∫ ro

r=ri

2 − a
2 Re

|∇ṽ|2 + ṽ · ∇U · ṽ r dr
)

dθ dz

⎤
⎦

= H(ṽ0), (B1)

where ṽ0(x) = ṽ(r, θ0, z0), and θ0, z0 corresponds to the values for which the infimum in
the third line is achieved.

In the second part, for every perturbation ṽ = (ṽr, ṽθ ), we define a modified perturbation

v̂ =
⎛
⎝
√
ṽ2

r + ṽ2
θ√

2
,

√
ṽ2

r + ṽ2
θ√

2

⎞
⎠ . (B2)

So if the initial perturbations ṽ are weakly differentiable in space, then so is the modified
perturbation v̂. Therefore, all the operations below apply. For this modified perturbation,
we have

‖∇v̂‖2
2 = ṽ2

r

ṽ2
r + ṽ2

θ

(
∂ṽr

∂r

)2

+ ṽ2
θ

ṽ2
r + ṽ2

θ

(
∂ṽθ

∂r

)2

+ ṽrṽθ

ṽ2
r + ṽ2

θ

∂ṽr

∂r
∂ṽθ

∂r
+ ṽ2

r + ṽ2
θ

r

�
(
∂ṽr

∂r

)2

+
(
∂ṽθ

∂r

)2

+ ṽ2
r + ṽ2

θ

r
= ‖∇ṽ‖2

2, (B3)

where we used Young’s inequality on the third term on the right-hand side in the first line
to obtain the second line. Now the assumption on Uθ implies

ṽ2
r + ṽ2

θ

2

(
dUθ
dr

− Uθ
r

)
� ṽrṽθ

(
dUθ
dr

− Uθ
r

)
, (B4)

again through the use of Young’s inequality. Combining (B3) and (B4) with the definition
of H(v) leads to

H(v̂) � H(ṽ). (B5)

Finally, noting that v̂r = v̂θ proves the lemma. �

Appendix C. Analytical solution of the Euler–Lagrange equations in case 1 at high
Reynolds number

Before writing the Euler–Lagrange equations, we recall the simplifications pertaining to
case 1. From lemma B.1, we note that the optimal perturbations depend only on the radial
direction, and that ṽr = ṽθ . Finally, noting that the Lagrangian L in case 1 does not involve

948 A11-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.662


A. Kumar

the pressure term, as we do not impose the incompressibility condition, the simplified
Euler–Lagrange equations (A28a–d) in case 1 are given by

2 − a
Re

(
d2ṽr

dr2 + 1
r

dṽr

dr
− ṽr

r2

)
− ṽr

(
dUθ
dr

− Uθ
r

)
= 0, (C1a)

− 1
(2 − a)Re

(
r

d2Uθ
dr2 + dUθ

dr
− Uθ

r

)
+ 1

r
d(r2ṽ2

r )

dr
= 0, (C1b)

a − 1
(2 − a)2 Re

(
‖∇U‖2

2 − ‖∇ulam‖2
2

)
+ 1

Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx = 0. (C1c)

These equations need to be solved with boundary conditions

Uθ = 1, ṽr = 0 at r = ri, (C2a)

Uθ = 0, ṽr = 0 at r = ro. (C2b)

As ṽz does not enter into the computations, it can be taken to be zero; as such, ṽ here
should be understood as (ṽr, ṽr, 0).

These equations can be solved using the method of matched asymptotics as described
below. We consider three different regions: the inner boundary layer, the bulk and the outer
boundary layer. We use the following scaled coordinates for the inner and outer boundary
layers, respectively:

si = r − ri

δ
, so = ro − r

δ
, (C3a,b)

where

δ = 1
Re
. (C4)

We will use in, bulk and out in the superscript of the variables to indicate in which region
the variable is being considered. Before proceeding further, we make the following change
of variables:

U = Uθ
r
, ṽ = rṽr. (C5a,b)

Next, we write separate expansions for the variables in each of the three different regions
as

ṽin(si) = ṽin
0 (si)+ δ ṽin

1 (si)+ δ2 ṽin
2 (si)+ · · · , (C6a)

ṽbulk(r) = ṽbulk
0 (r)+ δ ṽbulk

1 (r)+ δ2 ṽbulk
2 (r)+ · · · , (C6b)

ṽout(so) = ṽout
0 (so)+ δ ṽout

1 (so)+ δ2 ṽout
2 (so)+ · · · . (C6c)

A similar expansion can be written for U. Finally, we also use a simple expansion for the
balance parameter

a = a0 + δa1 + δ2a2 + · · · . (C7)

Substituting the change of variables (C5a,b) and the series expansions of these new
variables in (C1a–c), one can find the leading-order equations in different regions, which
then need to be solved with the boundary conditions (C2a,b) and the following matching
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conditions:

Uin
0 (si → ∞) = Ubulk

0 (r = ri), Ubulk
0 (r = ro) = Uout

0 (so → ∞), (C8a–b)

ṽin
0 (si → ∞) = ṽbulk

0 (r = ri), ṽbulk
0 (r = ro) = ṽout

0 (so → ∞). (C8c–d)

Upon solving the resultant set of equations, we find that the leading-order term in the
background flow in the three different regions is given by

Uin
θ = r

ri

(
1 − 4

√
2

3
α tanh

(
αsi√

2

))
+ O (δ) , (C9a)

Ubulk
θ = rir

r2
i + r2

o
+ O (δ) , (C9b)

Uout
θ = r

ro

(
4
√

2
3

β tanh
(
βso√

2

))
+ O (δ) , (C9c)

whereas the perturbed flow field is given by

ṽin
r = ṽin

θ = αri

r
tanh

(
αsi√

2

)
+ O (δ) , (C10a)

ṽout
r = ṽout

θ = βro

r
tanh

(
βso√

2

)
+ O (δ) , (C10b)

ṽbulk
r = ṽbulk

θ =
(

3rir2
o

4
√

2(r2
i + r2

o)

)
1
r

+ O (δ) , (C10c)

where α and β depend on η and are given by

α = 3

4
√

2

1
1 + η2 , β = 3

4
√

2

η

1 + η2 . (C11a,b)

The balance parameter takes the value a = 2/3 + O(δ). This optimal value a = 2/3 of the
balance parameter, in the limit of large Re, is also observed numerically by Ding & Marensi
(2019) (and corresponds to 3/2 in their non-dimensionalization) as well as in cases 2 and
3 in our study. Using the expression of the background flow (C9a–c) in (A24), and the
relationships between different mean quantities (2.19) and (2.24), the leading-order term
in the bound on the Nusselt number in the limit of high Reynolds number (or equivalently,
high Taylor number), is given by

Nunc
b = 9

8
η3

(1 + η)2(1 + η2)2
Ta1/2. (C12)

This bound is 2/3 of the bound (4.17) obtained using standard inequalities. This
improvement has also been confirmed by the numerical results.
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