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Abstract

Understanding and forecasting mortality by cause is an essential branch of actuarial science, with wide-
ranging implications for decision-makers in public policy and industry. To accurately capture trends in
cause-specific mortality, it is critical to consider dependencies between causes of death and produce fore-
casts by age and cause coherent with aggregate mortality forecasts. One way to achieve these aims is to
model cause-specific deaths using compositional data analysis (CODA), treating the density of deaths by
age and cause as a set of dependent, nonnegative values that sum to one. A major drawback of standard
CODA methods is the challenge of zero values, which frequently occur in cause-of-death mortality mod-
eling. Thus, we propose using a compositional power transformation, the «-transformation, to model
cause-specific life-table death counts. The a-transformation offers a statistically rigorous approach to
handling zero value subgroups in CODA compared to ad hoc techniques: adding an arbitrarily small
amount. We illustrate the a-transformation in England and Wales and US death counts by cause from
the Human Cause-of-Death database, for cardiovascular-related causes of death. The results demonstrate
the a-transformation improves forecast accuracy of cause-specific life-table death counts compared with
log-ratio-based CODA transformations. The forecasts suggest declines in the proportions of deaths from
major cardiovascular causes (myocardial infarction and other ischemic heart diseases).

Keywords: Compositional data analysis; cause of death; log-ratio transformation; alpha transformation; mortality
forecasting

1. Introduction

Understanding mortality by cause is key to informing medical research decisions and planning
social services (Alai et al., 2015; Kjaergaard et al., 2019). It is also important in assessing mortality
rates and longevity risk for life insurers, as causal factors can drive the best estimate of mortality
and morbidity assumptions for the purposes of reserving and pricing. Analyzing and modeling
cause-of-death data present two main challenges: the need to account for inherent dependen-
cies between various causes of deaths and the need to produce forecasts by causes coherent with
aggregate mortality forecasts.

Traditional methods for mortality modeling and forecasting, including the Lee-Carter (LC)
model (Lee & Carter, 1992) or variations thereof and the age-period-cohort model (Holford,
1983; Renshaw & Haberman, 2006), among others, generally do not account for dependencies
between competing causes of death. As such, over the past two decades, considerable progress has
been made on joint models for multiple causes of death, which capture between-cause depen-
dencies. Arnold and Sherris (2013) applied vector error correction models to cause-of-death
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mortality rates to quantify the dependence between competing risks and subsequently found an
improvement in forecasts compared to methods that do not allow for such dependencies. Alai
et al. (2015) formulated a multinomial logistic model across several causes of death to investigate
the effects of improvement and elimination of mortality due to cancer. Li et al. (2019) adopted a
forecast reconciliation approach to ensure coherence in cause-specific mortality rates, while Li and
Lu (2019) introduced hierarchical Archimedean copulas to capture dependence between compet-
ing risks in causes of death. More recently, Zhang et al. (2023) developed a predictive approach
for cause-of-death mortality modeling that jointly models various causes, ages, and years using a
penalized tensor decomposition.

The majority of literature on modeling mortality by cause, including those mentioned above,
treats cause-specific life-table deaths as non-compositional, that is, through modeling age-specific
mortality rates rather than age distributions of death. Although these methods enable modeling
dependencies between mortality rates for different causes, a more direct approach is to forecast
the cause-specific death distribution, where the dependence is explicitly incorporated by capturing
relativities between deaths of one cause and another. Indeed, cause-of-death data are fundamen-
tally compositional, as deaths have been recorded and attributed to various causes for analysis
in globally used medical classifications for epidemiology, health management, and understanding
mortality experience (World Health Organization, 1992).

With this in mind, an alternative approach, known as compositional data analysis (CODA),
has arisen in the actuarial science literature, which aims to model the cause-specific death distri-
bution directly and produce mortality forecasts arising from the composition of the distribution
itself. The idea of CODA dates back to the seminal work of Aitchison (1982) for analyzing data
that arise as a vector of observations where the elements sum to a constant value and, therefore,
only contain relative information. In the context of mortality by cause, the compositional sum
constraint translates to avoided deaths from one cause, leading to increased deaths from other
causes.

When analyzing compositional data, methods that ignore the compositional constraint and
apply standard multivariate data analysis to the raw observations (we refer to such approaches
as “raw data analysis” or RDA) can encounter potential issues with coherence when it comes to
aggregated mortality forecasts. An alternative approach in CODA is to transform the composi-
tional data from the simplex, subject to the unit sum constraint, to the unconstrained real space
before applying standard multivariate data analysis and forecasting. Then, the results are trans-
formed into the compositional space for interpretation and inference. Within this latter approach,
log-ratio transformations are by far the most widely used to transform compositional data due to
their various attractive compositional properties (see Aitchison, 1982, for details). The first to pro-
pose such a “log-ratio analysis” or LRA for forecasting mortality rates was Oeppen (2008), who
applied an LC mortality model to log-ratio transformed death compositions to forecast cause-
specific mortality. Oeppen (2008) used centered log-ratio (CLR) transformation (see Section 2
for details) and found that capturing dependencies between subgroups via LRA and the CODA
framework improved the overall forecast while assuming independence between causes tended to
produce pessimistic results; that is, expected deaths tend to be overstated. Kjaergaard et al. (2019)
further extended this approach by developing two new LRA models for cause-specific deaths,
adding cause-specific weights to age and time subgroups, and decomposing joint and individ-
ual variation between causes of death to improve forecast accuracy further. Other notable works
include that of Bergeron-Boucher et al. (2017), who applied CODA to produce age-coherent
forecasts for mortality; Bergeron-Boucher et al. (2022), who used LRA to model healthy life
expectancy; and Kjaergaard et al. (2020), who produced longevity forecasts by socioeconomic
group using LRA.

While the aforementioned works use LRA to address some of the issues with analyzing com-
positional data (relative to RDA), one outstanding challenge with LRA-based modeling is the
presence of zero counts/values (Bergeron-Boucher et al., 2017; Kjaergaard et al., 2019, 2020).
Specifically, compositional data with zero values can be interpreted as lying on a boundary of
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the simplex. So, naively applying a log-ratio transformation to such data results in one or more
transformed values taking +=cc. In the context of mortality by cause, zero death counts in subcat-
egories of the composition arise commonly for new and emerging or granular causes of death at
certain ages and at older ages where exposure is limited. Since the existence and treatment of zeros
may lead to differences in the overall inference and forecasts, as mentioned above, this could have
consequences on our understanding of longevity risk and mortality improvements, along with
associated financial implications (Basel Committee on Banking Supervision, 2013).

In the literature, the problem of zeros when using LRA has often been addressed in an ad
hoc manner by omitting, aggregating, or adding small arbitrary values to zero values (Martin-
Fernandez et al., 2003). For instance, Kjaergaard et al. (2019) explored imputing half of the
minimum observed death count, a method initially used by Bergeron-Boucher et al. (2017).
Alternatively, Kjaergaard et al. (2019) noted that Hyndman et al. (2013) imputed death rates based
on information from nearby years for the same age group using linear interpolation. None of these
methods is ideal; furthermore, Greenacre (2021) compared four different algorithms to substitute
zeros and showed the resulting conclusions could be susceptible to the technique of zero substi-
tution. More recently, Greenacre (2024) introduced the x-power transformation to address the
problem of zeros in compositional data by combining the chi-squared distance in correspondence
analysis with the Box-Cox power transformation.

In this article, we propose a novel approach to modeling mortality by cause with zero values
using a modification of LRA. We introduce a compositional power transformation known as the
a-transformation (Tsagris et al., 2011), which addresses the challenges presented by zero values in
the setting of CODA in a more statistically principled manner compared to the aforementioned
ad hoc techniques. The a-transformation, which maps compositional data to remove their unit
sum constraint, is a generalized Box-Cox power transformation that includes both RDA and LRA
as special cases but more broadly involves a tuning parameter « € (0, 1]. This parameter can be
calibrated in a data-driven manner to enable more flexibility in producing forecasts compared to
standard LRA when there are zero values in the data. While the «-transformation has been applied
to CODA for geology and biology, among other fields (Tsagris & Stewart, 2020), to our knowledge,
this paper is the first to examine its use in forecasting mortality by age and cause.

We apply the a-transformation to two datasets: 16 years of cause-of-death data from England
and Wales data and 43 years of cause-of-death data from the USA. In both applications, we dis-
aggregate for cardiovascular causes such that there are data with zero counts in one or more
subgroups. We couple the a-transformation with the LC mortality model for multivariate analysis
and forecasting (similar to those of Kjaergaard et al., 2019; Oeppen, 2008), and compare results
with several LRA and RDA approaches where ad hoc methods are used to deal with zero values.
The results across both applications demonstrate that the a-transformation generally improves
mortality forecast by cause, while having the added benefit of being able to analyze compositional
data with zero counts in a rigorous yet data-driven manner. The «-transformation is shown to
address the key issue of zero counts in mortality data, generalizing the log-ratio transformation to
a broader class of transformations and providing additional flexibility and improved performance
when forecasting mortality by cause using CODA-based techniques.

The remainder of this paper is structured as follows: Section 2 reviews several key ideas, includ-
ing the Lee-Carter (LC) mortality model and LRA. Section 3 introduces the «-transformation
for mortality by cause data. Section 4 applies the proposed methodology to forecast mortality on
cause-of-death data from England and Wales and the USA, while Section 5 offers some concluding
remarks.

2. Review of key concepts

We review three foundational concepts for understanding how the «-transformation can be
applied to cause-of-death mortality modeling, namely, compositional data (Section 2.1), log-ratio
analysis or LRA (Section 2.2), and the LC mortality model (Section 2.3).
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2.1 Compositional data

Cause-specific mortality can be represented by actual death counts per combination
of year, age group, and cause. Specifically, let D;,. denote the actual death count
for year t=1,2,...,T, age group u=1,2,...,U, and cause ¢=1,2,...,C, and define
Di= YU 3% Dy as the total deaths across all age bands and cause groups for
year f. Then we can calculate d;,.=D;,./D; such that for a given year, the vector
di=(di11,d0125 -5 de1,0 821> 1225 - - - A2,05 At 1> Aeuas - - - dru,c) represents the density
distribution of deaths by age group and cause. The densities in d; are ordered such that the
cause runs faster than age. Moreover, the compositional vector satisfies 25:1 ZCC:1 di e =1
Moreover, by stacking the d;’s as row vectors on top of each other, we can form the T x UC
compositional matrix D of death densities

digi duyy o0 diue dign dipe ... diuc
dyig dyipy ... dayic dap1 dapp ... dauc

D= i . . i i ) (1)
drii drie ... drac drpn drp2 ... druc

Due to the sum-to-one constraint, only UC — 1 elements are needed to uniquely determine each
vector d;. Statistically then, the sample space for compositional cause-of-death mortality data is a
simplex: forallt=1,...T,

U C
UC—-1
S = (dt,l,b cee dt,U,C)|dt,u,c >0, Z Z dt,u,c =1;.
u=1 c=1

2.2 Log-ratio analysis

A common approach to analyzing compositional data is to employ the log-ratio transformations
class, which seeks to transform the data from the simplex back to an unconstrained real space
before building a statistical model for analysis. The two most common types of transformations
within LRA are the CLR and isometric log-ratio (ILR) transformations, which we consider in
this paper. Importantly, the CLR and ILR are used for analyzing compositional data without zero
values.

The CLR transformation is defined by dividing all the values in the compositional vector by
their geometric mean before applying the natural log transformation. For row ¢ in (1), the CLR
for each element is given by

U C
diuc 1
w(dru,c) =In Sty =In (duc) — — In (dye). )
‘ (( HL({:l ngzl dt,u,c)l/UC) ‘ ucC Z Z

u=1 c=1

The CLR transformation is symmetric relative to the compositional parts and has the same num-
ber of components as the number of parts in the original composition. We can express the
CLR-transformed vector as w(d;) = (w(dy,1,1), w(ds1,2), - - . » w(ds,u,c)), noting distances between
any two elements of this vector remain the same when measured in the simplex and the real space,
thus making the CLR particularly useful for analysis (Grifoll et al., 2019). While each element is
no longer constrained to be nonnegative (in principle, they can take any real number), the entire
vector remains constrained since the elements must sum to zero by the construction of (2).

To further remove this constraint, the ILR left matrix multiplies the CLR-transformed vector by
a Helmert sub-matrix and has been promoted as the more theoretically correct method (especially
to contrast groups of elements) in CODA (Greenacre & Grunsky, 2019). The Helmert sub-matrix
is an orthonormal (UC — 1) x UC matrix formed by deleting the first row of the Helmert orthog-
onal matrix (see Greenacre, 2021, and Tsagris & Stewart, 2022, for technical details). If we denote
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this Helmert sub-matrix as H, then the ILR-transformed vector is defined as
z(d;) = Hw(d;), (3)

and is no longer subject to any constraint. That is z(d;) € RU“~1, and all of its elements can take
any real value.

The CLR and ILR aim to transform compositional data into real unconstrained space. On the
other hand, as both these transformations are based on taking logarithms, then such methods
will not work if one or more of the actual death counts, and subsequently one or more of the
diuc’s, are exactly zero in value. This is the motivating problem for our subsequent develop-
ments as, in practice, many datasets of death counts tend to include zeros for some cause and
age combinations.

2.3 The Lee-Carter model for compositional data

We describe a modification of the LC model introduced by Oeppen (2008) for compositional data.
We refer to this model as the LC-CODA model, and its construction can be summarized in the
following steps.

(I) Center each row of D in (1) by taking the inverse perturbation of the geometric mean from
each row of death densities. This results in a matrix of centered death densities, denoted
here as D. -

(II) Apply the CLR transformation to each row of d, mapping the vector of UC-compositions
for a given year t from the simplex to a UC-dimensional Euclidean subspace.

(IIT) Fit and forecast the transformed data using the LC model. Note other more sophisticated
models are possible here (e.g., Bergeron-Boucher et al., 2017; Kjaergaard et al., 2019, 2020),
and this step and all our developments can be modified to employ such approaches. For
simplicity, though, we focus on the LC model.

(IV) Back-transform the estimated death densities to the simplex by inverting the CLR transfor-
mation and performing a compositional perturbation to the geometric mean for each row
estimate to obtain the final forecasted compositional results.

We elaborate each of the steps above in detail. Consider the matrix of compositional death
densities in (1), and compute g as the UC-vector, the elements of which are given by the column-
wise geometric mean of D, that is, g = (( ]_[thl dt,l,l)l/T, ( ]_[Z;l dt,l,z)l/T, oo ]_[tT:1 dt,U,c)l/T).
Next, define the perturbation operation and its inverse as follows (Aitchison, 1982). For two vec-
tors of compositions X = (x1, %2, . . ., X,) and Y = (y1, ¥2, . . . , ¥), all of the elements of which are
nonzero, we have

Perturbation: X @ Y = C (x1y1,X2)2 - - > XnYn)

. X1 X2 Xn
Inverse perturbation: Xo©Y=C ( ces —) ,
)’1 )/2 Yn
where the operator C(-) “closes” the row, that is, normalizes by dividing each entry by the sum of
all entries.
In Step (I) of fitting the LC-CODA model, we apply a centerlng process to construct a matrix

of centered death densities, D, where the tthrowof Dfor t =1, ..., T is computed as
d d d
dt dog= C( _ t1,1 _ _ 1,2 S _ tU,C . 4)
(IT=y A, DVYT (T12y den2)V (IT=; deu0)

Note the elements in g can be considered analogues of the age- and cause-specific average
mortality over time in a standard LC model.
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In Step (II) we apply the CLR transformation to obtain the vector w(zt) =
(w(dt 11) (dt %) W(Et vc)) for t=1,..., T, where to be clear the elements are com-
puted using (2) except replacing d;, . with dtuc = dtuc/( ]_[t ] dtuc)l/T Let w(D) denote the
resulting T' x UC matrix formed by stacking the w(dt) s as row vectors on top of one another.

In Step (III), we apply the singular value decomposition to w(D) and estimate the LC mortality
model analogous to how it is done for the non-compositional setting. We provide details of this
in Appendix A.1, but to summarize, we fit a model of the form

W(dpue) = buckec + €t (5)

where b, . denotes age- and cause-specific coefficients that vary over time, k;. denotes factors
of time-varying indices for the level of mortality, and €, denotes a residual error term. Note
that a mean/intercept term is omitted from (5) due to centering from the geometric mean in Step
(I). For forecasting, we can adopt a similar approach to Kjaergaard et al. (2019) and Zhang et al.
(2023), among others, who applied time-series methods such as random walk with drift to k;,
and substitute forecasted values of these back in to (5).

Finally, in Step (IV), after obtaining forecasted values of w(dtuc) we can apply an inverse
CLR transformation followed by a perturbation operation to obtain the actual forecasted death
density distribution. In detail, suppose that at a future time T’ > T, the predicted value of the
time factor for cause c is given by k.. /o while the estimated age- and cause-specific coefficients

from Step (IH) are given lzy bu . Then a vector of forecasted centered death densities is given by
dp = (dp ) pdp g5 dp o) where d = w’l(bu Ck r ) and w 1(-) denotes the inverse
CLR transformation. The correspondlng Vector for forecasted death densities from the LC-CODA
model is then given by dp =dp @ g

Compared to modeling mortality rates independently, one key element of using the LC-CODA
model is that death counts are naturally redistributed through compositional constraints. As mor-
tality changes over time, if some deaths do not occur at a specific age band and cause, they are
naturally shifted toward a different age band and cause group. This maintains subcompostional
coherence with the total number of deaths per year as given by the initial life table and ensures
the disaggregated death forecasts will be coherent with the overall aggregated mortality forecast
(Oeppen, 2008). In the context of compositional data, subcompositional coherence refers to the
property that relationships between parts of a composition are unaffected by forming subcompo-
sitions, such that results and summary statistics based on the subcomposition are the same as the
composition (Greenacre, 2021). On the other hand, due to its reliance on the CLR transformation,
the LC-CODA model is unable to handle zero values in the raw densities d; ¢, and these would
need to be omitted, aggregated, or replaced with an arbitrarily small value before step (I).

We present a more detailed exposition of LC-CODA in Appendix A.1, which we use in the
application of the «-transformation and log-ratio transformations in this paper.

3. Mortality by cause using the a-transformation

Motivated by the challenges of applying LRA to cause-of-death mortality modeling where there
are one or more zero values in the death densities, we propose using the «-transformation before
applying the LC-CODA model for forecasting.

The «-transformation can be viewed as a Box-Cox transformation applied to the ratios of com-
ponents, where o € (0, 1] is a tuning parameter that is tuned to handle compositional challenges
in the data with zeros (Tsagris et al., 2011). In detail, let w*(x) represent the Box-Cox transform
of a random variable x (Box & Cox, 1964),

In(x) =0
w(x) =
" o #0,
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and recall the matrix of centered death densities D in (4). For row t=1,...,T, the a-
transformation is then defined as

2%(d;) = Hw* (dy), (6)

where H is the Helmert sub-matrix defined as part of the ILR transformation in (3) and w* (dt)
denotes the vector where the Box-Cox transformation is applied to each element of d;. That is,
w“(dt ue) =1n (dt uc) if o =0, otherwise w“(dt we) = (UC)(d}, . — 1)/a for o # 0. Note when o =
0, the transformation reduces to the ILR transformation defined in (3). If there is no left matrix
multiplication by the Helmert sub-matrix H, then we obtain the CLR in (2). Critically, when « is
restricted to be greater than zero, the transformed values are well defined even when the raw death
densities d; ,, . = 0. This differs from both the ILR and CLR, neither of which can be computed for
zero values.

The corresponding sample space of the a-transformation is known as the « space, which we
denote as AU“~! and is given by

~ ] 1 ~ vc—
AV = {za(dt) —— =W (diud) = we=b 2 W o) =

It is not difficult to see that, similar to the ILR transformation, the vectors in Ag C-1 are not sub-

ject to the zero-sum constraint. As o — 0, then AU~ tends to the (UC — 1) dimensional real
space RUC~1; this is again consistent with the ILR, except now zero values of death densities can
be handled provided o # 0 (Tsagris & Stewart, 2022). On the other hand, when o =1, the «-
transformation is equivalent to RDA, that is, the same as applying standard multivariate analysis
ignoring the compositional constraint. While « is often determined using a data-driven approach
through maximum likelihood estimation (Tsagris et al., 2011), for strong forecasting performance,
in Section 4.1, we discuss an alternative method based on minimizing out-of-sample prediction
accuracy.

To construct the LC model in conjunction with the «-transformation, we can apply similar
steps to those discussed in Section 2.3, except that Step (II) is modified to Step (Ila) where we
apply the a-transformation instead of the CLR, and Step (IV) is modified to Step (IVa) where
the transformation back to the simplex requires inverting the o-transformation to obtain the
final forecast. With regard to the latter, after forecasting the factors k; in a similar manner to
Section 2.3, the forecast result derived based on the a-transformed data needs to be mapped back
to the compositional simplex.

/ ~ ~
In detail, at future time T > T and for o > 0, let?“(dT/) = (?"‘(dT/’l)l),. .. ,A"‘(dT UC)) denote

the vector of forecasted a-transformed centered death densities, where A"‘(d ): bu Clk\

Then, the vector of the corresponding inverse a-transformed values is glven by v“(dT/) =
«H Z2%(dp) + 1.
Afterward, the forecast vector of death densities at time T’ is given by

~ V() VY (dy )
dr=| o< ud VST N e
D=1 2acm1 Y dy, ) Zj:1 > k=1 V)

and ﬁT/ ET/ bg.

To conclude, we remark that as long as the forecasted dataz* (dT/) lies inside AUC ! defined by
the original data, then it can be mapped back to the simplex for inference. In some cases during
the process of forecasting, for example, for long-term forecasts when T’ > T, it is possible one
or more values of 2% (dp) are less than —1/« and lie outside the a-space. This indicates the cor-
responding forecasts are at or crossing the boundary of the simplex. In such cases, to ensure the
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inverse o -transformation is possible, we choose to set corresponding elements of 2(dy) equal to
the boundary value of —1/« (see, e.g., Tsagris et al., 2011, for a similar treatment).

4. Application to the Human Cause-of-Death database

We illustrate an application of the o-transformation coupled with an LC model to cause-of-death
counts and life-table deaths for two datasets from England and Wales and the USA as part of the
Human Cause-of-Death Data series (HCD, 2024). England and Wales were selected as there have
been relatively minimal fluctuations in cause composition during the available data period, while
the USA was selected to assess the performance of the proposed a-transformation for a larger
dataset spanning more historical years. Disaggregated causes of death within the cardiovascular
causes were selected since cardiovascular disease has been steadily decreasing over the past few
decades but remains the second-largest cause of death in the UK (British Heart Foundation, 2023;
National Institute for Health and Care Excellence, 2023; Raleigh et al., 2022). Data on the complete
list of causes of death were obtained, containing 103 causes at the “long” level for England and
Wales and 206 causes for US death counts. We treat males and females as separate data sources and
perform analysis separately by gender; this is consistent with treatment in earlier CODA literature
(e.g., Kjaergaard et al., 2019; Oeppen, 2008).

To perform analysis and forecasting, we aggregated based on age bands and selected causes.
We constructed nine age bands: ages 0-24, ages 25-34, ages 35-44, ages 45-54, ages 55-64, ages
65-74, ages 75-84, ages 85-95, and ages over 95. There was an additional age band for the US data
comparison, namely, ages 90-99 and then ages over 100. This additional age band was possible
due to the availability of the granular death count data from the Human Cause-of-Death Data
series (2024) for the USA. Note the age band 0-24 is not a homogeneous group relative to the
other age bands, but the reason for aggregating at these ages is twofold: first, for application to
life insurance, analysis is typically performed for working age groups; and second, by aggregating
across 0-24, there is greater credibility in death counts. We leave the assessment of the variation
of deaths by cause at younger ages as an avenue for future investigation.

Turning to causes, for England and Wales’ death counts, we aggregated death counts by cause
into 11 causes as per the HCD shortlist, with only the cardiovascular causes disaggregated to
the “long” list level. For the US death counts, we ensured the same International Classification
of Diseases-10 (ICD-10) causes of death were used for comparison. These same cardiovascular
causes were mapped to 12 causes as per the HCD “long” list level for the US data. Cardiovascular
causes were selected as cardiovascular disease causes of death have steadily decreased over the
data period, as introduced at the start of this section. All other causes of death were grouped and
aggregated for analysis. The selected cardiovascular causes of death for both datasets are shown in
Table 1.

In the disaggregated data for cardiovascular deaths, zero death counts were present across most
causes in the disaggregated cardiovascular death category over the available period (2001-2016
for England and Wales and 1979-2021 for the USA,) and when split by age band and across both
genders. For example, for England and Wales male data, rheumatic heart disease had zero counts
for ages less than 20 (and also for ages 20-30 in 2010) for 2002, 2006, 2010, and 2012-2015. Also,
for males, cardiac arrest death counts were zero for ages 40-50 in the year 2004. Similarly, for
US male data, acute rheumatic deaths had zero counts for ages less than 20 in 1998, 2002, 2004,
2006-2009, 2014-2016, 2018-2019, and 2021. The same cause had zero counts for ages up to 40
in 2007 and across other older bands in the available years.

In total, for the England and Wales death counts, of the ten cardiovascular causes of death, six
had one or more zero counts across both genders in the data: rheumatic heart disease, essential
hypertension, hypertensive disease, acute myocardial infarction, cardiac arrest, and heart failure.
Not surprisingly, zero death counts for most causes tended to be more prevalent in some years at
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Table 1. Selected causes of death, disaggregated for cardiovascular causes, used in our application to
England and Wales data (top) and US data (bottom) from the Human Cause-of-Death Data series (2024)

Mortality causes at the “long” level ICD-10 causes of death

England and Wales data
48: Rheumatic heart disease 100-109

49 Essent|a| hypertensmn .......................................... |.1.0 ....................
50Hypertens|ved|sease(heart,k|dney,secondary) |11_|15 R
51: Acute myocardial infarction 121-123
520ther|HD e |20:|24,|25 B—
.53.: Pulmonaryheart diééagés ....................................... |.2.6_.|.28. .................
54Nonrheumancvalvemsorders |34_|3s R
55: Cardiac arrest 146
55|—|eanfa|lure e e e e e |50 B—
| 57 Other He.a.rf‘d.is.eés.ens ........................................... |.3.0_.|33.,., |40_|45, .|.4.7;|4§, | 5.1
1A[|othercausesofdeath et A[[other|CD_1o i
US data
102Acuterheumat|c |00_|02
103chromcrheumat|c |05_|09 -
104Hypertensmn OSSO |10 (S
105: Hypertensive (heart) 111
105Hyperten5|ve(rena[) SO .I.lé.. SO
107 Hypertenswe(both héa.r{.a.na .re.n.a.l)” e e |.1.3,. e
108Myocard|a[|nfarct|on s ST |21 (P
109: IHD acute 120, 124
110|HDchromc SO >|‘2>5” O
111Pu|monary e e e e oot ”|.2.é;|.28” e
112: Other cardiovascular causes of death ~~~~~ 130-I51
1: All other causes of death All other ICD-10

younger ages (below 50). Similarly, for US death counts, five of the total 11 cardiovascular causes
had zero counts across genders and age bands: acute and chronic rheumatic, hypertension, and
hypertensive (both heart and renal). Figures 1 and 2 present aggregated death counts across all
ages from 2001 to 2016 for England and Wales and from 1979 to 2021 for US deaths. As observed,
the number of deaths for some causes is small, even when aggregated across all ages. With the
above in mind, we anticipate forecast performance will improve by explicitly working with actual
death counts, that is, including zero values, compared with the standard approach of excluding
zeros or replacing them with an arbitrarily small amount.

4.1 Tuning o parameter

To predict cause-of-death data with zero death counts, we proposed selecting an optimal value of
o based on out-of-sample forecast accuracy as assessed via an expanding window cross-validation
approach. Specifically, for the England and Wales data, as the available data only spanned 16
years, we adopted a simple fourfold expanding window. For the US data, as there were 43 years of
data, we adopted a tenfold expanding window. On England and Wales deaths, this meant the first
fold consists of the years 2001-2008 for training and 2009-2012 for validation, the second fold
consisted of 2001-2009 for training and 2010-2012 for validation (i.e., the training window was
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Figure 1. Death counts by cause for England and Wales deaths from 2001 to 2016. The top row presents death counts by
cause (disaggregated cardiovascular causes) for males (left) and females (right) in our application to England and Wales
data from the Human Cause-of-Death Data series (2024). The bottom row presents the same data but converted to the
composition of cardiovascular deaths by cause.

increased by one year) and so on. In each fold, the a-transformation coupled with the LC model
as detailed in Section 3 was fitted to the training set, and forecasts were made to the validation
set. The years 2013-2016 were held out from all four folds as a test set. Analogously, for the US
data, the first fold consisted of the years 1979-2001 for training and 2002-2011 for validation,
the second fold consisted of 1979-2002 for training and 2003-2011 for validation, and so on. The
years 2012-2021 were held out from all folds as a test set. We remark that as the compositional
cause-of-death data exhibits a natural time-series dependence, then an expanding window (or
forward chaining) cross-validation method was adopted to tune o; we refer to Racine (2000) and
Schnaubelt (2019) for more details around cross-validation in the context of time-series analysis.

For both datasets, we selected o based on minimizing either the average root mean square error
(RMSE) or average mean absolute error (MAE) across the four validations sets:

Ty 9 11 .
RMSE; = \/ Zt:l D=l D=1 (Obse;]"edt,u,c - PredlCtedt,u,c)z;
T, .
_ til Zi:l Ziil |observed;,, . — predlCtedt,u,c|
MAE; = N

where observed; , . generically denotes the death count for age band u, cause ¢ and the tth year in
the validation set, predicted;,, . denotes the corresponding predicted death count, and T denotes
the number of years in the kth validation fold.

>
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Figure 2. Death counts by cause for US deaths from 1979 to 2021. Note the two years 2020 and 2021 show a spike in deaths,
likely due to COVID-19. The top row presents death counts by cause (disaggregated cardiovascular causes) for males (left)
and females (right) in our application to England and Wales data from the Human Cause-of-Death Data series (2024). The
bottom row presents the same data but converted to the composition of cardiovascular deaths by cause.

Both RMSE and MAE are widely used in model evaluation to measure forecast accuracy (Chai
& Draxler, 2014; Hodson, 2022).

Full results from applying the above cross-validation approach are provided in Appendix A.2.
Opverall, the optimal o determined using the above cross-validation approach was 0.1 and 0.8 for
males and females, respectively, when applied to England and Wales cause-of-death data. On the
other hand, optimizing & on the US data yielded values of 0.7 and 0.9, respectively, for males and
females. In three of the four cases for optimizing o, the minimum RMSE and MAE produced the
same results. Interestingly, the optimal o chosen for the US female data was 1.0 when using RMSE
as the criteria: since the a-transformation here converges to RDA, this suggests the compositional
constraint impacted the analysis to a lesser extent for this setting. On the other hand, since using
MAE produced both lower RMSE and MAE in the validation sets compared with the optimal «
determined using RMSE, then we decided to choose the optimal « as 0.9 for the US female data.

4.2 Results: England and Wales data

Using the values of o tuned in Section 4.1, we produced mortality forecasts of proportions of
deaths by cause for the test set (England and Wales years 2016-2020 and US years 2012-2021)
using the «-transformation coupled with the LC model. We compared this with several LRA
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Table 2. Forecast performance on test data, applying CLR, ILR, and the a-transformation coupled with the
LC model to England and Wales data from the Human Cause-of-Death Data series (2024), disaggregated for
cardiovascular causes of death. For each metric and gender, the bolded values correspond to the error using
optimal values of « tuned based on cross-validation. In contrast, underlined values correspond to the lowest
metric in the out-of-sample forecast

RMSE x 100 MAE x 100
Method Male Female Male Female
CLR (zeros omitted) 0.1777 0.2125 0.1030 0.1172
C-LR (v0.25‘zer;o féplécerﬁenf) - v0.2v311v - 6.3225 - 0.‘1154 - ”0.1‘740
CLR (0.5 zero replacement) 0.1892 0.2603 0.0980 0.1373

ILR (zeros omitted) 0.2125 0.1030 0.11>72
||_R(ozszerorep[acement) . . 02311 e 03225 [ 01154 e 01740
ILR (05 Zﬂero‘reb‘lac‘emevnt)v - '0.1'892' - 6.2603 - 0.0980 - ‘0.1‘373
a=0.1 0.1818 0.2023 0.1046 0.1121
a=05 ST 01852 e 01714 I m e 01011
a:07 e 02109 e 01642 [ 01064 e M
L D m e T
a‘ = (5‘9 - 0.2526 - 6.1640 - ‘ 0.1122>8 R ‘0.1004
a=1(RDA) S 02809 e 01669 I 01329 e 01015

methods in the literature for addressing zeros counts, including the CLR and ILR transforma-
tions where zeros were omitted from the data and the CLR and ILR with all zeros replaced by 0.25
or 0.5 before modeling. These additional methods were coupled with an LC model for forecasting
and comparison.

Table 2 summarizes the performance of females and males. Aside from the optimal values of
a, we also considered values o« = 0.5, « = 0.7, « = 0.9, and o = 1, the latter equivalent to RDA,
that is, ignoring the compositional constraint. The a-transformation, on the whole, tended to
produce better forecasting accuracy for the US dataset compared with the CLR and ILR plus either
ad hoc method of handling zero values. Improvements in the forecast were more evident when
assessing MAE across both genders, although even with RMSE, the «-transformation was the
second-best performer. Visually, Fig. 3 corroborates the results for males and females, where the
a-transformation better fits the observed data when compared with the corresponding CLR and
ILR transformations.

The results in Fig. 4 are consistent with the broader observations that overall mortality experi-
enced due to cardiovascular causes in the UK has been improving since the 1960s (British Heart
Foundation, 2023; NHS, 2023; Office for National Statistics 2021), although forecasts suggest that
an expected decline in the major cardiovascular causes (myocardial infarction and pulmonary
heart disease) will be offset by forecast increases in the “other heart” cause category. Again, results
from the a-transformation follow the observed data over time more closely compared to CLR and
ILR with zeros removed. Moreover, the standard LRA approaches, where a value of 0.25 or 0.5
was added to the zeros, tended to forecast higher proportions for causes with the lowest propor-
tion of deaths (in this case, cardiac arrest), which is offset by lower forecast proportions across
all other causes (results shown in Appendix A.3). This result is consistent with the fact that these
approaches arbitrarily introduce small death counts where there are none.

4.3 Results: US data

For the larger US cause-of-death dataset, Fig. 5 shows the movement in actual proportion of
deaths for each cause over the historical data for US death counts, in a similar way to Fig. 3.
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Figure 3. Male (top row) and female (bottom row) mortality by cause in our application to England and Wales data from the
Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death. The figures show the movement
in actual proportion of deaths for each cause from 2001 to 2016 (left column), while the remaining three columns present
results from applying CLR, ILR (with zeros removed), and «-transformations, respectively.

The a-transformation results followed the observed data over time more closely compared to
CLR and ILR with zeros removed. This is shown in Table 3 and Fig. 6. Moreover, the standard
LRA approaches, where a value of 0.25 or 0.5 was added to the zeros, tended to forecast higher
proportions for causes with the lowest proportion of deaths (in this case, cardiac arrest), which is
offset by lower forecast proportions across all other causes (results shown in Appendix A.3). This
result was consistent with the arbitrary introduction of a small death count where none existed.
More importantly, compared with England and Wales data, the forecast performance using the
o-transformation was even further improved in the application. Indeed, it suggests that, with a
larger volume of data available, our proposed approach can exhibit greater forecasting perfor-
mance compared to existing log-ratio transformation approaches.

In summary, the point forecast results across both applications suggested that the
o-transformation, a generalization of the log-ratio transformation to a broader class of transfor-
mations, was an effective way to address zero counts in compositional data, especially compared
to ad hoc methods of adding small death counts. In Appendix A.4, we performed a sensitivity
analysis to assess how much the performance of the two applications depended on the precise o
value chosen. Overall, results showed that forecasting performance was largely unaffected when
the value of o changed within the tolerance of 0.1 that we employed when tuning this parameter
in Section 4.1.

4.4 Interval forecasts

To further understand the projected deaths using the a-transformation, we used interval forecasts
to quantify the uncertainty around the point forecast and a further source of (probabilistic) com-
parison between different methods across both applications of the HCD data (i.e. England and
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Figure 4. Forecast of cause-specific mortality up to 2026 in our application to England and Wales data from the HCD
database, disaggregated for cardiovascular causes of death. Solid lines represent the observed mortality by cause propor-
tions, and dashed lines show the forecast using the CLR, ILR (with zeros removed), and a-transformations (L-R). Mortality by
cause is shown for males (top row) and females (bottom row). This figure omits non-cardiovascular causes for presentation
purposes.

Wales and US death counts). Briefly, the interval forecasts were produced by adapting the pro-
posed method of Shang and Haberman (2020) for use with the CLR, ILR, and «-transformations
and involved the following steps.

(I) Transform the compositional data into the real space using the three methods explored
(CLR, ILR, and the proposed «-transformation). Construct the point forecast as per
Sections 4.2 and 4.3.

(II) Bootstrap (sample with replacement) the forecast component scores (i.e., b, . or the age-
and cause-specific coefficients that vary over time) and the model fit errors (i.e., €,) in
equation (5). By doing this a large number of times and then taking the empirical quantiles
(here, 90% intervals are shown), upper and lower bounds for the interval forecast in real
space are produced.

(III) Transform the interval forecast from the real space to the simplex for inference using the
corresponding inverse CLR, ILR, or «-transformations. Finally, add back the geometric
mean as per the original point estimate approach discussed per equation (5).

Results for the interval forecasts for both applications are presented in Figs. 7 and 8, where the «
parameters used in producing interval forecasts were optimized via the interval score approach
of Shang and Haberman (2020). Overall, the results across CLR, ILR, and the «-transformation
were largely consistent with the corresponding point forecast results shown previously in Figs. 4
and 6. Nevertheless, the interval forecast offers an additional view of uncertainty around the point
forecast and reflects the possible extents to which the composition of mortality across different
causes could change into the future based on each model.
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Table 3. Forecast performance on test data, applying CLR, ILR, and the a-transformation coupled with the
LC model to US data from the Human Cause-of-Death Data series (2024), disaggregated for cardiovascular
causes of death. For each metric and gender, the bolded values correspond to the error using optimal values
of & tuned based on cross-validation. In contrast, underlined values correspond to the lowest metric in the

out-of-sample forecast

RMSE x 100 MAE x 100
Method Male Female Male Female
CLR (zeros omitted) 0.3370 0.3819 0.1417 0.1650
CLR (0.25 zero replacement) 0.3566 0.4393 0.1541 0.2049
CLR (0.5 zero replacement) 0.3477 0.4278 0.1467 0.1947
ILR (zeros omitted) 0.3370 0.3819 0.1417 0.1650
ILR (0.25 zero replacement) 0.3566 0.4393 0.1541 0.2049
ILR (0.5 zero replacement) 0.3477 0.4278 0.1467 0.1947
0.3072 0.3138 0.1314 0.1439
0.2905 0.2777 0.1268 0.1300
0.2877 0.2518 0.1299 0.1202
0.3095 0.2516 0.1355 0.1238
o =1 (RDA) 0.3435 0.2691 0.1414 0.1287
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Figure 5. Male (top row) and female (bottom row) mortality by cause in our application to US data from the Human Cause-
of-Death Data series (2024), disaggregated for cardiovascular causes of death. The figures show the movement in actual
proportion of deaths for each cause from 1979 to 2021 (left column), while the remaining three columns present results from
applying CLR, ILR (with zeros removed) and a-transformations, respectively.

4.5 Alternative approaches and future directions

In this section, we consider an alternative approach to the o-transformation for forecasting mor-
tality by cause. Specifically, we consider the multinomial logistic regression (MLR) of Alai et al.
(2015) and compare its forecast performance to the o-transformation.
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Figure 6. Forecast of cause-specific mortality up to 2051 in our application to US data from the Human Cause-of-Death Data
series (2024), disaggregated for cardiovascular causes of death. Solid lines represent the observed mortality by cause propor-
tions, and dashed lines show the forecast using the CLR, ILR (with zeros removed), and a-transformations (L-R). Mortality by
cause is shown for males (top row) and females (bottom row). This figure omits non-cardiovascular causes for presentation
purposes.

The MLR model is often used to detect factors significantly influencing a response with sev-
eral competing outcomes. In the literature, numerous applications of the MLR model have been
undertaken in cause-of-death analysis over the past three decades. For example, Eberstein et al.
(1990) used eight categorical and continuous independent variables, including marital status, edu-
cation, and birth weight, to model five infant cause-specific mortality rates. Lawn et al. (2006)
applied MLR to model the distribution of neonatal deaths in countries with poor data (see Johnson
etal., 2010, for related work). Shahraz et al. (2013) employed MLR to redistribute unknown or ill-
defined deaths, while Park et al. (2006) used it to account for the impact of the tenth revision of
the ICD.

For illustrative purposes, we applied the MLR model to US male cause-of-death counts only,
disaggregated for cardiovascular causes as per the application in Section 4.3. The forecast per-
formance from applying MLR was assessed using the sum of the squared residual errors. Based
on this, we found that the single and simple MLR performed best when compared against the
quadratic and cubic MLR. We present results for these in Figs. 9 and 10, which are analogous to
those presented earlier in Figs. 5 and 6. Note in assessing the fits, the problem of zeros was still
present in the actual death rates by cause; we handled this by adding a 0.01 death count before
calculating mortality rates and taking logarithms.

To compare with the forecast performance using CODA methods and shown in Table 3, we
calculated the equivalent RMSE and MAE (scaled by 100) for the MLR application to US male
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Figure 7. Male (top row) and female (bottom row) 90% interval forecasts up to 2026 in our application to England and Wales
data from the Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death.
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Figure 8. Male (top row) and female (bottom row) 90% interval forecasts up to 2051 in our application to US data from the
Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death.
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Figure 9. Male mortality by cause using US data from the Human Cause-of-Death Data series (2024), disaggregated for car-
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2021 (left column), while the remaining four columns present results from applying MLR simple, single, quadratic, and cubic
regressions, respectively.
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Figure 10. Fits of cause-specific male mortality in our application to US data from the Human Cause-of-Death Data series
(2024), disaggregated for cardiovascular causes of death. Solid lines represent the observed mortality by cause proportions,
and dashed lines show the fit using MLR regressions. This figure omits non-cardiovascular causes for presentation purposes.

death counts. In this application, the simple MLR produced RMSE and MAE of 2.289 and 1.126,
whereas the single MLR produced RMSE and MAE of 2.040 and 1.038. This is substantially higher
than the errors of 0.2877 and 0.1299 when we apply the CODA method using an a-transformation.
We conjecture similar results would also arise for the case of the US female cause-of-death count
data, as well as the England and Wales data. Overall, the comparison indicates that, perhaps not
surprisingly, CODA approaches perform better when forecasting using compositional data.
Beyond the MLR model, another method to address the problem of zeros in composition data is
applying the Dirichlet distribution. This idea has previously been explored by Tsagris and Stewart
(2018) and Graziani and Nigri (2023) in modifying the log-likelihood of the Dirichlet distribution.
Such approaches have been applied in other fields, including biology and chromosome detection
Tang et al. (2022). Further exploration of the Dirichlet composition distribution in understanding
mortality by cause would further the understanding of mortality forecasting by cause. Finally, a
forecast reconciliation approach can be adopted to ensure forecast coherence instead of applying
CODA (Li et al. 2019). Such approaches address the potential problems arising when subpopula-
tion mortality forecasts do not sum up to the aggregate forecast, and they could be considered an
alternative approach where there are few zeros in subgroups.
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5. Conclusion

In this paper, we have introduced the «-transformation, coupled with an LC model for mortality
modeling, as a statistical method to handle cause-of-death compositional data with zero values.
Using an expanding window cross-validation approach to select o, we presented two applications
to death counts by cause, disaggregated for cardiovascular causes in England and Wales data from
2001 to 2016 and on US data from 1979 to 2021. Forecasts using the «-transformation tend to
perform better than those produced using standard log-ratio transformations and is particularly
evident in the application to US death counts by cause, having more years of historical data.

We tested a single model (LC) in the compositional framework and focused on heart-related
causes of death, where the dataset includes zero counts for several years and age bands. Mortality
forecasting by cause may be further enhanced by combining the «-transformation with vari-
ations of the LC model, for example, a model which decomposes cause-specific variation into
joint and individual variation (Kjaergaard et al., 2019), or using nonparametric techniques such
as smoothers or tensor decompositions (Zhang et al., 2023). Also, rather than adding a small
death count or removing zeros entirely, other approaches could be compared against the «-
transformation, including “borrowing” from a neighboring age (for the same cause) or smoothing
over similar causes (for the same age), along with other imputation methods (Lubbe et al., 2021).
We leave such investigations as avenues for future study.

One feature of the death counts by cause for both England and Wales and the USA, which is
true of many other cause-of-death datasets in other countries, is that zero counts of death for mul-
tiple causes tend to occur across consecutive years and/or adjacent age groups. In other settings
with fewer or no zeros count, and where the occurrence of the zeros is more sporadic, simpler
approaches, such as adding a small value to enable LRA may have fewer implications on the anal-
ysis and conclusions relative to using the -transformation (Tsagris & Stewart, 2022). Conversely,
for older ages and emerging causes with only recent data (including COVID-19), reflecting true
zeros in the data in a statistically more rigorous and data-driven manner, as the «-transformation
does, is expected to produce more accurate forecasts.

While CODA is useful in capturing dependencies between causes arising due to the compo-
sitional nature of the data, other dependencies, such as comorbidities, can arise irrespective of
how the data are treated. An important avenue of future research is how methods such as «-
transformation could be coupled with techniques that can account for such dependencies. Indeed,
an essential application of CODA for life insurers is to enhance the understanding of morbidity
and mortality risks. CODA can also be used to investigate the risk implications across differ-
ent subgroups of insured lives and exposures, and we anticipate the o-transformation will play a
useful role in modeling compositional data arising from these other settings. Finally, the results
from the application suggest that while the aggregate cardiovascular death counts are expected to
reduce, some granular causes of death within the cardiovascular cause are expected to increase,
particularly for males across England and Wales. Analysis using US death counts indicate slight
decreases across all granular cardiovascular causes. These findings should be further investigated,
along with other causes.
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A. Supplementary Information and Results

A.1 The Lee-Carter model for modeling mortality

This paper applies the LC mortality model after LRA and the a-transformation (Lee & Carter,
1992). For completeness, this appendix provides a brief review of the LC model for analysis of
non-compositional data, that is, RDA.

https://doi.org/10.1017/51748499524000320 Published online by Cambridge University Press


https://cks.nice.org.uk/topics/cvd-risk-assessment-management/background-information/burden-of-cvd/
https://www.nhs.uk/conditions/cardiovascular-disease/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/ischaemicheartdiseasesdeathsincludingcomorbiditiesenglandandwales/2019registrations
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/ischaemicheartdiseasesdeathsincludingcomorbiditiesenglandandwales/2019registrations
https://www.kingsfund.org.uk/publications/cardiovascular-disease-england
https://arxiv.org/abs/https://arxiv.org/abs/1106.1451
https://cdn.who.int/media/docs/default-source/classification/other-classifications/9241544228_eng.pdf
https://doi.org/10.1017/S1748499524000320

22 Zhe Michelle Dong et al.

Treating causes independently, the LC model fits and predicts central mortality rates by
expressing the log mortality rate as a linear function of a time factor with age parameters. For cause
¢, let my,, . denote the central death rate for age u in year ¢, which we compute as my¢ e = dy /Lt u»
where the denominator Ly, is the exposure of person-years lived at age . The LC model is then
defined as

In (mt,u,c) = Uyc+ bu,ckt,c + €tuc (Al)

where 1, represents an age- and cause-specific average mortality over time, b, . denotes the age-
and cause-specific coefficients that vary over time; k; . denotes a factor of time-varying indices for
the level of mortality, and the €,,, . denote residual error terms. The model is typically fitted by
applying a singular value decomposition to a U x T matrix the elements of which are given by
In (my,, ), after subtracting the average mortality rate over time for a given cause. After fitting,
mortality forecasting is performed by modeling the estimated time factors k;; as an autoregressive
integrated moving average time series. The common choice is a simple random walk with drift.
We refer the reader to Lee and Carter (1992) for more details regarding parameter estimation of
the LC model.

The LC model is commonly used for national forecasts, with its primary advantages includ-
ing its simplicity, ability to deal with uncertainty, and low requirement for subjective judgment
(Bergeron-Boucher & Kjeergaard, 2022). With its simplicity comes a number of limitations, and
consequently many variations of LC exist to improve its performance. Among many others, exam-
ples include Renshaw and Haberman (2003), which generalized the LC model to include more
than one factor; the Cairns et al. (2006) model, which is a popular alternative that models the
probability of survival rather than the log,, mortality rates; the Lee and Miller (2001) and Booth
et al. (2002) models, both of which aim to improve the forecasting performance of the LC model
(Booth et al.,, 2005); and Li and Lee (2005) and Gao and Shi (2021), who apply coherence in the
context of mortality modeling and age-coherent extensions of LC, respectively.

A.2 Additional results for the application to the HCD database
Table A.1 shows the results from cross-validation for England and Wales’s cause-of-death data.
Based on cross-validation, we determined the optimal « value is 0.1 for males and 0.8 for females.
This was then applied to produce the results in Section 4.2.

Table A.2 similarly shows the results from cross-validation for US death counts by cause to
determine the optimal . Based on cross-validation, we determined the optimal « value is 0.7 for
males and 0.9 for females. This was applied to produce the results in Section 4.3.

A.3 Additional results comparing forecast performance using CLR and ILR transformations with different
techniques to replace zero counts

We further compared the performance of CLR and ILR forecasts when zero counts are replaced by
0.25 or 0.5 for both England and Wales and US death counts by cause of death. This was applied
for both male and female death counts on both sets of data for completeness. These results are
included in Sections 4.2 and 4.3. For England and Wales, Figs. A.1 and A.2 show the visualizations
of the forecasts when different zero replacement approaches are used. The forecast and trends
change and are sensitive to the method of zero replacement. The «-transformation presents a
statistical approach that removes this sensitivity.

Similarly, for US death counts, Figs. A.3 and A.4 show visualizations of the forecasts when
different zero replacement approaches are used. It is worth noting that longer term trends are still
impacted by different approaches to replace zeros, despite the US dataset having a longer history
compared to the England and Wales death counts by cause.
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Table A.1 Results for validation sets (RMSE and MAE, based on fourfold expanding window cross-validation)
to tune «, using the a-transformation coupled with an LC model for forecasting in our application to England
and Wales death counts by cause from the Human Cause-of-Death Data series (2024), disaggregated for car-
diovascular causes of death. Optimal values of & are shown in bold, noting all results are scaled by multiplying

by 100
RMSE MAE

o Male Female Male Female
0 (CLR) 0.1919 0.2022 0.0985 0.0931
0 (ILR) 0.1919 0.2022 0.0985 0.0931
0.1 0.1992 » » 0.2001 0.07é6 0.0727
0.4 0.2542 0.1733 0.0924 0.0649
07 ST 02882 S 01539 [ 01043 [ 00607
0.8 0.3200 0.1500 0.1135 0.0602

Table A.2 Results for validation sets (RMSE and MAE, based on tenfold expanding window cross-validation)
to tune «, using the a-transformation coupled with an LC model for forecasting in our application to US death
counts by cause from the Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes
of death. Optimal values of & are shown in bold, noting all results are scaled by multiplying by 100

RMSE MAE
o Male Female Male Female
0 (CLR) 0.2320 0.3078 0.1092 0.1195
0.3 0.2061 0.2843 0.0771 0.0898
,0.6, e vo,1'89v1' JE o;2'55(') B .0..0717 e 0.‘0827
0.7 0.1868 0.2485 0.0709 0.0810
vl (RDA) . v0.1‘998‘ - 0.v2‘38‘6 - 0.6744 - ‘ 0;07§l

A.4 Sensitivity analysis of the choice of «

A sensible question to ask then is how sensitive were the results to the particular chosen values of
o as long as we were within this tolerance range. Based on additional testing, we found that results
remain largely unaffected when o was specified within 0.1.

The optimal « for England and Wales death counts (Section 4.2) is 0.1 for males, resulting in
RMSE and MAE of 0.1818 and 0.1046, respectively. For o = 0.09, the resulting RMSE and MAE
are 0.1832 and 0.1055. For o = 0.11, the resulting RMSE and MAE are 0.1806 and 0.1037. Here,
the results improve when o = 0.11, compared to specifying « to the nearest 0.1. However, the
resulting inferences around mortality forecasts by cause are unchanged.
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Figure A.1. Forecast of cause-specific mortality up to 2026 in our application to England and Wales death counts by cause
from the Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death. Solid lines represent
the observed mortality by cause proportions, and dashed lines show the forecast using the CLR transformation with varia-
tions in the treatment of zeros in the data. Mortality by cause is shown for males (top row) and females (bottom row). This

figure omits non-cardiovascular causes for presentation purposes.
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Figure A.2. Forecast of cause-specific mortality up to 2026 in our application to England and Wales death counts by cause
from the Human Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death. Solid lines represent
the observed mortality by cause proportions, and dashed lines show the forecast using the ILR transformation with variations
in the treatment of zeros in the data. Mortality by cause is shown for males (top row) and females (bottom row). This figure

omits non-cardiovascular causes for presentation purposes.
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Figure A.3. Forecast of cause-specific mortality up to 2051 in our application to US death counts by cause from the Human
Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death. Solid lines represent the observed
mortality by cause proportions, and dashed lines show the forecast using the CLR transformation with variations in the
treatment of zeros in the data. Mortality by cause is shown for males (top row) and females (bottom row). This figure omits
non-cardiovascular causes for presentation purposes.
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Figure A.4. Forecast of cause-specific mortality up to 2051 in our application to US death counts by cause from the Human
Cause-of-Death Data series (2024), disaggregated for cardiovascular causes of death. Solid lines represent the observed
mortality by cause proportions, and dashed lines show the forecast using the ILR transformation with variations in the treat-
ment of zeros in the data. Mortality by cause is shown for males (top row) and females (bottom row). This figure omits
non-cardiovascular causes for presentation purposes.
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We perform a similar exercise on the optimal alphas for US data, where there is a longer history
of death counts. For example, the optimal o for US females (Section 4.3) is 0.9, resulting in RMSE
and MAE of 0.2516 and 0.1238, respectively. For o = 0.91, the resulting RMSE and MAE are
0.2528 and 0.1243. For o = 0.89, the resulting RMSE and MAE are 0.2504 and 0.1233, an improve-
ment to the selected optimal o = 0.90. Moreover, the resulting inferences from the forecast were
largely unchanged in terms of shape and trend in the forecast of cause-specific mortality.

Cite this article: Dong ZM, Shang HL, Hui F and Bruhn A (2025). A compositional approach to modeling cause-specific
mortality with zero counts, Annals of Actuarial Science, 1-26. https://doi.org/10.1017/S1748499524000320
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