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Geometry of Infinitely Presented Small
Cancellation Groups and
Quasi-homomorphisms

Goulnara Arzhantseva and Cornelia Drutu

Abstract. We study the geometry of infinitely presented groups satisfying the small cancellation
condition C’(1/8), and introduce a standard decomposition (called the criss-cross decomposition)
for the elements of such groups. Our method yields a direct construction of a linearly independent
set of power continuum in the kernel of the comparison map between the bounded and the usual
group cohomology in degree 2, without the use of free subgroups and extensions.

1 Introduction

An important direction of research in geometric group theory is the construction
of infinite finitely generated groups with unusual properties, the so-called “infinite
monsters”. In this setting, one of the main techniques is small cancellation theory. It
produces direct limits of Gromov hyperbolic groups that are therefore, in the class
of infinitely presented groups, easier to deal with than other groups, and benefit in
many ways from the techniques available in Gromov hyperbolic geometry. These, and
other, infinite monsters are usually constructed with the goal of producing counter-
examples to various conjectures in algebra, geometry, and analysis. Therefore, it is
rather challenging to obtain positive results about them. Positive results have been
proved for algebraic and geometric properties, and much less for analytic properties,
until very recently. This paper and our subsequent work have been the first steps in
this direction. The first arXiv version of this paper has already given an impetus to
later works by various authors.

One of the first and easiest constructions of small cancellation groups is that of
groups satisfying the classical small cancellation condition C'(1), where A € (0,1/6].
It seems likely that most of the properties of Gromov hyperbolic groups are also sat-
isfied by such groups, possibly for A small enough, but this has not yet been proved
for many of the analytic properties of hyperbolic groups.
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In this paper, we provide a key tool for a systematic approach to the above-men-
tioned problem, the criss-cross decomposition. As an immediate application, we
provide a new way of constructing an abundance of quasi-homomorphisms in these
groups; see Section 1.2 and Theorem 4.6. Moreover, our quasi-homomorphisms are
Z-valued and have defect at most 2. This may be significant, because such a bound on
the defect has consequences for the stable commutator length [Bav9l].

Our methods very likely generalize to larger classes of groups.

1.1 Main Technical Tool: Criss-cross Decompositions

For several analytic and geometric properties of groups, including the ones discussed
in this paper, it is crucial to understand if the group elements possess “standard de-
compositions” into products of certain “elementary” parts.

The main technical result of our paper is the construction of such a decomposi-
tion for elements of finitely generated groups defined by infinite presentations with
the small cancellation condition C’(1), for A < % (the so-called C’(1/8)-groups).
More precisely, given a pair of vertices in a Cayley graph of such a group, we obtain
a detailed description of a set containing all the geodesics between the two vertices;
see Theorem 3.15. The existence of such sets allows us to introduce a uniquely de-
fined decomposition, called the criss-cross decomposition, of the elements of the given
C’(1/8)-group; see Section 3.

It is worth noticing that our approach differs and cannot be deduced from the
Rips-Sela canonical representatives [Sel92,RS95] in finitely presented small cancella-
tion groups. Indeed, the Rips—Sela construction gives an equivariant choice of quasi-
geodesic paths between pairs of vertices (with a view to reduce solving equations in a
finitely presented small cancellation group, or more generally in a hyperbolic group,
to solving equations in a free group). Their arguments are based on the existence of
central points for geodesic triangles, granted by finite presentation only. The simi-
larity in method between the Rips-Sela approach and ours does not go beyond the
common use of the geometry of geodesic bigons [RS95, Theorem 5.1].

1.2 Application: the Bounded Versus the Usual Cohomology

An immediate application of the criss-cross decomposition is that infinitely presented
C’(1/12)-groups are rich in quasi-homomorphisms (see Section 4 for definitions).
This has a strong impact on the bounded cohomology of such groups [Gro82]. We
thus deduce the following theorem.

Theorem 1.1 Let G be a finitely generated group defined by an infinite presentation
satisfying the small cancellation condition C'(1/12). Then the kernel of the comparison
map between the second bounded and the usual group cohomology

Hy(G) — H*(G),

is an infinite dimensional real vector space, with a basis of power continuum.

The above kernel can be identified with the real vector space QH(G) of quasi-
homomorphisms modulo near-homomorphisms (where by a near-homomorphism

https://doi.org/10.4153/CJM-2018-036-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-036-7

Geometry of Small Cancellation Groups and Quasi-homomorphisms 999

we mean a function h: G — R that differs from a homomorphism by a bounded
function). The fact that the kernel is large has implications for the stable commutator
length [Bav91], for the (lack of) bounded generation, for results of non-embeddability
of higher rank lattices, etc.

The computation of QH(G) is therefore important, and it has been done for vari-
ous classes of groups.

If G is amenable, then QH(G) = 0 [Gro82]. Also, if G is an irreducible lattice in
a semisimple Lie group of rank at least two and with finite center, then QH(G) = 0
[BM99, BM02].

Groups that have a certain type of action on a hyperbolic space (in particular,
subgroups of relatively hyperbolic groups, mapping class groups, etc.) have QH(G)
infinite dimensional, with a basis of power continuum. This was proved by Brooks
for non-abelian free groups [Bro81] and by Brooks and Series for non-amenable sur-
face groups. In [Gro87] Gromov stated that all non-elementary hyperbolic groups
have non-trivial second bounded cohomology. Epstein and Fujiwara proved that, in
fact, for all non-elementary hyperbolic groups, QH(G) has a basis of power contin-
uum [EF97]. Later, this result was extended to other types of groups acting on hy-
perbolic spaces and to their non-elementary subgroups [Fuj00, Fuj98]; in particular,
to subgroups of mapping class groups of surfaces [BF02]. See also the survey of Fuji-
wara [Fuj09] and references therein. The same result was further extended to groups
with free hyperbolically embedded subgroups by Hull and Osin [HO13].

On the whole, one can say that in all the cases where it was proved, up to now,
that QH(G) has a basis of power continuum, the argument relied on the fact that the
group considered contained a non-elementary hyperbolic subgroup, and an extension
of the quasi-homomorphisms of that subgroup could be performed, if the subgroup
was “well embedded” (e.g., hyperbolically embedded, in the sense of [DGOI17]). In
particular, two years after the first arXiv version of this paper was posted, it was been
proven by Gruber and Sisto in [GS14] that graphical small cancellation groups are
acylindrically hyperbolic, and therefore, by work of Hull and Osin [HO13], contain
hyperbolically embedded free non-abelian subgroups, and consequently the space of
quasi-homomorphisms modulo near-homomorphisms has a basis of power contin-
uum.

Our approach differs from all the previous ones in that we do not require the ex-
istence of “well embedded” non-elementary hyperbolic subgroups, and a potential
extension of our methods may apply to groups satisfying other small cancellation con-
ditions (e.g., the Ol'shanskii graded small cancellation), in particular, to free Burnside
groups of sufficiently large odd exponent or to various Tarski monsters.

Moreover, besides being by far the first proof of Theorem 1.1, our construction has
the merit of by-passing the technicalities of [GS14] and [HO13] and of providing a di-
rect explicit construction of a family of power continuum of linearly independent el-
ements in QH(G), which is not an extension of a similar family for a non-elementary
hyperbolic subgroup H < G, but is contained in the ¢! infinite sum of all such exten-
sions for all such subgroups H.

The following result is another immediate consequence of our theorem above.
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Corollary 1.2 Let G be a finitely generated group given by an infinite presentation sat-
isfying the small cancellation condition C'(1/12). Then G is not boundedly generated."

1.3 Plan of the Paper

The paper is organized as follows. Section 2 gives preliminary information on small
cancellation groups. In Section 3, we describe the criss-cross decomposition of ele-
ments in infinitely presented small cancellation groups. We believe this description is
of independent interest and can be applied to get further results on such groups. In
Section 4, we focus on quasi-homomorphisms of C’(1/12)-small cancellation groups
and prove Theorem 1.1.

2 Preliminaries on Infinite Small Cancellation Presentations

A set of words R in the alphabet A is said to be symmetrized if it contains r! and all
the cyclic permutations of r and r~!, whenever r € R. Without loss of generality, we
always assume that the set of group relators is symmetrized and that all relators r € R
are reduced words in the alphabet A.

We focus on finitely generated groups with infinite presentations,

(2.1) G=(A|r,....16>--- ),

defined by a symmetrized family R of relators consisting of an infinite sequence of
relators 71, ..., Ty . ...
We denote by Ry, the set {r1,...,rx} and by Gy the finitely presented group

Gk:(A|Rk):<A|1’1,...,T’k>.

For two words u, v we write u © v when u is a subword of v. Let # be a constant in
(0, %] If in the preceding we have, moreover, that

vl < Ju] < 21yl
V\”\fv,
g 2

then we use the notation u c, v. We write u c R if there exists v € R such that u c v,
and similarly, with c replaced by c,,.

Notation 2.1 We denote by S(R) the set of words u such that u © R and by S"(R)
the set of words u such that u c, R.

Definition 2.2 (C'(1)-condition) LetA € (0,1). A symmetrized set R of words in
the alphabet A is said to satisfy the C'(A)-condition if the following hold:

(i) If u is a subword in a word r € R so that |u| > A|r|, then u occurs only once in 1;
(ii) If u is a subword in two distinct words ry, 7, € R, then |u| < A min{|r|, |r2|}.

We say that a group presentation (A | R) satisfies the C'(1)-condition if R satisfies that
condition.

1A group is boundedly generated if it can be expressed (as a set) as a finite product of cyclic subgroups.
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Our technical arguments use the language of van Kampen diagrams over a group
presentation (A | R); for more details and terminology, see [LS77], and observe that
the classical results below still hold for infinite group presentations.

The boundary of any van Kampen diagram (cell) A is denoted by dA.

Lemma 2.3 (Greendlinger [LS77, Ch.V, Thm. 4.4]) Every reduced van Kampen di-
agram A over the presentation (2.1) with small cancellation condition C'(1) for A < ¢
contains a cell I1 with 011 labeled by a relator r € R such that dA n 011 has a connected
component of length > (1-31)|r].

Definition 2.4 (n-gon) We call n-gon in a geodesic metric space a loop obtained by
successive concatenation of n geodesics.

We say that the n-gon is simple if the loop thus obtained is simple, that is, if it does
not have self-intersections.

Theorem 2.5 (cf. [GAIHO1]) Let A be a reduced van Kampen diagram over a group
presentation G = (A | R) satisfying the C' ())-condition, with A < %.

(i) Assume that OA is a simple bigon in the Cayley graph of G. Then it has the form
of the bigon B in Figure 1.

(if) Assume that dA is a simple triangle in the Cayley graph of G. Then it has one of
the forms Ty, . .., Ty in Figure 1 and Figure 2.

Figure I: Simple bigon B and simple triangle T;.

Figure 2: Simple triangles T3, T3, and Ty.
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3 Standard Decomposition of Elements in Small
Cancellation Groups

This section is devoted to a thorough analysis of geodesics in Cayley graphs of infin-
itely presented small cancellation groups, and to the description of a set which, from
many points of view, plays the part of the convex hull of a two points-set in irreducible
buildings. We show here the main technical result of the paper, Theorem 3.15, and its
algebraic counterpart Theorem 3.27.

Convention 3.1 Throughout this section, G denotes a finitely generated group with
a (possibly infinite) presentation (A | R) satisfying the C’(1)-condition with A < .

We only consider the Cayley graph of G with respect to the fixed (arbitrary) finite
generating set A, and we omit mentioning A from now on. By “vertex”, we shall always
mean a vertex in that Cayley graph.

We call contour aloop in the Cayley graph of G labeled by a relator r € R. By abuse
of notation, given a contour ¢, we denote its length by |¢|. Observe that a contour is
always a simple loop (a non-trivial self-intersection leads to a contradiction with the
small cancellation assumption by the Greendlinger lemma).

By an arc we mean a topological arc, that is the image of a topological embedding
of an interval into a topological (in particular metric) space.

For every path p in a metric space, we denote the initial point of p by p_ and the
terminal point of p by p,. Given two points x, y on a geodesic g, we denote by [x, y]
the sub-geodesic of g with endpoints x, y.

Lemma 3.2 Let t be a contour labeled by a relator r and let a, b be two points on t.

(i) Ifone of the two arcs with endpoints a, b has length < L;‘, then that arc is the unique
geodesic with endpoints a, b in the Cayley graph.
(i) If both arcs with endpoints a, b have length %, then these arcs are the only two
geodesics with endpoints a, b in the Cayley graph.
(iii) The intersection of a geodesic with a contour is always composed of only one arc.

Proof (i) Assume that there exists a geodesic joining a, b distinct from that arc. Then
they compose at least one non-trivial simple bigon. Consider the minimal van Kam-
pen diagram A with the same boundary label as this bigon. Let u be the label of the
sub-arc of t and v the label of the sub-arc of the geodesic. According to Lemma 2.3,
there exists a cell IT labeled by a relator intersecting the boundary dA in an arc of
length > 1 — 31 of the length of JII.

Assume first that JIT does not coincide with ¢. By the small cancellation condition,
the arc can have at most A of the length of dIT in common with the arc labeled by a
subword of r, hence it has > 1 — 41 of the length of JIT in common with the arc with
the same label as the geodesic. As A < %, this contradicts the fact that this is the label
of a geodesic.

Now if 911 coincides with ¢, then 911 has at least 2 — 31 of its length in common
with the arc labeled by v. In particular, it follows that [u| > [v| > (3 = 31)|r|. Then
0A A 91 composes a new simple bigon with both sides of length at most 3A|r|. We
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apply the argument above to this new bigon; the boundary of the cell provided by
Lemma 2.3 cannot coincide with ¢ this time, and we obtain a contradiction.

(ii) The argument to show that there exists no geodesic joining a, b and that is not
entirely contained in ¢ is as above.

(iii) It suffices to prove that this intersection is path connected. Indeed, let g be a
geodesic and let a, b be two points on g N t. The above arguments show that the part
of g between a and b must be contained in t. [ ]

Definition 3.3 (Relator-tied geodesics and components) Let g be a geodesic in the
Cayley graph of G and let # be a number in (0, 1).

(i) g is called n-relator-tied if it is covered by sub-geodesics labeled by words in

S"(R).
(ii) an n-relator-tied component of g is a maximal sub-geodesic of g that is -relator-
tied.
Lemma 3.4 (i) The n-relator-tied components of a geodesic g are disjoint.

(ii) Assume that n < % - 2A. If two points a, b are the endpoints of a geodesic g with
no y-relator-tied component, then g is the unique geodesic with endpoints a, b.

Proof Assertion (i) follows by definition, since two distinct #-relator-tied sub-geo-
desics that intersect compose a longer #-relator-tied sub-geodesic.
(ii) Any other geodesic g’ with endpoints a, b and distinct from g would com-
pose with g simple geodesic bigons, therefore by Theorem 2.5(i), g would contain a
% - 2))-relator-tied component. ]

Definition 3.5 (y-compulsory geodesic) Given 0 < 7 < % — 2A, a geodesic as
in Lemma 3.4(ii) is called an #-compulsory geodesic. A pair of endpoints a, b of an
n-compulsory geodesic is called an y-compulsory pair.

We now proceed to analyze the #-relator-tied components of geodesics.

Lemma 3.6 Let n > 2). Let g be a n-relator-tied geodesic in the Cayley graph of G.
Then there exists a unique sequence of successive vertices

X0 = @5 X1, Y05 X2> Y1s - - > Xkt1s Vi Via1 = D

such that the sub-geodesics with endpoints x;, y; with i € {0,1,...,k + 1} are labeled
by words in S"(R), and are maximal with this property with respect to inclusion (see
Figure 3).

Proof By hypothesis, g € Ujcs, 9i» Where g; denotes a sub-geodesic of g labeled by
aword u; € S"(R) and the index set Sy is finite (by compactness).

Without loss of generality, we assume that all the sub-geodesics g; in the covering
above are maximal with respect to inclusion.

Indeed, we begin with the sub-geodesics containing the vertex g_. Consider two
such sub-geodesics. If one is contained in the other, by the C’(1)-condition and the
fact that # > 24, it follows that both are subwords of the same relator r; € R. Therefore,
we take the longer of the two subwords, and we select it as the first term g; of the new
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covering. The endpoint (g; ), must be contained in another sub-geodesic g,,. The sub-
geodesic g; U g, cannot be labeled by a word in S7(R), because this would contradict
the maximality of g;. We consider the maximal sub-geodesic g, labeled by a word in
§"(R) and containing g,. Continuing this argument, we obtain a cover U;s, g; of g
for some S; € Sy such that g; are maximal sub-geodesics labeled by words in §”(R).

For an arbitrary small ¢ > 0 we have that g € Ujcg, g5, where g7 denotes the
e-neighborhood of g; in g. Since g has topological dimension one, there exists S, € §;
such that g € Ujcs, g5 and every point in g is contained in at most two sets g5 with
i€ Sz.

If an edge e in g is not contained in Ujcs, gi then, for & < %, this contradicts the
fact that {g{ | i € S,} cover e. If a vertex in g is not contained in Useg, gi, then the
edges adjacent to it are not contained in U;cs, gi> and we use the above.

We thus obtain that g € Ui, gi> and every point in g is contained in at most two
sets g; with i € S,.

Assume that there exist two sequences

X0 =G> X15 Y05 X2> Y15 - - - > Xketl> Vo> Vk+1 = by
I _ ! ! ! A ! A ! _ b
Xo =@ X Yos X0 Y15 -+ 5 X 1o Vo> Y1 = 05
and let k < m. We prove by induction on 0 < i < k + 1 that [x;, y;] = [x/, ¥}].
First, consider the case i = 0. Then either [xo, yo] € [x4, o] or [x4> ¥5] € [%0> Yo]-

The assumption # > 2 implies that both the label of [xo, yo] and that of [xg, 5]
are subwords of the same relator r. The maximality condition implies that [xo, o] =

X405 Yol

[ OV\;}eOLow assume that for some j > 0, we have [x;, y;] = [x}, y}] for 0 < i < j. We
have that either [y}, yju1] € [y, ¥jn] or [y), Y] € [7j, yj1]. By maximality and
Lemma 3.2, the contour ¢; containing the geodesic [ x;, y;] is distinct from the contour
tj1 containing the geodesic [xj11, yj+1], respectively the contour t; +1 containing the
geodesic [x7,;, y7,,]; see Figure 4. It follows that

dist(xj41, yj) < Alrja| < ;dist(xjﬂ,yjﬂ),
whence
dist(yj, yj+1) > (1— 2) dist(xj41, yji1) > 11(1— i) |7js1]-
Similarly, we obtain that
dwdypy;4)>ﬂ(l—i)VﬁJ-
The hypothesis # > 21 implies that 7(1 - %) > A; therefore, the inclusions

i yinl € s Vil or [y ¥ia] € [y yin]
imply that tj,; = t;- +1- The maximality of the sub-geodesics [xj.1,yj41] and
[x}41> V1], and Lemma 3.2 allow to conclude that [xj41, yj] =[x, Y5 |- [ |

Convention 3.7 For the rest of this section, let # be a fixed constant such that
1-2l>n>2landy :=n-A\
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Definition 3.8 (n-succession) We say that a sequence of contours f, t1, . . ., tx4 is
an #-succession of contours if, for every i, one of the endpoints of t;_; N¢; is at distance
> n|t;| from at least one of the endpoints of #; N ;,; (distance measured in ¢;).

Corollary 3.9  Let g be an n-relator-tied geodesic. Then there exists a unique
n-succession of contours to, ty,. .., txs1 such that for the decomposition described in
Lemma 3.6 the sub-geodesic with endpoints x;, y; is contained in t;.

Y1 =0

Figure 3: An n-relator-tied geodesic inside a succession of contours.

Figure 4: The uniqueness of the decomposition in Lemma 3.6.

Lemma 3.10 Let a,b be two vertices joined by an y-relator-tied geodesic g. Then
every geodesic g’ with endpoints a, b is ' -relator-tied, for n' := n — A; moreover, g’ is
contained in the y-succession of contours to, t1, ..., tys determined by g according to
Corollary 3.9.

Proof There exist successive points in the intersection g N g/,
20 =G, 215+ > Z2m-1>Z2m> Zam+1 = b

such that z,;,2,;41 are the endpoints of a connected component of g n g’, while
Zai+1> Z2i+2 are the endpoints of two sub-geodesics of g respectively g’, composing
a simple bigon.
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Letxo = a, X1, Y0, X2, Y1> - - - » Xk+1> Vk» Yk+1 = b be the unique sequence of points on
g provided by Lemma 3.6. For every 0 < i < m — 1, consider the endpoints z3;.1, 22i+2
of a simple bigon. According to Theorem 2.5(i), the corresponding bigon is as in
Figure 1. Consider 7, one of the contours appearing in this bigon; let o, 8 be the
endpoints of the intersection of g with 7. By the small cancellation condition and
the fact that the two sides of the bigon are geodesics, it follows that the label of the
sub-geodesic of g limited by a, 8 is a sub-word of length > (3 —21)|1|.

Let m be the midpoint of the sub-geodesic of g limited by «, . Then there exist
xj, yj separated by m. If the contour 7 is distinct from the contour ¢;, then

1,1 1
2( ) 24) || < 5 dist(a, B) < e,
whence A > 3, a contradiction. It follows that 7 = t;, hence & = x; and f8 = ;. Thus,
the endpoints of intersections of contours of the bigon with g compose a subsequence
of the sequence

X0 = @, X1, Y0, X25 Y15 - - » Xkt 1> Vioo Vi1 = b,
with the property that x;.; = y;.

Let 25, be an endpoint of a bigon. According to the above, z;, equals some x;
such that ¢; is the first contour in the bigon. Now consider x;_;, y;_; and the contour
tioy # tj. Then dist(x;j, yj-1) < Altj1], whence dist(xj_1,x;) = dist(xj_1, yj-1) —
dist(xj, yj-1) > nltja| = Atja| = 7|t

We have thus found that the sub-geodesic with endpoints z5;, z;;+1 common to g
and g’ is #'-relator-tied. A sub-geodesic of g’ composing one of the simple bigons is
easily seen to be 7'-relator-tied as 7" < 3 — 24, hence the entire of g’ is ’-relator-tied.

The fact that g’ is contained in the 5-succession of contours ty, t1, . . ., fg41 i im-
mediate from the argument above: the sub-arcs of g’ with endpoints z;, 2541 are
contained in g, while the sub-arcs with endpoints z;;.1, z2i1> are covered by contours
7 that are in the set {to, t1,. .., tks1}- [ |

The goal of the following two statements is to prepare the ground for the definition
of the #-criss-cross decomposition for a pair of vertices a, b.

Lemma 3.11 Let a and b be two arbitrary vertices. The endpoints of an y-relator-tied
component in a geodesic joining a, b are contained in any other geodesic joining a, b.

Proof Let g, g’ be two geodesics with endpoints a, b and let x, y be the endpoints
of an 5-relator-tied component on g. Assume that x is not on g’. Then x is in the
interior of one of the sides of a bigon composed by g and g’. On the other hand, this
side is (% —2))-relator-tied, hence the component of g between x, y is not a maximal
n-relator-tied sub-geodesic, a contradiction.

It follows that x € g’ and a similar argument shows that y € g'. ]

Definition 3.12 (Geodesic sequences)

(i) We say that a vertex p is between two vertices a and b if dist(a, p) +dist(p, b) =
dist(a, b). We do not exclude that p=a or p = b.

(ii) We call geodesic sequence a finite sequence of vertices py, ..., p, such that for
every1< i< j<k<m,pjisbetween p; and py.
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(iii) If a,b,c,d is a geodesic sequence then we write (b,c) € (a,d), and we say
that the pairs (b, ¢) and (a, d) are nested.

Lemma 3.13 Let p,a,q, b be a geodesic sequence such that p, q and respectively a, b
are the endpoints of n-relator-tied geodesics. Then there exists an n-succession of con-
tours that contains every geodesic joining p and b.

Proof We denote by [p, q] (resp. [a, b]) the y-relator-tied geodesics. Consider two
arbitrary geodesics [ p, a] and [ g, b], not necessarily contained in [ p, q] (resp. [a, b]).

In the geodesic [p, a] U [a, b], the sub-geodesic [a, b] is contained in a maximal
n-relator-tied component [a’, b]. Lemma 3.11 applied to p, b and the geodesic joining
them [p, q] U[q, b] implies that a’ € [ p, q]; moreover, a’ is on every geodesic joining
P> b. Thus, by possibly replacing a with a’ we may assume that a is contained in every
geodesic with endpoints p, b, in particular that a € [p, q]. A similar argument allows
to state that without loss of generality we can assume that q is contained in every
geodesic joining p, b, in particular g € [a, b].

By Corollary 3.9, there exist two 7-successions of contours,

tostis. .o terr and T, Tr, .ty Tia

such that every geodesic joining p, q is contained in U ¢

ing a, b is contained in U;':{)l Tj.

Consider i maximal such that a € ¢;.

Assume that i # k + 1. If 79 # t;, then [a, b] N 7o intersects ¢; in a sub-geodesic
of length < A|7¢|. Consequently it intersects ;. in a sub-geodesic of length either at
least A|7o| or at least (17 — 1)|¢;41]- In both cases it follows 7 = t;,1, whence a € t;4;,
which contradicts the choice of i.

Thus, in this case, it follows that 7o = ¢;.

Let £ > 0 be maximal such that 7, = t;,, for 0 < r < £. It is immediate from the
definition of an 77-succession that the sequence

i» and every geodesic join-

fosev s bi = T0se s bive = Tos Tosls -+ o> Tl

is such a succession.

An arbitrary geodesic joining p and b must contain a and g; the sub-geodesic from
p to a must be contained in Uj‘:o tj, while the sub-geodesic from a to b must be con-
tained in U™} 7,.

Assume now that i = k + 1. Every geodesic joining a, g must be contained in ;.

Suppose moreover that 7y # fx,1. Then dist(a, q) < A min{|tx11/,|7o|}. Since the
distance from g to one of the endpoints of #; N £, is at least #t,|, the same is true
about one of the endpoints of 7y N 7y, since it will be situated after g on a geodesic
from a to b. Therefore, in this case

Fos By e v o s Fkal> TO> T1o + « 5> Trtl

is an #-succession of contours.
Given an arbitrary geodesic joining p and b, the sub-geodesic from p to g is in

U;‘L} t;, and the sub-geodesic from a to b is in U/ 7,.
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Suppose that 7o = tx4;. As before, the fact that q is at distance > #|7| from one
of the endpoints of t; N tx,; implies that one of the endpoints of 7o N 7; satisfies the
same. Therefore,

£05 [ -+ 5 bkl = T0> Tls -+ -5 Tl

is an #-succession of contours, and an argument as above shows that it contains every
geodesic joining p and b. ]

Remark 3.14 The statement of Lemma 3.13 can be generalized as follows: if

pO)pl) q0$p2’ qi>- .- )pk+1) dk> Gk+1

is a geodesic sequence such that p;, q; are the endpoints of #-relator tied geodesics
forie {0,1,...,k+1}, then there exists an #-succession of contours containing every
geodesic from pg to gy

The proof adapts the argument of Lemma 3.13, and we leave it as an exercise to the
reader.

Theorem 3.15  For every pair of vertices a, b in the Cayley graph of G, there exists a
finite geodesic sequence

20 =4, Y1215 ¥2: 22>« - o> Ym> Zm> U = Y1

a sequence of y-compulsory geodesics [zo, Y11, [21, Y2 1> - +» [2i> Visr ] -« o5 [Zms Y1 )
and a sequence of n-successions of contours

tl(i)w..’tl(cj)’ie{1’2""’m}

such that y; € tl(i), z;i € t,(('_') and every geodesic joining a, b is contained in
(3.1)

SO 2 ) ki)
[a,yl]uultj U[Zl’yZ]U,Ultj u~~u[zi_1,yi]uultj Ulzi, yin]U---U[zm b].
j= = j=

Definition 3.16 (n-criss-cross decomposition) We say that the sequence

(a,01),\yv-21/5 (21, 92):\y2, 22/ - s \Ym> Zim /> (2> b)

is the n-criss-cross decomposition for the pair a, b.

Notation 3.17  For an arbitrary pair of vertices a, b, we denote by G"(a,b) the set
described in Theorem 3.15; see (3.1) and Figure 5.

Proof of Theorem 3.15 If 4, b is an 5-compulsory pair, there is nothing to prove.
Assume therefore that there exists a geodesic joining a, b with an #-relator-tied com-
ponent. Let p1,qi,...,Pn,qn be all the pairs of points that appear as endpoints of
n-relator-tied components in some geodesic joining a, b. Let g be an arbitrary geo-
desic joining a, b. According to Lemma 3.11, g contains all points p1, 41, ..., pr>qn-
The order in which these points appear is independent of the choice of g, since it is
only determined by metric relations.
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22 Y3

. 7 1
Zm—1Ym m

Figure 5: The n-criss-cross decomposition for the pair a, b.

We consider the union U”,[p;, g;], where [p;, q;] denotes the sub-geodesic of g
with endpoints p;,g;. The connected components of this union are sub-geodesics
[y1-21)>- - [Ym>2m] appearing on g in this order. Note that y; € {p;,..., pn} and
that z; € {q1,...,qn}. In particular, both the points and the order are independent of
the choice of the geodesic g.

It remains to apply Lemma 3.13 and Remark 3.14. ]

Corollary 3.18  For every pair of points a,b at distance d > 0 and every x < d
there exist at most two points p with the property that a, p, b is a geodesic sequence

and dist(a, p) = x.

See Figure 6 for an example where there exist two points q;, g, between a and b,
at distance x — 3 from a, and two points p;, p, between a and b, at distance x from a.

n

q1

- 0—0
2i Yi+1 Zm b

b2

Figure 6: Example of pair a, b with two points between them at distance x from a.

Remark 3.19 (i) According to the above, every geodesic with endpoints y,,, z,
is #'-relator-tied, in particular, it is non-trivial.
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(ii) Due to the maximality condition defining the pairs y;, z;, we have that z; #
yip foreveryl<i<m—1.
(iii) On the other hand, in the pairs (a, y1), (2., b) the endpoints may coincide.

Remark 3.20 1f(p,q) € (x, y) € (a,b) with p, ¢, x, y pointsin {p1, q1, . - -, Px> Gk }»
and if p, q are endpoints of an #-relator-tied component in a geodesic joining a, b,
then p, g are endpoints of an #-relator-tied component in a geodesic joining x, y.

This simply follows from the fact that a geodesic g joining a, b and on which p, q
bound an #-relator-tied component must also contain x, y; see Lemma 3.11.

Definition 3.21 (n-relator covered pair) If the #-criss-cross decomposition of a pair
a,bis\a, b/, then we call such a pair an 5-relator covered pair.

Definition 3.22 (Compulsory vertices) Given an y-criss-cross decomposition

(a, 1), \yv-21/5 (21, 92):\y2, 22/ - s \Ym> Zim /> (2> b)

of a pair a, b, we call the vertices between z;, y;4; for some i € {1,2,...,m - 1}
n-compulsory vertices.

Clearly, every geodesic with endpoints a and b must contain all the compulsory
vertices.

Definition 3.23 (Prefixes and suffixes) Given an element h € G, we denote by P(h)
(standing for prefixes of h) all the elements between 1, h and by S(h) (standing for
suffixes of h) all the elements of the form x~*h for x € P(h).

Note that the two sets P(h) and S(h) depend on the fixed generating set A.

Definition 3.24 (Compulsory and #-relator-covered elements) Let h € G.

o If h is joined to 1 by at least one #-relator-tied geodesic , then we call h an #-
relator-tied element.

» If the pair 1, h has the #-criss-cross decomposition (1, h) (hence, there exists
only one geodesic joining 1, h, composed of compulsory vertices), then we call
h an y-compulsory element.

o If the pair 1, h has the 5-criss-cross decomposition \1, 4/, then we call h an 7-
relator-covered element.

Notation 3.25 We denote by RT" the set of y-relator-tied elements. We denote by C"
the set of -compulsory elements in G and by RC" the set of y-relator-covered elements.

Remark 3.26  The fact that h is #-relator-covered does not mean that there exists an
n-relator-tied geodesic labeled by h; it only means that every geodesic [a, b] labeled
by & contains a family of successive vertices yo = a, ¥1, 20> 25215 - - - » Ym>Zm—1>Zm = b
such that for every i, there exists an y-relator-tied geodesic with endpoints y;, z;. In
particular, by Lemma 3.10, every geodesic labeled by # is '-relator-tied.

The following theorem is an algebraic version of Theorem 3.15.
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Theorem 3.27  Every element g € G can be written uniquely as a product

g= alﬁllxzﬁz cee amﬁmamﬂ
such that

o Bi are non-trivial y-relator-covered elements;

* a; are compulsory elements (non-trivial with the possible exception of a1, Qp1);

o the vertices y; = a1f1 ... a; and z; = a1 f31 . .. &; §; compose the geodesic sequence
determining the n-criss-cross decomposition of the pair 1, g.

Notation 3.28  Given an arbitrary element h € G, we denote by G (h) the set 5"(1, h)
as described in Notation 3.17.

Notation 3.29 Giveni €N, i > 2, we denote by D; the set of i-tuples
(dl, azs...>ai-1, b)

such that for the element ¢ = aa, - -- a;_1b the elements ay, a,, . .., a;_ are the first i —1
elements in the criss-cross decomposition of g as described in Theorem 3.27.

The following lemma will be crucial for the results in Section 4 on quasi-homo-
morphisms.

Lemma 3.30 Let )< % and let n > 3A.

Every n-succession of contours tg, t1,. . ., t is totally geodesic: if a, b are two ver-

tices in XL t;, then every geodesic joining a and b is contained in UL t;.
Proof Without loss of generality we assume that a € #; \ t, and that b € 5, \ .
Otherwise, assuming that a appears before b in the succession, we consider the largest
i such that ¢; contains a and the smallest j such that ¢; contains b and take the suc-
cession t;, tiiy, ..., tj_1, tj instead of the initial one.

Let g be a geodesic joining a and b. We argue for a contradiction and assume
that g is not contained in UY*} ¢;. Without loss of generality, we assume that g inter-
sects U¥") t; only in its endpoints (otherwise, we replace g by a sub-geodesic with this
property).

Let p be a topological arc joining a and b in U¥!} ¢; and of minimal length. By
the Greendlinger Lemma, there exists a contour 7 such that one of the connected
components of its intersection with p U g has length > (1-31)|z|. If 7 = ¢; for some i,
then by the hypothesis on g, 7 intersects p in a connected component of length >
(1-31)|7]. Then p can be shortened by a length of (1 — 61)|7|, which contradicts the

choice of p as an arc of minimal length joining a and b in U**! t;.
We therefore assume that 7 ¢ {¢o, 1, ..., fx41}. Since g is a geodesic, it follows that
T intersects p in a subarc of length > (3 - 31)|7].
On the other hand, p contains a succession of vertices
X0 = @5 X1, Y0, X2, V1> - - > Xk 1> V> Yh1 = b

such that the sub-arcs with endpoints x;, y; with i € {0,1,...,k + 1} are labeled by
words in S(R), which are moreover in S*(R) if i # 0, k + 1. Therefore, the connected
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component of the intersection 7 N p cannot contain a pair x;, y; with i € {1,...,k}.
It follows that it can intersect at most two consecutive sub-arcs with endpoints x;, y;
with i € {0,1,..., k+1}, hence it is of length < 2A|7|. We thus obtain that § -3\ < 21,

whence A > %, a contradiction. |

The following results are not used in an essential manner in our arguments, but
they complete nicely the description of geodesics in small cancellation groups.

Lemma 3.31 Let g be an n-relator-tied geodesic and let p be a sub-geodesic in it. Then
p is either an n-compulsory geodesic, or it is the concatenation of three sub-geodesics
p =P UPpo U PpL, where p.,pL are n-compulsory and contained in a contour (possibly
either one of them or both trivial) and py is an n-relator-tied component of p.

Proof Let a, b be the endpoints of g. With the previous convention g = [a, b].

Step 1. Let us first assume that p = [a, g ], with a, ¢, b a geodesic sequence.

Let xo = a, X1, Y0, X2, Y1> - - - > Xk+1> Yk» Vk+1 = b be the unique sequence of points
on g defined by Lemma 3.6.

Assume that o is in between a pair y;, xj;2. If the word labeling the geodesic
[xj+1, 0] is contained in §”(R), then p is #-relator-tied.

If the word labeling [x;j,1, 0] is not in S"7(R) (while it is still a sub-word of the
relator labeling the contour t;,,), then the pair xj,,, 0 is #-compulsory. This implies
that the required decomposition is p = [a, y;] u [y}, o].

Assume now that ¢ is in between a pair xj,1, y;. If [x;, 0] is labeled by a word
in S"(R), then p is 5-relator-tied; while in the opposite case the geodesic [x;, 0]
is #-compulsory, and the conclusion holds with the decomposition p = [a, y;1] U
[¥j-1,0].

Step 2. Assume now that p = [p, o], where a, p, 0, b is a geodesic sequence. Accord-
ingtoStep 1, [a,0] = [a, u]u[u, 0], where [a, u] is an y-relator-tied component and
[u, 0] is #-compulsory (possibly trivial) and contained in a contour. If p € [, o], then
p is n-compulsory. If p € [a, u], then by reversing the order on [a, 4] and applying
Step 1, we obtain that [p, u] = [p,v] U [v, 4], where [p, v] is n-compulsory (possi-
bly trivial) and contained in a contour, and [v, y] is an #-relator-tied component. It
follows that

p=lppluluo]=[pv]ulv,u]ulp o]
is the required decomposition. ]

Lemma 3.32  For each pair \yj, z;/ in an n-criss-cross decomposition, there exists a
geodesic sequence

(32) PL= s Pas @1 P3s o+ > P> Gnr> 9 = 2j» for some n = n(j)
such that

* (pl,q.) are maximal with respect to the partial order relation &;
* DPpi1» qp bound n-relator-tied sub-geodesics both in the n-relator-tied geodesic join-
ing py, q, and in the n-relator-tied geodesic joining py, ., 5. ;-
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Proof By definition, [y}, z;] = Ujer,[pi» 9:]. Without loss of generality, we assume
that there are no nested pairs among the (p;, q;) with i € I; in other words, each pair
(pi»>qi) is maximal with respect to the partial order relation €. Proceeding as in the
proof of Lemma 3.6, we also assume that, after selecting a subset in I}, every point on
a (every) geodesic joining y;, z; is between at most two pairs (p;, g;). It then follows
that the set of pairs indexed by I; compose a geodesic sequence as in (3.2). We set
pi=piand q; = q;.

Now consider two consequent pairs that overlap: two pairs (p}, g}) and (p’,;, 4%,;)
such that p’, p’.,, 9%, g}, is a geodesic sequence.

By definition, there exists a geodesic g joining a, b such that p’, ¢/ are the endpoints
of an 5-relator-tied component of it. Given two points x, y € g, we denote by [x, y]
the sub-geodesic of g with endpoints x, y.

We likewise know that there exists a geodesic p such that p’,,,g},, bound an #-
relator-tied component on p. According to the above, p must contain q;. In what
follows, for x, y in p, we denote by X, y the sub-arc of p with endpoints x, y.

We have that p’,, € [p’,q:]. Lemma 3.31 implies that either [p’,,,q}] is an 4-
compulsory component contained in a contour, or [p},,,q:] = [pi»x] U [x, 4}
where [p’,,, x] is an #-compulsory component contained in a contour (possibly triv-
ial) and [, q}] is an #-relator-tied component.

Assume that [p’,,,q}] is an n-compulsory component contained in a contour.
Then the geodesic p must also contain [p’,;,g%] c g. By replacing on p the sub-
arc with endpoints a, p’,, by [4, p’,;] C g, we obtain a new geodesic t joining a, b
such that p/ and g, are the endpoints of an #-relator-tied sub-geodesic. It follows
that (p}, q},,) € («, 8), where a, B are the endpoints on t of an #-relator-tied com-
ponent. In particular (&, ) = (pe, ge) for some € € I, and (p}, q;) € (pe,qe). This
contradicts the fact that we have considered pairs maximal with respect to €.

Assume that [p%,,,q%] = [pi,,x] U [x, q}], where [p’,,,x] is an 5-compulsory
component contained in a contour (possibly trivial) and [x, g}] is an #-relator-tied
component. Since g} € p and [x, g}] is an #-relator-tied component between p,,

and g it follows that x € p, hence [p},,,x] c p. There exists y € p such that p’, , y

is labeled by a word in §”(R) and it is contained in a contour t. If y € p’ ,x =
[p%,1>x], then the contour ¢ intersects a distinct contour in a sub-arc of length > |,
a contradiction. Hence, we must have that x € p’_ |, y.

According to the small cancellation condition x, y haslength > (1- %) of the length
of p’.,, ¥, so atleast (1 - %)|t| This implies that if #(1- %) > A, equivalently 7 > 24,
then by Lemma 3.10, t must be the first contour for the pair x, g}. But this implies that
P:‘+1 =x.

Similarly, we argue that p’_ |, g’ is an #-relator-tied geodesic. ]

4 Quasi-homomorphisms on Small Cancellation Groups

Recall that a quasi-homomorphism (also called a quasi-morphism or a pseudo-charac-
ter) on a group G is a function : G — R such that its defect

0(b) := sup |h(ab) —b(a) - h(b)]
a,beG
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is finite. The real vector space Q(G) of all quasi-homomorphisms of G has three im-
portant subspaces: the subspace £°°(G) of bounded real functions on G, the sub-
space Hom(G,R) = H'(G,R) of homomorphisms on G, and the subspace £ (G) +
Hom(G, R) of functions that differ from a homomorphism by a bounded function.
Consider the quotient spaces

QH(G) =9Q(G)/B(G) and QH(G)=9(G)/[¢~(G) + Hom(G,R)].
The space QH(G) can be identified with the kernel of the comparison map
Hy(G) — H*(G),

where Hj(G) is the second bounded cohomology of G.

In this paper, as an application of our results on the geometry of small cancella-
tion groups with the C’(1/12)-condition, we show that for such a group G, the space
QH(G) is infinite dimensional with a basis of power continuum.

Following the work of Epstein and Fujiwara [EF97,Fuj00,Fuj98] as well as of Bestv-
ina and Fujiwara [BF02], we prove the following proposition.

Proposition 4.1 Let G be a finitely generated infinitely presented group and let (S | R)
be a presentation such that R satisfies the C'(1/12)-condition. For a given n € [31, 1 -
2)] appropriately chosen, there exists a sequence u, of elements in G and a sequence
By, : G = R of quasi-homomorphisms, with n € N, n > 1, such that

(i) the set of word lengths |u,| diverges to oo;
(ii) every group homomorphism ¢: G — R has the property that ¢(u,) = 0 for every
neN,n2l
(iii) the sequence of defects d(,, ) is bounded;
(iv) for every n and every k e N,k > 1, by, (uf) = k;
(v) forevery n + m, and every k e N,k > 1, b, (uk) = 0.

Proof We enumerate the relators {r;,7,,...} in R so that their lengths compose a
non-decreasing sequence. Consider the sequence of finite subsets of N defined by

Li=[1+2+-+nl1+2+---+n+1)nN.

Define two sequences of finite subsets A, and B, of R, described by A, =
{7’2,'_1 | i€ In} and B, = {7’2,‘ | i€ In}

To simplify the notation, in what follows, we denote the relator r,;_; by a; and ry;
by B, respectively. Thus, A, = {a; | i€ I,}and B, ={B; | i € I,,}.

Let X be a finite set of relators equal either to a set A, or to a set B,,. We con-
struct an element x € G corresponding to X, as follows. Assume X is composed of
the relators ps, . .., px enumerated in increasing order. For every i € {1,2,...,k} let
yi be the prefix of p; of length | |p;|/2]. Define the element x = y;y, - yx. An argu-
ment very similar to the one in Lemma 3.30 implies that x is an #-relator-tied element
and that every geodesic joining 1 and x is contained in the #-succession of contours
1, Y1t Y1Yats -« > [V1°+ Yk-1)tk> Where t; is the loop through 1 in the Cayley graph,
labeled by p;.

When X = A, (resp. X = B,) the corresponding element x is denoted by a,
(resp. by by,).
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We define u,, = [a,, b, ]. This implies Proposition 4.1(ii).

Lemma 3.30 applied to geodesics joining 1 to u,, implies that the length |u,]| is at
least the double of (3 — 1) ¥y, [|ai| + |B:]]. It follows that Proposition 4.1(i) is also
satisfied.

We now define the sequence of quasi-homomorphisms. We start with a general
construction. Let v be an #-relator-tied element in G.

Definition 4.2 (i) Let (a,b) € G x G. A quasi-copy of v nested inside (a,b) is
a pair of points x, y € G"(a,b) such that y = xv and such that there exists an #-
succession of contours f, ..., t contained in §7(a, b) such that:
« x is either one of the endpoints of the intersection of #; with a contour f, such
that ¢y, t1, . . ., tx is an y-succession contained in §”(a, b), or the intersection of
t; with a compulsory geodesic preceding 11, ..., tx in §"(a, b);

« yis either one of the endpoints of the intersection of t; with a contour t.; such
that #;, ..., tg, tx41 is an y-succession contained in §”(a, b), or the intersection
of t; with a compulsory geodesic succeeding f;, . .., tx in §"(a, b).

(ii) We say that two quasi-copies of v nested inside a, b are non-overlapping if the
corresponding #-successions of contours ty, ..., ty, respectively 1,..., T, are dis-
joint, as finite sets of contours.

(iii) When (a,b) = (1, g) for some element g € G we speak about quasi-copies of
v nested inside g.

Note that according to the definition of §7(a, b) and to Lemma 3.10, the pair of
points x, y uniquely determines the #-succession t, .. ., tx.

Lemma 4.3  Let x, y be a pair of points in G"(g) (with the Notation 3.28) composing
a nested quasi-copy of v in g, and let t,...,tx be the corresponding n-succession of
contours. There exists no other pair of points p, q in \Uk_, t; such that q = pv.

Proof Lemma 3.30 can be easily generalized to pairs of points a, b contained in an
n-succession of contours. Applied to the pair x, y, it implies that every geodesic join-
ing x, y is y-relator-tied. This implies that v is an #-relator-tied element. Let g be
an 5-relator-tied geodesic joining 1 and v. It follows that xg is contained in UX, ¢;,
whence the unique sequence of vertices on g described in Lemma 3.6 contains k pairs
Xi> Vi

Assume that there exists another pair of points p € t, and g € t; with1< r <s<k
such that p, g compose a nested quasi-copy of v in g. The pg is a geodesic joining p
and g, which, according to Lemma 3.30, is contained in [Jj_, ¢;. The uniqueness of
the sequence in Lemma 3.6 implies that s — r + 1 = k, whence r = 1and s = k. The
same uniqueness implies that each pair px;, py;, translate of the corresponding pair
on g, is the pair of endpoints of the intersection pg n ¢;.

The first pair in the unique sequence of vertices on g as in Lemma 3.6 is of the form
1, h, where h is represented by a word wy in $27*(R), prefix of a relator p labeling a
unique loop 7 through 1 in the Cayley graph. By the above, xt = pt = f;; therefore,
p~'x7 = 7. This and the small cancellation condition C’(1/12) imply that the element
p~'x is trivial in G. Indeed, the condition C’(1/12) implies that the stabilizer in G of
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any contour is trivial; otherwise, one could find two distinct copies of the same long
sub-word in the label of that contour.
We conclude that p = x,and g = pv = xv = y. ]

Definition 4.4 The point x is called the initial point of the nested quasi-copy, while
y is called the terminal point of the nested quasi-copy.

We define ¢,: G x G — R such that ¢, (a, b) is the maximal number of pairwise
non-overlapping quasi-copies of v nested inside (a, b).

By abuse of notation, we define ¢, : G > R such that ¢, (g) is the maximal number
of pairwise non-overlapping quasi-copies of v nested inside g.

Clearly, ¢y (a,b) = cy(ha, hb) and ¢, (g) = co(h, hg), for every h € G.

Proposition 4.5 Let v be one of the elements u, for n € N. The map h,: G - R,
B = Co — Co-1 is a quasi-morphism with defect at most 2.

Proof Let g and / be two arbitrary elements in G. Our goal is to show that

[Da(gh) —bo(g) ~ bo(h)] <2.

The study of geodesic triangles that was done in the preceding section implies that
the intersection §"(g) N G"(h)nG"(g, gh) is either a contour or a tripod (with some
branches possibly reduced to a point) appearing as intersection of three contours, or a
sub-path in a contour w composed of three consecutive sub-paths (possibly reduced
to a point) of lengths < A|w|, for the first and third, and < #|w| for the second. Note
that whatever the geometric nature of the intersection, it splits each of the three sets
G"(g), S"(h), §"(g, gh), into two connected components.

We call the intersection §7(g) nG"(h)nG"(g, gh) the median object for the triple
g, h, gh, and we denote it m(g, h).

We say that m(g, h) separates a quasi-copy of v nested inside (a, b), where (a,b) €
{(1,g),(1,gh), (g, gh)} if the two points x, y determining that quasi-copy are in two
different connected components of §"(a, b) ~ m(g, h).

Assume that the maxima cy+1(g), cox1 (gh) and ¢, (g, gh) are all attained only by
considering nested quasi-copies that are not separated by m(g, ). In that case one
can easily see that b, (gh) — by (g) —bho(h) = 0.

Assume now that every counting that realizes the maximum ¢, (gh) must take into
account a pair x, y separated by m(g, ). Inside G"(gh), one has then an #-succession
of contours t;,...,t; with x € t; and y € t;. The choice of the labels of contours in
G"(uy,) implies that:

* no quasi-copy of b~! nested inside gh can contain a sub-sequence in the se-

quence of contours ty, .. ., tk;
« no initial point of a quasi-copy of b nested inside g can be contained in UX_, t; n
5"(8)s

* no terminal point of a quasi-copy of b nested inside (g, gh) can be contained in
Ui 10 §7(g gh)-

It is nevertheless possible that ¥, ¢; 0 §7(g) contains an initial point of a quasi-

copy of b™! nested inside g. But in that case, no terminal point of a quasi-copy of b™!
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nested inside (g, gh) can be contained in U%_, t; n G (g, gh). We thus obtain that

(4.1) bo(gh) —bo(g) —ho(h) =2.

Similarly, X, t; 0 G7(g, gh) may contain a terminal point of a quasi-copy of b~
nested inside (g, gh); in which case UX_, t; 1 G"(g) cannot contain an initial point of
a quasi-copy of ™! nested inside g, and (4.1) is still verified.

If none of the above two cases occurs, then the right-hand side in (4.1) is 1.

In the case when every counting that realizes the maximum c,-1(gh) must take
into account a pair x, y separated by m(g, h) similar arguments work and give equal-
ities as in (4.1), with the right hand side either -2 or —1.

The cases when c,=1(gh) is replaced by either cy+1(g) or ¢y« (g, gh) are treated
similarly and give equalities like in (4.1), with the right hand side +2 or +1. |

1

We now finish the proof of Proposition 4.1. Proposition 4.5 implies that all the
quasi-homomorphisms b,,, have a defect bounded by 2. Properties (iv) and (v) follow
from Corollary 3.9 and from the construction of the #-relator-tied elements u,,. M

The end of the proof now follows the standard argument in the work of Epstein-
Fujiwara [EF97,Fuj00,Fuj98] and Bestvina-Fujiwara [BF02]. We repeat it here for the
sake of completeness.

Theorem 4.6 Let G be an infinitely presented finitely generated group given by a
presentation satisfying the small cancellation condition C'(1/12). Then there exists an
injective linear map €' — QH(G). In particular, the dimension of QH(G) is power
continuum.

Proof We consider the map ¢! — Q(G) defined by (a,) ~ ¥, anby,. Proposi-
tion 4.1(iii) implies that each image is indeed a quasi-morphism. Proposition 4.1(i)
implies that when a, ), is evaluated in some element g € G, only finitely many terms
take non-zero value, thus the sum is always finite.

The above map defines a linear map €' - QH(G). We now prove that it is injec-
tive. Let (a,) € €' be such that h = 3, a,b,, is at bounded distance from a homo-
morphism. In particular, it follows by Proposition 4.1(ii) that for every n and k, h(uk)
is uniformly bounded.

On the other hand, given # € N such that a,, # 0, Proposition 4.1(iv) and (v) imply
that h(uk) = a, k. This contradicts the fact that h(u¥ ) is bounded uniformly in k. ®
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