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WHEN IS EVERY KERNEL FUNCTOR IDEMPOTENT? 

JORGE E. VIOLA-PRIOLI 

In t roduc t ion . All rings occurring are associative and possess a unity, which 
is preserved under subrings and ring homomorphisms. All modules are unitary 
right modules. We \et^R denote the category of rights-modules. 

In recent years several authors have studied rings R by imposing restrictions 
on the torsion theories [4] of ^R. (See for instance [2; 23; 24].) This paper 
offers another alternative to that trend, namely the study of rings R via their 
set of kernel functors K{R). 

The concept of kernel functor is by now well known, as it appears in [12]. We 
also know the similarities and differences that exist between the kernel functors 
of R and the torsion theories of ^R. In particular, both concepts intersect at 
the hereditary torsion theories. 

Any ring satisfies the following containment relationship : {0, oo } C I{R) C 
K(R) ; it is essentially proved in [10] that {0, oo } = I(R) if and only if R is a 
left perfect ring with a unique simple right ^-module up to isomorphisms. In 
this paper we consider the other extreme case, i.e., when is I(R) = K(R)? 

To study these rings we proceed as follows : 
(a) We see first what happens if in addition R is assumed commutative. We 

settle the problem by proving the 

THEOREM. If R is commutative, K(R) = I(R) if and only if R is a finite 
product of fields. 

We then analyze the consequences of this result. 
(b) In the general case in which R is not commutative a complete charac­

terization seems somehow distant at the moment. However, two particular 
instances are worth considering. The solutions we obtain show that F-rings and 
PCT-rings are called to play a central role in the study of the rings here 
examined. For an up to date account of results as well as open problems on 
PCT-rings the reader is referred to [7]. 

The particular cases we are referring to are described next. 
We say a kernel functor a splits whenever <r(M) is a direct summand of M for 

every module M. 
We say a ring R has (P) whenever M Ç ̂ R, a £ K(R), a ^ oo implies a(M) 

is injective. 
We say a ring R has (Q) whenever a splits for every a Ç K(R). 
Clearly (P) =» (Q) =* K(R) = I(R), for any ring R. We obtain the following 
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THEOREM. R has (P) if and only if R is Morita equivalent to a right noetherian 
PCI-ring. 

Finally, a decomposition theorem for rings having (Q) is reached : 

THEOREM. R has (Q) if and only if R is Morita equivalent to Di X . . . X Dn, 
where the D/s are simple V-domains having (Q). 

These theorems, besides being of interest in themselves, show that to obtain 
more definite results concerning the question posed in this paper further study 
of PC/-rings is necessary. 

This paper is based on a portion of the author's doctoral dissertation at 
Rutgers, The State University. The author is deeply indebted to his thesis 
advisor, Professor Barbara L. Osofsky, for the constant encouragement pro­
vided during his studies and for her generous help during the organization of 
this material. 

Preliminaries. Given a ring R we will say that AR is large (or essential) in 
BR(AR C ' BR) whenever A intersects non-trivially with every non-zero sub-
module of B. Accordingly, M ^ 0 is called uniform whenever N C ' M for all 
non-zero NR C MR. For any module M we let E(M) denote an injective hull 
of M. Given a ring R, a module M, a submodule N C M and a non-empty set 
5 C M, the right ideal {r £ R; S.r C N] will be denoted by (N:BS) or by 
(N:S) when no danger of confusion arises. The term ideal will mean a two-
sided ideal. A ring is simple if it has exactly two ideals. A ring R is said to be 
regular (in the sense of Von Neumann) if every finitely generated right (left) 
ideal is generated by an idempotent. 

Following Goldman [12] a functor <J\^R —>^R is called a kernel functor if 
(1) for all MR, <T(M) is a submodule of M; 
(2) f'.M —> M' implies f(<r(M)) C c(M') and a(f) is the restriction of/ to 

<r(M) ; and 
(3) M' C M implies a(M') = M' C\ a(M). 
A kernel functor a is said to be idempotent if for every MR, <r(M/a(M)) = 0. 
The trivial kernel functors 0 and oo are defined by setting : 0(M) = 0 and 

oo (M) = M for every i^-module M. 
Still borrowing from [12], if a G K(R)y M is called a a-torsion module if 

<r(M) = M and a a-torsion free module if a(M) = 0. 
For any a G K(R) the collection C{a) of all the cr-torsion modules is closed 

under arbitrary direct sums, submodules and homomorphic images. Con­
versely, for any collection of modules £ closed under arbitrary direct sums, 
submodules and homomorphic images there exists a unique a G K(R) such that 
ê ~ C(cr). If a kernel functor a is idempotent then C(a) is in addition closed 
under group extensions. Conversely, any collection <f closed under submodules, 
arbitrary direct sums, homomorphic images and group extensions is of the 
form C(o) for a unique a G I(R). 
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T h e map <p which sends a Ç K(R) into 

^ » = {IR C R\R/I is a-torsion} 

establishes a one-to-one correspondence between i£(i?) and the set of (Gabriel) 
topologizing filters of (right ideals of) R. A topologizing filter^ is said to be 
idempotent if / G^~, 7 B C / , (J:x) € ^ ~ for every x £ I, implies / Ç ^ " . 
Therefore <p induces by restriction a one-to-one correspondence between I(R) 
and the set of idempotent topologizing filters of R. 

For an excellent t rea tment of kernel functors the reader is referred to Goldman 
[12] and Gabriel [9], The development of the subject can be found in Lambek 
[18]. 

We l e t i f denote the filter of large right ideals of R and Z its associated kernel 
functor; consequently Z(M) is the singular submodule of M. (See [17].) 

T h e idempotent topologizing filter of dense (or rational) right ideals [17] of R 
will be indicated by 9 . Therefore 9 C S£ and 9 = i f if and only if Z(R) = 0. 

We finally set & = Goldie's filter of R = smallest idempotent topologizing 
filter containing i f . We always have 9 C i f C ^ and they all may differ. 

We s tar t with 

LEMMA 1.1. i f is idempotent, i.e.,J^ = & if and only if Z(R) = 0. 

Proof. («=) Z(R) = 0 implies i f = 9 , an idempotent topologizing filter. 
(=>) We know tha t there exists a unique G £ I(R) such tha t ^ = ^(G). 

Therefore for every MR we have 

G(M)/Z(M) = Z(Jkf/Z(M)). 

UZ(R) C' RthenG(R)/Z(R) = R/Z(R) and so G(R) = i ? ; s i n c e i f = ^ we 
conclude tha t Z(R) = i?, an impossibility. Therefore Z(R) is not large in R and 
so by Zorn's lemma there exists A 9e 0 such tha t Z(R) © A is large. Let 
u 6 Z(2?) 0 4̂ an arbi t rary element, say w = z + a with s G Z(R) and Û M . 
We have (0:z) C (A:z) C (4 :w) and since (0:z) € i f , ( 4 : w ) £ ^ . By 
assumption, i f is idempotent and so A £ «if, i.e., Z(R) = 0 as asserted. 

Remark. This lemma tells us tha t either 9,f£ and & coincide or they all 
differ. I t also shows tha t K(R) = I(R) implies Z{R) = 0. Therefore throughout 
this paper we will be dealing with right non-singular rings. 

The rings for which K(R) = I(R). 
The commutat ive case is considered first. 

T H E O R E M 2.1. Suppose R is commutative. Then K(R) = I(R) if and only if R 
is a finite product of fields. 

Proof. (<=) This is obvious. 
(=>) Let / be an ideal. Then ^~ — {JR ; I C / } is a topologizing filter which is 

idempotent by assumption. Therefore P = / . Hence, R is regular. Assume R 
has a countably infinite set of orthogonal idempotents je*}. Pu t Ik = (1 — ek)R 
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and I = 0 ? = i (et)R. Define next &' as the smallest topologizing filter con­
taining / and Ik, K N . T h u s / Ç ̂ ' if and only if there exist ru . . . , rk, 
Xi, . . . , xm in R such tha t 

/ 2 (Im'.ri) H . . . H (Ink:rk) H ( J : ^ ) H . . . n ( J : * m ) . 

Let a- be the kernel functor associated with J ^ ' . We claim t h a t / is a-torsion. 
In fact, if x £ / , say x = eAi + . . . + ek\k it follows t h a t x. [H$=i (Ij'-^j)] = 0> 
t ha t is, (0:x) 6 ^~ ' . By a s s u m p t i o n ^ ' is idempotent and so the exact sequence 

0-+I-^R-+ R/I -> 0 

with both ends c-torsion gives us t ha t R is <r-torsion, i.e., (0) £ &'. From this 
we obtain, for some k and some m 

0 = ( 7 n i : n ) H . . . r\ (Ink:rk) r\ (I:xi) r\... r\ (I:xm) 

which clearly contains Ini C\ . . . Pi Ink C\ I. However, for any j 9^ Wi, . . . , nkf 

ôj £ 7nl C\ . . . P\ Ink C\ 7, a contradiction. We conclude t h a t i ^ does not admi t 
infinitely many orthogonal idempotents . Therefore R is semisimple art inian and 
being commuta t ive it is a finite direct product of fields. 

Remarks, (a) I t is obvious t ha t R (not necessarily commutat ive) semisimple 
art inian implies K(R) = I(R). We have jus t seen t h a t the reverse implication is 
t rue when R is commuta t ive . I t will be shown later t ha t this need not be the 
case when commuta t iv i ty is removed. 

(b) If R is semisimple art inian with exactly n simple modules (up to iso­
morphisms) the cardinali ty of I(R) is 2n. Hence, in the commuta t ive case our 
approach of making I(R) as large as possible curiously leads to only finitely 
many elements in I(R) and does not take us far from the simple ar t inian rings. 

If R is a rb i t rary K(R) = I(R) implies P = / f o r all ideals of R and Z{RR) = 0. 
By paralleling the proof of the last theorem we will show t h a t the ring 
R = E n d F ( F ) , F a countably infinite dimensional vector space over the field F, 
has kernel functors which are not idempotents ; however R is known to be a 
prime right non-singular ring in which every ideal equals its square. 

R can be viewed as the ring of all row-finite matrices with entries in F. Let 
ieij}iûi,téœ denote the matr ix units of R having the uni ty element of F in the 
(ij)th position and zeros elsewhere and let et denote the idempotents eit for 
i = 1, 2 . . . 

Observe t ha t et.r = ith row of r, for any r in R. Set Ik = (1 — ek)R and 
/ = SZÇN(-R^Ï ) , i.e., / = soc(R). I t is known tha t / is the unique non-trivial 
ideal of R and tha t P = I. (See [14].) 

As before se t&~ = the smallest topologizing filter containing / and the Iks, 
for all k G N. If J^~ is assumed idempotent , as before we obtain t ha t (0) £ ^". 
Notice t ha t for any ri} . . . , rk £ Rf I C Pu=i (I*rt). 

Claim: For arbitrari ly given xn, . . . , xVn, 

o * ir\ {ivl\xvl) n . . . r\ (J,n:*,n). 
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In fact, we may assume vi ^ v2 ^ . . . ^ vn. We can find a natural number N 
such that N > vn and such that the first vn rows of xvi, . . . , xVn lie in the 
block 

pn[_* • • • 0 • • • J 
TV 

Consider next z = ^+1,1. By construction the first vn rows of xvi -z, . . . , #„n-z 
all vanish. In particular, for j = 1, . . . , n, xvj-z Ç I5\ since it is clear that z £ I 
our claim is proved. 

In other words, we have shown that for arbitrarily given ru . . . , rmi xvl,. . . , xVn 

inR 

0 * (In:xvl) H . . . H (IVn:xVn) r\ (I:n) H . . . H (I:rn), 

which tells us that (0) $ J^". Therefore &~ is not idempotent. 

i?fl is a V-ring if every simple i^-module is injective. (See [6].) A module MR 

is called proper cyclic if it is cyclic and non-isomorphic to R. Consequently RR 

is a PCI-ring whenever its proper cyclic modules are injective. (See [7].) 
We will write R ~ S to indicate that R and 5 are Mori ta equivalent rings. 

(See [19].) 

PROPOSITION 2.2. Having (P), (Q) or K(R) = I(R) is a Morita invariant. 

Proof. Suppose R ~ S via F:R -> S and G:S -> # . Assume K(R) = / (# ) . If 
X G X(5) define o- 6 K(R) such that MB is cr-torsion if and only if F(M) is 
X-torsion. It is routine to check that in fact a is in K(R). To show that X Ç I(S) 
we start with a sequence of 5-modules 

where A and C are X-torsion and must conclude that B is so. Since R ~ S this 
sequence is (up to isomorphisms) the result of applying F to an exact sequence 
of i^-modules 

0->,4'I>.£'i>C'->0. 
It follows that A' and C are cr-torsion and since cr is idempotent by assumption, 
B' is a--torsion. Therefore B is X-torsion, as we wanted to show. One proceeds 
analogously if R has (P) or (Q) after observing that X ̂  00 implies a ^ 00 . 

We are now ready to characterize rings with (P). 

THEOREM 2.3. RR has (P) if and only if R ~ S, Ssct noetherian right PCI-ring. 
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Proof. (<=) I t is enough to see t ha t S has (P) . Given a ^ co, a £ K(S) and 
M = a (M) write M = J^mtM (mS). Clearly mS is proper cyclic for every m G M 
and hence injective. T h u s ®m^M (mS) is infective since R (and so S) is r ight 
noetherian. By a result of Fai th [7], S is r ight heredi tary and therefore M is 
injective by the exactness of 

© (rnS) -> Z (wS) -> 0-

(=») Set cr(M) = soc(M) for ail M G U?*. 
(a) If or = oo then R is semisimple ar t inian, and so a r ight noetherian 

PC7-ring. 
(b) If a ^ oo semisimple ^ -modules are injective and so by Kurshan [16], RR 

is a noetherian F-ring. We claim tha t in this case R is a simple ring. In fact, if / 
is an ideal of R set E = E(R/I) and X = rE. (See [12, p . 33].) We claim tha t 
X(7) = I. In fact, assume there exists a non-zero P-homomorphism / : / —> E. 
SinceR/1 C ' E there exists x G / s u c h t h a t / ( x ) G - R / / a n d / ( x ) T^ 0. Inasmuch 
as RR is a F-ring (xR) = (xR)2 and we express x = xy where y £ / . I t follows 
t ha t 0 7e f(x) = / (xy) = fix)y = 0 since / is an ideal, a contradict ion. There­
fore X(I) = / and X F^ oo because i" is non-trivial . By hypothesis / is injective 
and so there exists AR C R such t h a t I ® A = R. Observe t ha t 

IA = (IA)2 = I(AI)A = 0. 

I t follows tha t A is a non-trivial ideal and so it will be right injective since the 
a rgument used to deal with I applies. We infer t ha t RR is noetherian, injective 
and non-singular. Hence R is a semisimple art inian ring [22, Theorem 1.6, p. 115], 
a contradiction. We conclude tha t R is simple, as claimed. We proceed to show 
tha t RR is hereditary. In fact, if XR is injective and g'.X —* M is onto then 
M = Z(M) 0 M/Z(M) since Z(M) is injective by hypothesis. But M/Z(M) is 
a non-singular image of an injective module and thus it is injective, by [26]. 
Therefore M is injective and consequently R is r ight hereditary. 

Next pick a uniform right ideal / . By Goldie [11], 5 = EndR(I) is a domain. 
Inasmuch as RR is simple noetherian heredi tary / is a finitely generated pro­
jective generator in <JtR. Therefore R ^ S. By (2.2) S inherits (P) . If 
0 F* J s C S is given then necessarily J (Z' S and so S/J = Z{S/J) is injective. 
I t is clear t ha t S is also right noetherian. 

Remarks, (a) An al ternat ive proof can be provided by considering the 
injectivity of all singular modules [13] instead of the injectivity of the semi-
simples. 

(b) In [21] B. Osofsky furnished examples of r ight noetherian PC7-rings with 
infinitely many non-isomorphic simple modules. If R is such a ring and {Sv)vç.ji 
are all the non-isomorphic simple P-modules then K(R) - c o is in one-to-one 
correspondence with 

CV = <M)M = © Sv\ 
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for all $~ C $$, if we agree tha t the direct sum taken over the empty set is (0). 
Hence we see tha t unlike the commutat ive case K(R) = I(R) does not imply 
t ha t K(R) has finitely many elements. 

Before studying rings with (Q) we pause for a moment to consider a dual of 
the previous result. 

We say a ring R has (PD) , t ha t is (P) dual, whenever a G K(R), a j* 0 
implies M/a(M) is projective for all MR. 

I t is clear tha t if R has (PD) , R has (Q). Our next result shows rather easily 
t ha t if R has (PD) then R is semisimple art inian. More precisely, we have 

PROPOSITION 2.4. If for all MR, (M/soc(M)) is projective then R is semisimple 
artinian. In particular if R has (PD) R is semisimple artinian. 

Proof. I t follows easily tha t R is a right noetherian F-ring ; it decomposes as 
R = Ri X . . • X Rn t h e i r s being simple right noetherian F-rings. (See [20] or 
[5, p . 342].) I t follows tha t each Rt satisfies our hypothesis. We may thus 
assume tha t R is simple. Set Q = Qm&x(R), the maximal ring of quotients of RR. 
(See [25; 15].) 

If socR(Q) 9^ 0 then soc(R) ^ 0 and therefore R is simple art inian. If, on the 
other hand, socR(Q) = 0 then QR = Q/soc(Q) is projective. Since R is a simple 
ring, Q turns out to be a generator o(^R, and so RR is injective, t ha t is, R — Q. 
But R is right noetherian and regular [15] and so simple art inian in this case 
also. 

Remark. A different proof, suggested by the referee, is provided next. 

Proof. I t follows tha t semisimple right i^-modules are injective, hence 
RR = sR © TR,. where SR = Soc(R). Now (ST)2 = 0 so ST = 0 since R is a 
right F-ring and R has no nilpotent (right) ideals, thus R = 5 © T is a ring 
direct sum. Clearly, T is a F-ring with Af/soc(M) ^-projective for all right 
T-modules MT, hence if soc(MT) = 0, MT is ^-projective. Since soc(TT) = 0, 
it follows tha t any direct product of copies of TT is T-projective, so by S. U. 
Chase (Direct product of modules, Trans . Amer. Math . Soc. 97 (1960), 457-73), 
T/J(T), J(T) the Jacobson radical of T, is a semisimple ring with minimum 
condition. As T is a F-ring, J(T) = 0 and the proposition follows. 

Our next goal is to prove a decomposition theorem for rings with (Q). T o 
prepare the ground, assume we have a ring decompos i t ion^ = Ri X . . . X Rn-
Given # " , a collection of right ideals of R, set J ^ = {IRt;I (i^~\ fori = 1 , . . . ,n. 
As usual we have 1 = e\ + . . . + en where the e / s are central orthogonal 
idempotents and et G Ri for i = 1, . . . , n. 

LEMMA 2.5. With the notation as above we have: 
(l)jr =jrl x . . . xjrn. 

(2) J^~ is a topologizing filter if and only if each^\ is so. 
(3) If a and at denote the kernel functors associated with ^ and the^-s 
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respectively then a splits (respectively, is idempotent) if and only if each ai 

splits (respectively, is idempotent) . 

Proof. The proof is straightforward. 
For a ring R and a module M we use the following notat ions : 

h. d im(M) = inf{»; Extn+l(M, - ) = 0} 
r. gl. dimCR) = supfh. dim(.M) ; M Ç JKR] 

as they appear in [1]. 

T H E O R E M 2.6. R has (Q), i.e., every kernel functor of\JtR splits, if and only if 
R ~ Di X . . . X Dn, where the DJs are simple V-domains having (Q). 

Proof. (<=) This is clear, according to (2.3) and (2.5). 
(=>) Since soc(-) is a split t ing kernel functor by assumption, semisimple 

modules are injective. Thus , RR is a noetherian F-ring. Consequent ly 
R = Ri X . . . X Rn (a ring decomposition) where the RJs are simple r ight 
noetherian F-rings. Since the singular submodule splits off, r. gl. dim (J?) ^ 2 ac­
cording to [23]. I t is then clear t ha t for all i = 1, . . . , n, r. gl. d im( i^ ) ^ 2. I t is 
enough to show tha t for each i there exists a simple F-domain Dt having (Q) 
such t ha t Rt ^ Dt. Inasmuch as R has (Q), Rt has (Q) for each i according to 
(2.5). We proceed now to work componentwise. 

Assume (after changing notat ion) t ha t R is a simple right noetherian F-ring 
having (Q) and such tha t r. gl. àim(R) S 2. By the Fa i th -Utumi theorem 
[8 ; 17] there exists a subset S oî R and a uniform right ideal UR such t ha t 
U = {r G R) S.r = 0}. (Reason : Let Q be the right classical quot ient ring of R. 
We know tha t Q ~ Fn, the ring of n by n matrices over a division ring F. T h e 
Fa i th -Utumi theorem says t ha t there exists a complete set of matr ix uni ts 
{eij', 1 ^ i, j ^ n) and an Ore domain D = enRen with quot ient field F such 
t h a t R ^ Dn = J ] e^Z). Set next 5* = J2j=2 E M ^ O - ^ i-e-> 5 is the set of all 
matrices in Q with entries in D and with first column equal to zero. Since D is a 
domain with quotient field F, E £*/*o' £ Q annihilates 5 on the right if and 
only if dij = 0 for all i > 1, i.e., (0: QS) = enQ, t h a t is, the first rows of 
matrices in Q. In particular, (0: QS) is indecomposable as an i^-module and 

U = (0:RS) = (0: QS) H R 3 e n f o „ = D ^ 0 

mus t be a non-zero uniform right ideal). I t follows from [11] t ha t UR = (O'.s) 
for some single element 5 of R. From the exact sequence 

0-+U->R->sR-+0 

and the fact t ha t h. dim (si?) ^ 1 we conclude t ha t UR is projective. Since U is 
uniform, D* = KndR(U) is a domain according to [11]. Since R is simple and 
right noetherian UR is a finitely generated projective generator in ^ R and so 
R~ D*. I t is clear t ha t D* is a simple F-domain which has (Q), since (2.2) 
applies. 

I t is now easy to provide an example of a ring R which has (Q) and does not 
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have (P). To that end consider Di — D2 = K[x;d], the ring of differential 
polynomials over a (Kolchin) universal field K, whose properties have been 
investigated by Cozzens [3].Di (and so does D2) has exactly three kernel 
functors, 0, oo and Z ; they are all idempotent kernels. D\ (and so is Di) is a 
simple F-domain having (Q). Formic = D\ X D2. According to last theorem R 
has (Q). To see that R can not have (P) we use the fact that a PC7-ring is 
either semisimple artinian or a simple domain, according to [7]. We now quote 
(2.3) and observe that R is neither a domain nor a semisimple artinian ring [3]. 

Besides investigating the F-domains having (Q) this work should be carried 
further by studying how much the rings having (Q) and the rings for which 
K(R) = I(R) differ. 
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