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Convection in planetary environments is often modelled using stress-free boundary
conditions, with diffusion-free geostrophic turbulence scalings frequently assumed.
However, key questions remain about whether rotating convection with stress-free
boundary conditions truly achieves the diffusion-free geostrophic turbulence regime. Here,
we investigated the scaling behaviours of the Nusselt number (Nu), Reynolds number (Re)
and dimensionless convective length scale (�/H , where H is the height of the domain)
in rotating Rayleigh–Bénard convection under stress-free boundary conditions within a
Boussinesq framework. Using direct numerical simulation data for Ekman number Ek
down to 5 × 10−8, Rayleigh number Ra up to 5 × 1012, and Prandtl number Pr = 1, we
show that the diffusion-free scaling of the heat transfer Nu − 1 ∼ Ra3/2 Pr−1/2 Ek2 alone
does not necessarily imply that the flow is in a geostrophic turbulence regime. Under the
stress-free conditions, Re and �/H deviate from the diffusion-free scalings, indicating a
dependence on molecular diffusivity. We propose new non-diffusion-free scaling relations
for this diffusion-free heat transfer regime with stress-free boundary conditions: �/H ∼
Ra1/8 Pr−1/8 Ek1/2 and Re ∼ Ra11/8 Pr−11/8 Ek3/2. Our findings highlight the need to
assess both thermal and dynamic characteristics to confirm geostrophic turbulence.

Key words: Bénard convection, rotating flows

1. Introduction
Rotating thermal convection is a fundamental process observed in nature, occurring in
the fluid cores of stars and planets, as well as in planetary atmospheres and oceans
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(Atkinson & Zhang 1996; Marshall & Schott 1999; Aurnou et al. 2015). Understanding
the dynamics of this process is crucial in geophysical and astrophysical contexts, where
heat and momentum transport under rotational constraints sustain magnetic fields and
drive large-scale flow structures (Heimpel, Gastine & Wicht 2016; Schumacher &
Sreenivasan 2020). Among rotating thermal convection models, the rotating Rayleigh–
Bénard convection (RRBC) framework provides valuable insights into rotation-influenced
buoyancy-driven flows (Kunnen 2021; Ecke & Shishkina 2023).

In RRBC, a fluid layer is heated from below and cooled from above while rotating about
a vertical axis. The heat transfer and flow properties in this system are described by key
dimensionless parameters: the Rayleigh number (Ra), quantifying thermal driving; the
Prandtl number (Pr ), characterising fluid diffusivity; and the Ekman number (Ek), which
measures rotational influence. In strongly rotational systems (Ek ≤ 10−4), increasing
Ra leads to distinct convection regimes, ranging from rotation-dominated to buoyancy-
dominated flows, each governed by unique scaling laws for heat and momentum transport
(Julien et al. 2012b; Cheng et al. 2015; Aurnou, Horn & Julien 2020; Kunnen 2021;
Ecke & Shishkina 2023). A well-known diffusion-free scaling law for heat transfer,
Nu − 1 ∼ Ra3/2 Ek2 Pr−1/2, where Nu is the Nusselt number representing the ratio of
total to conductive heat transfer, assumes independence from viscosity (ν) and thermal
diffusivity (κ) (Stevenson 1979; Julien et al. 2012a; Stellmach et al. 2014; Cheng & Aurnou
2016; Plumley et al. 2017; Bouillaut et al. 2021; Song et al. 2024c; van Kan et al. 2025).

This diffusion-free heat transfer scaling is thought to represent an idealised geostrophic
turbulence regime, where the system is independent of ν and κ , consistent with the energy
cascade paradigm in high-Ra turbulent flows (Ahlers, Grossmann & Lohse 2009; Lohse
& Shishkina 2024). Geostrophic turbulence, often termed ultimate Rayleigh–Bénard
turbulence under strong rotation, is crucial for geophysical and astrophysical systems, such
as planetary cores, atmospheres and stellar convection zones, where large Ra values occur
(Vallis 2017). Understanding this regime is vital for predicting heat and mass transport
in these environments. Despite recent advances in achieving ultimate turbulent scaling
through direct numerical simulations (DNS) and experiments with taller convection cells
(Cheng et al. 2018; Ecke & Shishkina 2023), replicating extreme conditions (Ek ∼
10−7, Ra ∼ 1012) in laboratory experiments remains challenging. Only very recently,
the diffusion-free heat transfer scaling has been observed with no-slip boundaries at
very high Ra (Ra > 1012) and very strong rotation (Ek < 10−8) in DNS (Song et al.
2024a,b,c). In contrast, DNS studies and reduced asymptotic models suggest that stress-
free boundaries are generally perceived as more favourable for achieving diffusion-free
heat transfer. Diffusion-free scaling of Nu has indeed been observed at moderate Ekman
numbers (Ek < 10−6) (Julien et al. 2012a; Stellmach et al. 2014; Plumley & Julien 2019;
Oliver et al. 2023; van Kan et al. 2025), significantly higher than thresholds for no-slip
boundaries, leading researchers to believe that stress-free conditions more readily facilitate
the exploration of the geostrophic turbulence regime.

The Nusselt number has traditionally served as the primary diagnostic for identifying
diffusion-free scaling and geostrophic turbulence in rapidly RRBC (Stellmach et al. 2014;
Bouillaut et al. 2021; Maffei et al. 2021; Oliver et al. 2023; Song et al. 2024c; van
Kan et al. 2025). However, using no-slip boundary conditions, recent analyses suggest
that relying solely on Nu scaling may be insufficient to fully capture the transition into
the geostrophic turbulence regime (Song et al. 2024c). Achieving a truly diffusion-free
state demands not only asymptotic thermal transport but also diffusion-free momentum
transport, characterised by the Reynolds number (Re) and diffusion-free convective
length scales (�/H ), normalised by the container height (H ). Theoretical predictions
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for geostrophic turbulence anticipate clear, diffusion-independent scaling laws: Re ∼
Ra Ek Pr−1 and �/H ∼ Ra1/2 Ek Pr−1/2 (Guervilly, Cardin & Schaeffer 2019; Madonia
et al. 2021; Oliver et al. 2023; Song et al. 2024c).

Stress-free boundary conditions are employed extensively in studies of planetary
atmospheres, including Jupiter’s (Christensen 2010; Fuentes et al. 2023), and solar
convection dynamics (Featherstone & Hindman 2016; Vasil, Julien & Featherstone 2021;
Käpylä 2024), under the implicit assumption that they naturally facilitate diffusion-
free turbulence across thermal, momentum and structural measures. However, through
our extensive DNS studies of idealised RRBC, we uncover a crucial and unexpected
distinction. While Nu robustly transitions to diffusion-independent scaling at moderate
Ek accessible to current simulations, Re and �/H persistently exhibit significant residual
dependence on viscosity. This divergence indicates that even as heat transport becomes
effectively diffusion-free, viscous effects continue to influence the strength of convective
motions and maintain larger-scale, viscosity-dominated coherent vortices in stress-free
RRBC.

We therefore argue that genuine geostrophic turbulence can be unambiguously
recognised only when Nu, Re and �/H simultaneously exhibit diffusion-free scaling. Our
extensive DNS datasets with stress-free boundary conditions, covering a wide parameter
space with Ra and Ekman numbers down to Ek = 5 × 10−8, clearly show that the
asymptotic, diffusion-free regime for Nu is achieved far in advance of Re and �/H .
This highlights a significant physical implication: current geophysical and astrophysical
models employing stress-free boundaries with moderate Ek may underestimate the
influence of viscosity on large-scale flow structures. Recent asymptotic theories, rescaled
specifically for stress-free RRBC, propose that fully diffusion-free conditions across all
diagnostics might require extremely low Ek ∼ 10−10 (van Kan et al. 2025). Exploring
this parameter regime remains a formidable computational and experimental challenge,
underscoring the need for innovative numerical techniques and novel experimental
approaches to conclusively achieve and characterise the regime of fully developed
geostrophic turbulence.

2. Numerical methods
In this study, we investigate RRBC by analysing DNS datasets from our recent work,
utilising both stress-free and no-slip boundary conditions on the horizontal plates that
bound the fluid domain. Specifically, we employ stress-free RRBC DNS data from Kannan
& Zhu (2025), and no-slip RRBC simulation datasets from Song et al. (2024a,b,c) to
conduct a detailed comparison of the geostrophic turbulence regime under these distinct
boundary conditions, assuming fixed-temperature conditions on the horizontal plates, and
periodic lateral boundaries in both cases. The Boussinesq approximation is applied to
model the system, which rotates with constant angular velocity Ω around the vertical
z-axis, with gravitational acceleration g = −gez , where ez is the vertical unit vector.

The simulations were performed using the second-order finite-difference code AFiD
(Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu et al. 2018). The reference
scales adopted are the domain height H , the temperature difference between the plates
Δ, and the characteristic free-fall velocity u f = √

αT gH�, where αT is the thermal
expansion coefficient, and g is the gravitational acceleration. The dimensionless governing
equations are

∇ · u = 0, (2.1)
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∂u
∂t

+ u · ∇u = −∇ p +
√

Pr

Ra
∇2u + θez − 1

Ek

√
Pr

Ra
ez × u, (2.2)

∂θ

∂t
+ u · ∇θ = 1√

Ra Pr
∇2θ, (2.3)

where u is the velocity field, p is the pressure, and T is the temperature.
The dimensionless control parameters are defined as

Γ = L

H
, Pr = ν

κ
, Ek = ν

2ΩH2 , Ra = αT g�H3

νκ
, (2.4)

where Γ is the aspect ratio (with L as the horizontal length), Pr is the Prandtl number, Ek
is the Ekman number, and Ra is the Rayleigh number, which have been introduced before.
The Rossby number Ro = √

Ra/Pr Ek, quantifies the relative strength of buoyancy to the
Coriolis force.

The datasets used in this study cover 5 × 10−8 ≤ Ek ≤ 5 × 10−6, 108 ≤ Ra ≤ 5 × 1012

and 0.125 ≤ Γ ≤ 2 for stress-free RRBC, and 5 × 10−9 ≤ Ek ≤ 1.5 × 10−8, 3 × 1011 ≤
Ra ≤ 3 × 1013 and 0.125 ≤ Γ ≤ 0.5 for no-slip RRBC. All simulations were performed
with a fixed Prandtl number Pr = 1. Further numerical details can be found in Song et al.
(2024c) for no-slip RRBC, and in Kannan & Zhu (2025) for stress-free RRBC.

We analyse key diagnostic quantities, including Nu and Re, which characterise the
vertical momentum transport. These are defined as

Nu = 1 + √
Ra Pr 〈uzθ〉V,t , Re =

√
Ra

Pr

〈
u2

z

〉1/2

V,t
, (2.5)

where 〈·〉V,t denotes averaging over the volume V and time t , and uz is the non-
dimensionalised vertical velocity component.

3. Results and discussion
The Nusselt number Nu is shown in figure 1 as a function of Ra for various Ek values,
under both no-slip (red-shaded) and stress-free (blue-shaded) boundary conditions. We
observe that for varying control parameters, Nu follows diffusion-free scaling in some
regions. Specifically, Nu − 1 ∼ Ra3/2 Ek2 ≡ R̃a

3/2, at distinct supercritical Rayleigh
numbers R̃a ≡ Ra Ek4/3, as shown in figure 2(a). This diffusion-free scaling holds
for moderate values 40 ≤ R̃a ≤ 200 under stress-free conditions, and for higher values
R̃a ≥ 200 under no-slip conditions. Based on the scaling behaviour of Nu, it might be
inferred that the whole flow dynamics is diffusion-free.

However, recent work by Song et al. (2024c) reports that in addition to Nu, both the
convective length scale � and the Reynolds number Re = uz,rms H/ν, which characterises
momentum transport, also follow diffusion-free scaling in the geostrophic turbulence
regime. Here, uz,rms denotes the root mean square (rms) of the vertical velocity component
uz . Specifically, the proposed diffusion-free scaling relations are �/H ∼ Ra1/2 Ek Pr−1/2

and Re ∼ Ra Ek Pr−1 (Aurnou et al. 2020; Song et al. 2024c). To explore this further, we
examine whether the data obtained under stress-free conditions align with the diffusion-
free scaling for � and Re at moderate values of R̃a, where Nu exhibits diffusion-free
scaling.

The compensated plots for Re and �/H , along with their respective diffusion-free
scaling, are presented as functions of R̃a in figures 2(b) and 2(c). Here, �/H is based on
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Figure 1. Dimensionless convective heat transport Nu − 1 as a function of the Rayleigh number Ra for various
Ekman numbers Ek, obtained from DNS of RRBC with stress-free and no-slip boundary conditions at Pr = 1.
The dashed lines represent the heat transfer scaling for geostrophic turbulence, Nu − 1 ∼ Ra3/2.

101

100

102 103101 102

Ra ≡ Ra Ek4/3

Re
/
(R

a 
Ek

)

(�
c/

H
)/

(R
a1
/
2
Ek

)

(N
u 

–
 1

)/
(R

a3
/
2
Ek

2
)

103 104101

10–3

10–2
No-slip:

10–1

10–1

102 103 104

Ek = 1.5 × 10–8

Ek = 5 × 10–9

Ek = 5 × 10–6

Ek = 5 × 10–7

Ek = 5 × 10–8

Stress-free: Ra –7/6

Ra –1/2

Ra Ra

(a) (b) (c)

Figure 2. (a) Nusselt number Nu − 1, normalised by the diffusion-free scaling Ra3/2 Ek2. (b) Dimensionless
momentum transport Re, normalised by its geostrophic turbulence scaling Ra Ek. (c) Dimensionless
convective length scale �c/H , normalised by its geostrophic turbulence scaling Ra1/2 Ek, shown as a function
of the supercriticality parameter R̃a ≡ Ra Ek4/3 and increasing supercriticalities.

the uz spectra, �c/H = ∑
k[ûz(k) û∗

z (k)]/
∑

k k[ûz(k) û∗
z (k)], where ûz(k) and û∗

z (k) are,
respectively, the Fourier transform of uz and its complex conjugate at the mid-height, and
k is the wavenumber. It is evident that at the values of R̃a where Nu follows diffusion-free
scaling in figures 1 and 2(a), both Re and �c/H exhibit diffusion-free scaling only under
no-slip conditions, as shown by Song et al. (2024c). However, for stress-free conditions,
at moderate values of 40 ≤ R̃a ≤ 200, neither Re nor �c/H data exhibit diffusion-free
scaling. This suggests that although the heat transfer is diffusion-free, the momentum
transport and associated length still depend on diffusion under the stress-free boundary
conditions. Here, it should be noted that the moderate range 40 ≤ R̃a ≤ 200 is defined
based on our DNS parameters (Ek ≥ 5 × 10−8, Ra ≤ 5 × 1012). As Ek decreases, the
upper bound may increase, potentially broadening the regime where Nu is diffusion-free;
however, Re and �/H are not.

This discrepancy raises the question: if Re and �c/H do not conform to diffusion-
free scaling, what alternative scaling do they follow, and how can this behaviour be
understood? To address this, we analyse the flow structure to gain insight into the scaling
of the associated length scales in this moderate R̃a regime, where heat transfer remains
diffusion-free.
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Figure 3. Okubo–Weiss decomposition of barotropic energy at Ra = 2 × 1011, Ek = 5 × 10−8, with spectra
for vortex core (solid line) and background circulation cell (dashed line). Vortex core and circulation cell length
scales, � and �B , are shown in the inset schematic. Right-hand column: contour plots of horizontal vorticity
(vortex core) and strain (circulation cell), with dark/light colours for high/low values.

Previous studies for stress-free plates showed that at moderate R̃a values, the flow
exhibits a large-scale cyclone–anticyclone vortex dipole with rapidly rotating vortex core
(Julien et al. 2012b; Favier, Silvers & Proctor 2014; Rubio et al. 2014; Ecke & Shishkina
2023), a simple structure that fills the domain. For a fixed value of rotation rate (fixed
Ek) but increasing Ra, the transport properties trend to those in non-rotating case,
i.e. Nu − 1 ∼ Ra1/3 and Re ∼ Ra1/2. This behaviour is fully supported by the scalings
(Nu − 1)/(Ra3/2 Ek2)∼ Ra−7/6 and Re/(Ra Ek)∼ Ra−1/2, as shown in figures 2(a)
and 2(b), respectively.

We now focus on the scaling properties of stress-free flows where the heat transport
follows the diffusion-free scaling, i.e. in the range 40 ≤ R̃a ≤ 200. They are determined
by the scaling relations of the vortex core. To derive them, the large-scale vortex can be
viewed spatially as a vortex core (rotation-dominated region) surrounded by a circulation
cell (shear-dominated region) in the background, as illustrated in the inset of figure 3
(Petersen, Julien & Weiss 2006). Each circulation cell region has its own length scale: �
for the core, and �B for the whole cell.

In the shear-dominated circulation cell, advection is balanced by diffusion across the
cell. This region is characterised by slow rotation and dominated by buoyancy forces,
unlike the vortex core, which is rotation-dominated. Thus we have the balance

u · ∇u ∼ ν∇2u. (3.1)

In the shear-dominated region of the circulation cell, advective forces locally outweigh
the Coriolis effect, despite the system’s rapid rotation (Ek ≥ 5 × 10−8) – unlike the
rotation-dominated vortex core. Thus in the locally buoyancy-dominated region, where
rotation is weak, the convective velocity scales with the free-fall velocity u f , which
represents the maximum velocity attainable by a fluid parcel when its potential buoyant
energy is fully converted into kinetic energy (Niemela & Sreenivasan 2003; Aurnou et al.
2020). This scaling is also supported by our DNS results (see Appendix A). By applying
an order-of-magnitude analysis to the above balance, with u f as the convective velocity
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scale in the circulation cell, we obtain

u2
f

H
∼ ν

u f

�2
B
=⇒ �B

H
∼ Ra−1/4 Pr1/4. (3.2)

For the scales of length in (3.2), the viscous term uses �B, the circulation cell’s
horizontal scale, due to dominant horizontal diffusion, while advection uses H , reflecting
vertical momentum transport across the domain.

Similarly, the length scale for the vortex core, which represents the characteristic scale
of the flow structure, can be obtained by assuming a balance between viscous and Coriolis
forces in the vorticity equation. This assumption is appropriate as the flow in this regime
does not follow the diffusion-free scaling for Re and � (see figure 2) deduced from
the presumption that the flow obeys a CIA (Coriolis, inertia, Archimedean buoyancy)
balance (Aurnou et al. 2020; Vasil et al. 2021). Therefore, we assume that these structures,
particularly the vortex core, are governed by a VAC (viscous, Archimedean buoyancy,
Coriolis) balance. The viscous–Coriolis force balance can be written as

ν ∇2ω ∼Ω
∂u
∂z
, (3.3)

where ω is the vorticity field. Here, we consider the length scale in the vortex core, �, to
be the diffusion scale that governs the dynamics. We define u as the characteristic velocity
scale for the large-scale vortex, and approximate the vorticity of the large-scale roll as
ω∼ u/�B. Although the circulation cell is shear-dominated, it shares the same rotational
direction as the vortex core and encompasses it, which makes �B an appropriate length
scale for estimating the vorticity. In the viscous–Coriolis balance, the Laplacian operates
on �, the vortex core’s scale – where most dissipation takes place – to balance the Coriolis
term (Ωu/H ).

Applying these scaling assumptions, the order-of-magnitude analysis of the above
balance yields

ν

�2
u

�B
∼Ω

u

H
. (3.4)

Substituting the scaling for �B from (3.2) into this relation and rearranging terms, we
can express the scaling for the convective length scale � in terms of the control parameters
of RRBC as

�

H
∼ Ra1/8 Pr−1/8 Ek1/2 ≡ R̃a

1/8
Pr−1/8 Ek1/3. (3.5)

The scaling relation �/H ∼ Ra1/8, for fixed Ek and Pr , as presented in (3.5), was
also demonstrated by Oliver et al. (2023) using asymptotically reduced RRBC simulation
data. Through linear stability analysis, Oliver et al. (2023) found that the length scale
follows Ra1/8 scaling, with the most unstable modes growing with Ra as k−8. In contrast,
we derive this relation here through force balance and an associated order-of-magnitude
analysis.

To compute these two length scales given in (3.2) and (3.5), and verify their scalings
for the diffusion-free heat transfer regime, we separate the flow into rotation/vorticity
and shear contributions following the Okubo–Weiss decomposition of barotropic (depth-
averaged) energy (Okubo 1970; Weiss 1991; Petersen et al. 2006; Rubio et al. 2014).
The corresponding spectra and contour plots for the circulation cell (shear-dominated)
and vortex core (rotation-dominated) contributions are shown in figure 3. The dominant
length scales for these two regions can be computed individually from these spectra for
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Figure 4. The background convective length scale �B , representing the spatial extent of the circulation region.
(b) The characteristic convective length scale �ζ , derived from vertical vorticity ωz . (c) The convective
length scale �c, based on vertical velocity. All are normalised by the new scaling laws proposed in (3.2) and
(3.5), within the diffusion-free heat transfer regime. These are plotted as functions of R̃a = Ra Ek4/3. A power-
law fit to the DNS data in the moderate range 40 ≤ R̃a ≤ 200 yields the scaling relation Re ∼ R̃a

α at fixed Ek,
with fitted exponents α for (a) �/H = 0.23 ± 0.12, (b) �ζ /H = 0.11 ± 0.09 and (c) �c/H = 0.12 ± 0.05 (95 %
confidence interval), supporting the scaling relations presented in (3.2) and (3.5).

different cases. The length scales �B, derived from shear spectra, and �, computed from
depth-averaged vertical vorticity spectra, and denoted as �ζ to represent the rotational
contribution, are plotted as functions of R̃a in figures 4(a) and 4(b), respectively. It can be
seen that at moderate 40 ≤ R̃a ≤ 200 in the diffusion-free heat transfer regime, the scalings
deduced in (3.2) and (3.5) show good agreement. The scales �B and � reflect the dipole’s
multi-scale dynamics, yielding (3.5), which agrees with the DNS data (figure 4), thereby
confirming the validity of these scale choices. The scaling �/H ∼ R̃a

1/8
Ek1/3 holds

approximately in 40 ≤ R̃a ≤ 200, with figure 4(a) showing validity from R̃a ≈ 20 to ∼100,
and figures 4(b,c) extending to ∼ 200. Deviations reflect evolving flow structures at higher
R̃a on decreasing Ek. The convective length scale can be determined from temperature,
vertical velocity and vertical vorticity, as the spatial correlations of these quantities are
qualitatively similar across the cell, columns, plumes and geostrophic turbulence regimes
(Nieves, Rubio & Julien 2014). Notably, the convective length scale calculated from
vertical velocity �c, as in figure 2(c), aligns well with the deduced scaling in (3.5) for
moderate R̃a values (see figure 4c).

Having established the convective length scale, we now focus on obtaining the scaling
for momentum transport, characterised by Re, in the diffusion-free heat transfer regime.
To determine the scaling of Re, we follow the approach outlined by Song et al. (2024c),
where it was derived using exact relations that Nu and Re are related to � by the equation

Re ∼ Nu − 1
(�/H) Pr

(3.6)

in this regime. Substituting Nu − 1 ∼ Ra3/2 Pr−1/2 Ek2 and �/H ∼ Ra1/8 Pr−1/8 Ek1/2

from (3.5) into this relation, we obtain the scaling for Re in the moderate R̃a diffusion-free
heat transfer regime:

Re ∼ Ra11/8 Pr−11/8 Ek3/2 ≡ R̃a
11/8

Pr−11/8 Ek−1/3. (3.7)

The above scaling was also recently derived by Kannan & Zhu (2025) using the
transition Rayleigh number scaling for stress-free RRBC, RaT ∼ Ek−12/7, which marks
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Figure 5. Dimensionless momentum transport Re, normalised by Ek−1/3, versus supercriticality
R̃a = Ra Ek4/3 for stress-free (circles) and no-slip (triangles) RRBC. Inset: Re, normalised by (3.7), in the
diffusion-free heat transfer regime, versus R̃a. A power-law fit to stress-free DNS data for 40 ≤ R̃a ≤ 200
gives Re ∼ R̃a

α at fixed Ek, with α = 1.26 ± 0.14 (95 % confidence interval), which supports (3.7) and which
is clearly different from the diffusion-free scaling for no-slip boundary condition as shown in figure 2(b).

the shift from rotation- to buoyancy-dominated regimes. For stress-free RRBC in the
rotation-dominated regime at fixed Pr = 1, the scaling Re ∼ Ra11/8 Ek3/2 is obtained by
equating the buoyancy-dominated scaling Re ∼ Ra1/2 with RaT . Additionally, numerical
simulations by Oliver et al. (2023), using an asymptotically reduced model, report Re ∼
Ra1.325 from an empirical fit for 40 ≤ R̃a ≤ 200. This exponent closely matches the
theoretical 11/8 = 1.375 scaling derived here (3.7) for moderate R̃a.

Figure 5 shows a compensated plot of Re versus R̃a, where Re is normalised by the
scaling in (3.7), for the diffusion-free heat transfer regime in stress-free and no-slip RRBC.
The plot confirms that Re follows the predicted scaling for stress-free RRBC in this regime
of moderate R̃a, and clearly deviates for no-slip RRBC .

Although the range of Ra over which Nu follows the diffusion-free scaling increases
with decreasing Ek (as seen in figures 1 and 2a), the length scales �ζ and �c do not exhibit
a similar broadening in figures 4(b) and 4(c). This difference arises because � reflects finer
structural features of the flow, such as the presence and breakdown of coherent vortices,
which evolve non-monotonically with control parameters. Therefore, asymptotic scaling
in � may require even lower Ek to emerge clearly. Meanwhile, the derived scaling for Re
appears valid over a broader range at low Ek (see figure 5), partly because Re depends
analytically on Nu and �, and inherits smoothness from the former.

These results indicate that while Nu follows diffusion-free scaling under specific flow
parameters for stress-free conditions, the corresponding scalings for � and Re can remain
highly dependent on molecular diffusivity (see (3.5) and (3.7)). Therefore, for the flow to
be considered truly diffusion-free, both convective and momentum transport, along with
their associated length scales, must be independent of molecular diffusivity.

4. Conclusions
This study investigated the scaling behaviour of the Nusselt number (Nu), Reynolds
number (Re) and convective length scale (�) in RRBC with stress-free boundaries, using
our available DNS data. While Nu followed diffusion-free scaling for some parameter
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range, Re and � did not, revealing that Nu scaling alone cannot guarantee geostrophic
turbulence. Therefore, the Pr dependence reported in this study should be interpreted
with caution and still requires further validation. We proposed new scaling relations for
Re and � in this diffusion-free heat transfer regime, showing that an accurate assessment
of both thermal and dynamic properties is essential to characterise geostrophic turbulence
accurately in stress-free conditions. These findings suggest that achieving fully diffusion-
free turbulence in DNS may require more extreme rotational conditions than previously
expected. Extrapolating our scalings suggests diffusion-free behaviour at Ek ∼ Ra−1/4

(e.g. Ek ∼ 10−9 for Ra ∼ 1012 at Pr = 1), requiring smaller Ekman numbers than those
studied here, consistent with results from van Kan et al. (2025) using a rescaled RRBC
model. By emphasising the importance of boundary conditions and multi-parameter
scaling, this work advances understanding of RRBC in geophysical and astrophysical
contexts, and encourages further research on geostrophic turbulence.

Our scaling laws can be compared to theoretical bounds derived by Tilgner (2022), who
investigated upper limits on heat transfer and kinetic energy in RRBC with stress-free
boundaries at large Prandtl numbers. These bounds, derived via a variational approach,
suggest that Nu scales at most as Nu ∼ Ra in the infinite Pr limit, moderated by rotational
effects, while kinetic energy constraints reflect a balance between viscous dissipation and
Coriolis forces. In our moderate Prandtl number regime (Pr = 1, moderate R̃a), Nu aligns
with the diffusion-free scaling Nu − 1 ∼ Ra3/2 Ek2, which exceeds Tilgner’s bound at
lower Ra but may approach consistency at higher Ra as rotational suppression intensifies.
Meanwhile, our Re scaling (Re ∼ Ra11/8 Ek3/2) indicates a stronger Ra dependence,
which might be constrained by kinetic energy bounds at infinite Pr , highlighting the
influence of finite Prandtl number effects in our DNS data. This comparison underscores
the need for further exploration of Prandtl number dependencies to reconcile empirical
scalings with theoretical maxima.

Funding. We gratefully acknowledge financial support from the Max Planck Society and the German
Research Foundation through grants 521319293, 540422505 and 550262949. All the simulations have been
conducted on the HPC systems of the Max Planck Computing and Data Facility (MPCDF) as well as the
National High Performance Computing (NHR@ZIB and NHR-Nord@Göttingen).
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Appendix A. Velocity scale in the circulation cell
Figure 6 shows vertical velocity uz and streamfunction ψ contours at mid-plane for a
cyclonic vortex at Ra = 2 × 1011, Ek = 5 × 10−8, Pr = 1 (R̃a ≈ 126), with a fast-rotating
core in a circulation cell (see inset) (Petersen et al. 2006). The dipole, with a dominant
cyclonic vortex, aligns with dipolar structures in the literature (Julien et al. 2012b; Rubio
et al. 2014). The cell’s convective velocity uz,cell, averaged where |ψ | ≤ 0.8 |ψ |max,
yields Rez,cell = uz,cell,rms H/ν, plotted versus Ra1/2 in figure 6. We find Rez,cell ∼ Ra1/2,
matching u f scaling from buoyancy-dominated regimes (Niemela & Sreenivasan 2003;
Aurnou et al. 2020), which informs the length scale �B in (3.2). Within the shear-
dominated circulation cell, where rotational effects are minimal, buoyancy drives the
flow, and the convective velocity scales as the free-fall velocity, yielding Rez,cell ∼ Ra1/2.
This localised scaling reflects the dominance of buoyancy in this region, contrasting with
the rotationally influenced three-dimensional dynamics of the broader flow, including the
vortex core.
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Figure 6. Left-hand column: instantaneous uz andψ contours at mid-plane for a large-scale vortex at Ra = 2 ×
1011, Pr = 1, Ek = 5 × 10−8 (red/blue for positive/negative values; white line at ψ = 0.8ψmax marks vortex
core). Right-hand column: Rez,cell in the circulation cell (|ψ | ≤ 0.8ψmax) versus Ra1/2. Inset: schematic of
vortex core and circulation cell.
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