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ON RINGS WITH MANY ENDOMORPHISMS 

BY 

J O S E P H N E G G E R S 

ABSTRACT. All rings have an identity, all homomorphisms map 
identities to identities, all homomorphisms on algebras over fields 
are algebra homomorphisms. A ring R is a quotient-embeddable ring 
(a QE-ring) if for any proper ideal a of R there is an endomorph-
ism of R whose kernel is the ideal a. A QE-ring U is a receptor of R 
if for any proper ideal a of R there is a homomorphism from JR to 
U whose kernel is the ideal a. 

THEOREM. A ring R has a receptor if and only if it is a K-algebra 
over some field K contained in the center of R. If R is a commuta­
tive K-algebra of this type, then it has a commutative receptor. 

In the following we shall only concern ourselves with rings which contain an 
identity 1. All homomorphisms of rings will have the property that they map 
the identity to the identity. If a ring R is a K-algebra over a field K, then 
K = K1 is contained in the center of R. Furthermore, when all rings involved 
are K-algebras, then homomorphisms will generally be K-algebra homomorph­
isms. 

We shall call a ring R a quotient-embeddable ring (a QE-ring) if for any 
proper ideal a of R, there is an endomorphism of R whose kernel is the ideal 
a. 

Given a ring R, a QE-ring is a receptor of R if for any proper ideal a of R, 
there is a homomorphism from R to U whose kernel is the ideal a. 

In this note we prove the following theorem: 

THEOREM. A ring R has a receptor if and only if it is a K-algebra over some 
field K. If R is a commutative K-algebra it has a commutative receptor. 

Let R = K{Xt | i e 1} be a free associative algebra over the field K, and let F 
be a family of proper ideals. Construct a new free associative algebra W = 
K{Xt(a) \iel, aeF}, and let N be the ideal of W generated by the polyno­
mials P(Xt(a)) (a fixed) such that P(Xt) is an element of a. Finally take 
U = W/N. 

LEMMA 1. With the definitions of R and U as above, given any ideal asF, 
there is a homomorphism <f):R-+ U such that ker <fi = a. 
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Proof. Since R is a free associative algebra, we define a homomorphism 
<£:JR-»U by taking ^>(Xi) = Xi(a) + N and extending to R. Certainly, if 
P(Xt)ea, then <f>(P(Xi)) = P(Xi(a)) + N = 0 (in [/), i.e., a g k e r ^ . 

Hence we must show that k e r ^ c a , or equivalently, if P(Xt(a))eN, then 
P(Xt)ea. Suppose that P(Xi(a))eN, i.e., P(Xt)e ker <£, and write 

(1) PiXiia)) = I WfiiMa,))^ 

where the terms M; and N, are monomials in W, where A, is an element of K, 
and where P/(X;) belongs to a, for a; an element of F. Suppose furthermore 
that the number of indices involved in the expression for P(Xt(a)) in (1) is as 
small as possible. 

Suppose A is the collection of all indices / such that MjN, is not a monomial 
in the variables Xt(a) alone, and consider 

(2) O ^ A ^ P ^ o , ) ) ^ 

Since W is a free associative algebra, and since P(Xj(a)) is a sum of 
monomials in the variables Xt(a) alone (including the constant term), it follows 
from (1) and (2), that Q is identically zero, whence by the minimality condition 
we may take A = <f>. 

Now consider a fixed pair of monomials Mio and Nh, and list the distinct 
ideals which occur among the ideals dj, say fti,..., 5fc. Then as part of the 
expression for P(Xi(a)) in (1) we generate a term 

(3) T = Mi0(ZAjfPJ(Xi(feI)))iVj0, 

where / runs over all indices such that M, = Mh, Nj — Njo and af = bt. 
Hence, since P(Xt) e bh and since bt is an ideal, the minimality condition 

implies that there is precisely one term which goes between Mio and Nh per 
ideal in the expression for P(Xt(a)) given in (1). 

Since the ideals bi are proper ideals, it follows that the polynomials Pj(Xi) 
have positive degree. Hence, if S, is the leading term of P^Xj) with respect to a 
suitable ordering of the variables and the monomials, then for b\¥" a the term 

(4) S^MkSfJLMMN,. 

of T as in (3) cannot be cancelled by any other term, since Mjo and N/o are 
monomials in the variables Xt(a). 

Again by the minimality condition, this implies that the term T given in (3) 
does not occur at all if bt # a. 

Therefore the only terms which can survive are those for which bi = a, i.e., 

(5) P(Xt(a)) = I kiMfiiXiiaW, 
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where Pj(Xi)ea,j = a. Hence, by the minimality condition and the fact that the 
monomials MjNj involve only the variables X|(a), it follows that in fact the 
right hand side consists of a single term, which must be P(Xi(a)) itself. Thus 
P(Xi)ea and the lemma follows. 

If F = {a}9 then W = R, and N=a, whence U = R/a, and the mapping <f> 
constructed in the lemma is precisely the natural map. 

If we take F to be the family of all proper ideals, then U satisfies part of the 
definition of receptor. The problem is to show that we may arrange for 17 to be 
a QE-ring. 

LEMMA 2. If R is a free associative algebra then R has a receptor. 

Proof. Let J? = W0 be the family of all ideals of W0. By Lemma 1 we 
construct a free associative algebra W[ and an ideal N'i with the property that 
Ut = W'JN't is as given in Lemma 1. Let W0 = U0, N0 = 0. If TT0y. U0-* Ui is 
defined by Xt^> XM + N'u then since F(Xi) = 0 if and only if P(Xi(0))eN[9 

the mapping 7r0,i is well-defined and an embedding. Now, construct a free 
associative algebra Wi above U\ by taking generators Yt(a), iel, aeF, and let 
Si:Wi-> l/i be given by Yi(a)-* Xi(a) + N'1. Thus kersx = Ni is the ideal 
generated by all elements P(Yj(a)), where P(Xi)ea. 

Let Fi be the family of all ideals of Wx containing Nu and use Lemma 1 to 
obtain an algebra U2 such that all ideals in Fi are kernels of homomorphisms 
from Wt to U2. If we let TT1>2 be obtained by factoring the homomorphism with 
kernel Ni through eu then TTI2:UI—> U2 is an injection. Repeat the same 
process with respect to W2, N2 and e2, etcetera, to obtain a sequence 

R = Wo Wx Wn 

(6) j 6 0 |ei k 
R=[/ 0 ——> tA > >JJn— >•••> 

where TTM+I is obtained by factoring the homomorphism <J> : Wt -> l/i+i whose 
kernel is Nt = ker et through the mapping ef. 

In particular every proper ideal a of Ut is the kernel of a homomorphism 
4>:Ui-* l/j+i obtained as a factorization of a homomorphism ij/: W*-» Wi+1 

whose kernel is eTx(a), an element of Fh the collection of all ideals of Wi 
containing Nt. If we let 7^+, = 7rM+i°- • ' <> iri+i_Ui+i9 then we obtain a direct 
system of inclusions and we let U = limn Un = U Un, where the proper identifi­
cations have been made. U is a QE-ring which will serve as a receptor of R. 

The free associative algebra Wn+i is generated by variables Yf(a0,..., an) = 
Yf (a 0 , . . . , an_i)(an), where i e I and a; 6 Fh and t/n+i is accordingly generated 
by the elements Xi(a0,..., an) = Yf(a0,..., an) + Nn+1. Now, let W be the free 
associative algebra over K generated by inderminates Yi(a0,..., at), where 
a, G F„ for y = - 1 , 0 , 1 , . . . (Yt(a^) = Yt). 
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Next, define a mapping e : W-> U by mapping Yi(a0,.. . , at) to 
Xi(a0,..., at). Thus since the elements X j (a 0 , . . . , at) form a generating set for 
Ut+1, it follows that e is a surjection. If N = ker 8, then L7= W/N. If V t + i£ W 
is the free associative algebra generated by all Yi(a0,..., as), where - 1 < 5 < f, 
then W = lim tV,= U V* 

Let A be an ideal of U. Let B = e - 1(A) and let B m = B n V t + i . Then 
JB t+i3ker et+1, where et+l:Vt+1-^> Ut+1 is obtained by mapping Yi(a0,..., at) 
to Xi(a0,..., at). 

Furthermore, ker e*+1 contains all elements Yi (a 0 , . . . , a s ) -
Yi (a 0 , . . . , as, Ns+U • •, Nt). This is so since X j ( a 0 , . . . , as) = 
X i ( a 0 , . . . , as, N s +i , . . . ,Nt) in [7t+1 via the identifications obtained from the 
injection 7rs+M+1. 

Now define <p: W-> 17 = W/N by: 

(7) ? ' (Yi(ao, . . . , a t)= ^ ( a 0 , . . . , a» E?+i) + N 
where 

B*+1 = e7+i(e*+i(Bt+1)) e Ft+l. 

We claim that ker <p = B = e_ 1(A). Thus <p induces a mapping <p':U-*U 
with ker<p = A. i.e., 1/ is a QE-ring and therefore a receptor of R. 

Suppose P(Yi(a0,..., at))e ker <p. Since P e V ^ i for some minimal d, we 
adjust all sequences to sequences ( a 0 , . . . , at9 Nt+U . . . , Nd). This may be done 
since ker cp^B^N. 

Consider the corresponding element P(Yi(a0,..., Nd)) of Wd+1. 
Let fa+i:Ws+1-+ L/s+2 be defined by: 

(8) </>s+i( Yf(a0 ? . . . , as)) = Xi(a0,..., as, B*+1). 

From Lemma 1 and the construction of Ws+1, ker <£s+1 = Bf+lm Now, 
P(Yf (a 0 , . . . , Nd)) E ker cj>d+1 if and only if P ^ U o , . . . , Nd))) G Ad+1. 

Since <^s+1(Y*(a0,..., as)) = 4>(Yi(a09..., as)), we find that P(Yi(a0,. . . , at, 
Nt+U . . . , Nd)) e ker >̂ if and only if P(Xi(a0,..., Nd)) 6 A d + i . Hence 
P (Yi (a 0 , . . . , as)) G ker cp if and only if P(Xi(a0,..., as))e A, i.e., ker <p = 
£~1(A) = B. 

The proof of the lemma is now complete. 
Although the computations are somewhat messy, the proof is intuitively 

quite straightforward. Thus, given R = U0, we apply Lemma 1 to the family of 
all ideals of U0 to obtain U0^ l/i. Again, we apply Lemma 1 to the family of 
all ideals of Ut to obtain U0^ Uxç U2, and we repeat this process ad infinitum 
to obtain an algebra U = limn Un={J Un. Clearly, if A is an ideal of U, and if 
At H Ut, we have homomorphisms fa : Ux -» l/ i+i such that ker (fit = At. The 
problem is to construct them all at once or in such a manner that the restriction 
of fa+1 to Ut is precisely fa. The labor in the lemma concerned this construc­
tion. 
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LEMMA 3. If R is a polynomial ring over a field K, then R has a commutative 
receptor. 

Proof. In the proof of Lemma 1 we take W = K[Xt(a) | i e I, a e F] to be a 
polynomial ring and if we define N as the ideal generated by the polynomials 
P(Xi(a)) (a fixed) such that P(Xt) is an element of aeF, then 17= W/N is a 
commutative ring, and the expression (1) becomes 

(9) P(X i(a)) = lM fP i(X4(o /)), 

where My is a monomial in W, where P/(Xj) belongs to a] for at an element of 
F and where we may assume that the number of indices is as small as possible. 
By the same argument as in Lemma 1, we again find that P(Xi(a))eN if and 
only if P(Xi)eN. Hence, if 4>:R-> U is defined by <^(Xi) = X i(a), which can 
be done since we are dealing with a free object in the category of commutative 
K-algebras, then ker c/> = a, for a e F. Thus Lemma 1 continues to hold. 

Similarly, if we use the argument of Lemma 2, replacing free associative 
algebras everywhere by polynomial rings, then U = limn Un = U Un, is itself a 
commutative ring and a receptor of R. 

LEMMA 4. Suppose that R is a ring such that for some ring U, given any proper 
ideal a or R, there is a homomorphism <j> from R to U with ker (f> = a. Then 
R contains a field K in its center. 

Proof. Let Z l c R be generated by the identity. Then, itneZl, and if nR is 
a proper ideal, there is a homomorphism <f> with kernel nR. This means that 
since <j>(n) = n<f>(l) = n 1 = 0, then nU = 0 and hence nR = 0 as well. Thus, if n is 
the characteristic of R, we have n = m1m2, where (mu m2) = l implies m^R 
and m2R are proper, whence m\R = m2R = 0, and R = 0. If n = p\ p a prime, 
then pR is proper, pR = 0, so that finite characteristic implies Z l is a finite 
field. If no ideal nR is proper, then nn~1 = 1, where n_ 1 is in the center of R 
since n is in the center of R. Thus the center of R contains the field Q of 
rational numbers. 

The theorem follows as an easy consequence of Lemmas 1, 2, 3, and 4, if we 
observe that if U is a receptor of R, then U is also a receptor of R/a for any 
proper ideal a. Thus, we write an arbitrary X-algebra R as a quotient # = S/a, 
where S is a free associative algebra, while if R is commutative we take S to be 
a polynomial ring. 

We close with some remarks. If R is a QE-ring, then it is not difficult to see 
that R® • - '(D R = Rn, a direct sum of n-copies of R, is a QE-ring. Similarly, 
if R is a QE-ring, then Rn, the full matrix algebra of nxn-matrices over JR, is a 
QE-ring. Simple algebras are QE-rings. If R is a QE-ring which is a domain 
and which as a K-algebra is finite dimensional over its center, then R is easily 
seen to be a division ring. The Weyl-algebra over a field of characteristic 0 is a 
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QE-domain which is simple but not a division ring. Commutative QE-domains 
are fields. One question which is suggested by a dearth of examples of 
QE-domains which are not simple algebras is the following: are QE-domains 
simple algebras? 

Concerning the theorem proven in this note we have the following question: 
If JR is a K-algebra satisfying a given polynomial identity, does it have a 
receptor satisfying the same polynomial identity? Do we need to put any 
restrictions on the types of identities used? 

If R = K{yu . . . , yn} and if U is a receptor of R, then any proper ideal of R 
has a generic zero in Un. Thus, if a is a proper ideal, then there is an element 
(i i i , . . . , iin) of Un such that P(uu . . . , un) = 0 if and only if P(yi , . . . , yn) e a. 
Thus in a sense a receptor behaves somewhat like an algebraic closure. 

If a ring is a QE-ring and if it satisfies other conditions, then there is a 
tendency for the other conditions to become inherited by epimorphic images. 
Thus, e.g., if R is a QE-ring and if it contains no nilpotent elements, then the 
same is true for R/a since R/a can be embedded in JR. Hence one might expect 
the class of complete rings to be reasonably small and quite suited to further 
analysis. 
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