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Subdifferentials Whose Graphs
Are Not Norm×Weak* Closed

Jonathan Borwein, Simon Fitzpatrick and Roland Girgensohn

Abstract. In this note we give examples of convex functions whose subdifferentials have unpleasant

properties. Particularly, we exhibit a proper lower semicontinuous convex function on a separable

Hilbert space such that the graph of its subdifferential is not closed in the product of the norm and

bounded weak topologies. We also exhibit a set whose sequential normal cone is not norm closed.

1 Introduction

The subgradient of a convex function provides a central example for two modern
theories:

(i) non-smooth analysis ([B-L], [Cl], [R-W]) and
(ii) maximal monotone operators ([Ph], [Si]).

In both settings one constructs a multi-function that emulates a derivative and is
hoped to have good closure properties as is described in detail for monotone opera-
tors below. Such closure, and semi-continuity, properties are quite essential for both

analytic and algorithmic use of subdifferentials. They are less critical in the produc-
tion of calculus rules and of necessary optimality conditions [Mo].

A proper lower semicontinuous convex function function f on E is a function
which takes values in (−∞,∞] with epi f := {(x, r) ∈ E × R : r ≥ f (x)} a closed
convex nonempty set. For such a function we define the subdifferential by x∗ ∈
∂ f (x) provided x∗ ∈ E∗ satisfies f (y) − f (x) ≥ 〈y − x, x∗〉 for all y ∈ E. For other
functions there are more complicated ways of defining a useful subdifferential.

Thus, one typically has some notion of the generalized subdifferential as a map-
ping from a Banach space to its dual. Then one establishes, under appropriate local
boundedness or compactness hypotheses, that its graph is closed in the product of

the norm and weak topologies. Now local boundedness is automatic for locally Lip-
schitz, and hence continuous convex, functions and so no pathology occurs in this
setting. Similarly, in finite dimensions little can go wrong, because the unit ball is
norm compact.

Alternatively, one takes limits of bounded weak-star convergent nets or sequences

and fails, in general, to obtain a topologically closed graph. Such issues are addressed
in [B-F2], [M-S] and Section 4.

It is the purpose of this note to show that such a dichotomy is intrinsic by (i) ex-
hibiting a proper lower semicontinuous convex function on a separable Hilbert space
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such that the graph of its subdifferential is not closed in the product of the norm and
bounded weak topologies, and (ii) showing that the sequential limiting normal cone

(or limiting proximal normal cone) need not even be norm closed.

The paper is organized as follows. In Section 2, we discuss monotone operators
and provide our core examples. In Section 3, we make an extension to show that
such behaviour occurs in all infinite dimensional Banach spaces. Finally, in Section 4
we record a corresponding failure of the normal cone. Our notation when not given

explicitly is consistent with [B-L], [Cl], and [Ph].

2 The Graph of a Monotone Operator

Let E be a Banach space and let M be a maximal monotone operator on E. We recall
that a multifunction M : E → 2E∗

is monotone if 〈x∗ − y∗, x − y〉 ≥ 0, whenever
x∗ ∈ M(x) and y∗ ∈ M(y). Also, M is maximal if its graph is maximal with re-

spect to set inclusion among all monotone mappings ([Ph], [Si]). This means that
〈x∗ − y∗, x − y〉 ≥ 0 for all (y, y∗) ∈ graph M allows us to conclude that (x, x∗) ∈
graph M. A maximal monotone operator is very well behaved topologically on the
interior of its domain [Ph], but not more generally as we now indicate.

If (xα, x∗α) is a net in the graph of M which converges to (x, x∗) norm×weak∗ then

for every y∗ ∈ M(y) we have 〈x∗α − y∗, xα − y〉 ≥ 0. This implies

〈x∗ − y∗, x − y〉 = 〈x∗α − y∗, x − y〉 + 〈x∗ − x∗α, x − y〉

= 〈x∗α − y∗, xα − y〉 + 〈x∗α − y∗, x − xα〉 + 〈x∗ − x∗α, x − y〉

≥ 〈x∗α, x − xα〉 − 〈y∗, x − xα〉 + 〈x∗ − x∗α, x − y〉.

Since 〈y∗, x − xα〉 → 0 and 〈x∗ − x∗α, x − y〉 → 0, if we could show 〈x∗α, x − xα〉 → 0
we would have 〈x∗ − y∗, x − y〉 ≥ 0 and therefore x∗ ∈ M(x) by maximality.

Clearly if the set of x∗α is bounded then this holds. (Note, en passant, that all

weak∗-convergent sequences on the dual of a Banach space are necessarily bounded.
This implies that graph M is norm×weak∗ sequentially closed.) So if we define a
topology τ on E∗ by declaring that a net x∗α converges to x∗ for τ if and only if x∗α
converges to x∗ weak∗ and the x∗α are bounded then the graph of M is norm×τ closed.

A weaker (than τ but stronger than weak∗) but related topology on E∗ is the

bounded weak∗ topology, bw∗, which is the polar topology generated by the com-
pact subsets of E, see [Ho]. Some unbounded nets converge for this topology so the
above argument does not work for bw∗ in the absence of local boundedness of M.
(See [B-F], [Ph] or [Si] for some conditions under which a monotone operator is

locally bounded.) However, it seems to be worthwhile to give an explicit example to
show that the graph of M can fail to be norm×bw∗ closed.

If the Banach space E is reflexive then the bw∗ topology on E∗ is just the bounded
weak topology, bw, on E∗ (as bw is then generated by the compact subsets of E∗∗

which is just E) and that is the case for our example which is a maximal cyclically
monotone operator (see [Ph]) on separable Hilbert space.
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Example 1 A proper lower semicontinuous convex function f on a separable Hilbert
space such that the graph of the maximal monotone operator ∂ f is not norm × bw

closed.
Let E := `2(N). To make things clearer we will keep E∗ and E separate. Define

ep,m :=
1

p
(ep + epm ), e∗p,m := e∗p + (p − 1)e∗pm

for m, p, r, s ∈ N, p prime and m ≥ 2. Here en and e∗n denote the unit vectors in E

and E∗ respectively.
Then we have

〈e∗p,m, ep ′,m ′〉 =











0, if p 6= p ′

1/p, if p = p ′, m 6= m ′

1, if p = p ′, m = m ′.

Further, for x ∈ E define

f (x) := max(〈e∗1 , x〉 + 1, sup{〈e∗p,m, x〉 : p prime, m ≥ 2})

so f is a proper lower semicontinuous convex function on E. Then f (0) = f (ep,m) =

1, f (−e1) = 0 and f (x) ≥ 〈e∗p,m, x〉 for all x ∈ E and p prime, m ≥ 2, which implies

e∗p,m ∈ ∂ f (ep,m). In fact,

f (x) − f (ep,m) = f (x) − 1 ≥ 〈e∗p,m, x〉 − 1 = 〈e∗p,m, x − ep,m〉 for all x ∈ E.

We also have 0∗ 6∈ ∂ f (0), since 0∗ ∈ ∂ f (0) is equivalent to f (x) − f (0) ≥ 0 for all
x ∈ E (immediately from the definition of ∂ f ), which is not true for x = −e1. Thus
(0, 0∗) is not in the graph of ∂ f .

So we may now prove that the graph of ∂ f is not norm×bw closed by proving

that (0, 0∗) is in the norm×bw closure of the set

{(ep,m, e∗p,m) : p prime, m ≥ 2} ⊆ graph ∂ f .

Informally, this is true, since ep,m tends in norm to 0 for large p, and also 0∗ is a
bw-cluster point of the e∗p,m. A more precise argument is the following.

Let ε > 0 and a compact A ⊆ E be arbitrarily given. We have to prove that there
exist indices p, m with ‖ep,m‖ ≤ ε and e∗p,m ∈ A◦. Pick n0 ∈ N such that ‖ep,m‖ ≤ ε
and supa∈A〈e

∗
p, a〉 ≤ 1/2 for all p ≥ n0. (This is possible since ‖ep,m‖ = 2/p and A

is compact, so that 〈e∗p, a〉 tends to 0 for p → ∞ uniformly in a ∈ A.)
Then for each prime p pick m0 = m0(p) such that

sup
a∈A

〈e∗pm , a〉 ≤
1

2(p − 1)
for all m ≥ m0,

once more using compactness of A. Now for all p ≥ n0 and m ≥ m0(p) we have

sup
a∈A

〈e∗p,m, a〉 = sup
a∈A

t
(

〈e∗p, a〉 + (p − 1)〈e∗pm , a〉
)

≤
1

2
+

1

2
,
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thus ‖ep,m‖ ≤ ε and 〈e∗p,m, a〉 ≤ 1 for all a ∈ A (i.e., e∗p,m ∈ A◦).

Remarks 2 (a) Example 1 was constructed as a separable and more illustrative ver-
sion of an earlier unpublished non-separable example due to the second author. In
fact, this example takes E = `2([0, 1]) and defines

f1(x) := max
(

〈e0, x〉 + 1, sup{r−1〈er, x〉 : 0 < r ≤ 1}
)

.

The interested reader will be able to emulate the previous argument. In the previous
case we relied on an unbounded sequence having a weak∗ cluster point. Here we rely

instead on the fact that {r−1er : 0 < r ≤ 1} has 0∗ in its bounded weak∗ closure.
Indeed the polar of a compact set in E contains all but countably many points of
{r−1er : 0 < r ≤ 1}.

This was constructed in response to a letter from Isaac Namioka, who pointed out

that in an early draft of [B-F-K] the authors had assumed that the bounded weak∗

topology is better behaved than it actually is.
(b) As we noted, the graph ∂ f is sequentially norm×weak∗ closed. Thus, the

sequential closure is in general smaller than the topological closure, even for convex

subdifferentials. In particular, we cannot have a sequence in {(ep,m, e∗p,m) : p prime,
m ≥ 2} that converges norm×bw to (0, 0∗). Note also that Example 1 embeds the
classical fact that in the weak topology

en + nem ⇀m en ⇀n 0,

so that 0 is in the weak sequential closure of the weak sequential closure of {en +nem}.
Hence, we emphasize that the weak sequential convergence is not a closure operator.

(c) These examples also show that a local boundedness hypothesis is missing in
Lemma 8 (i) of [Ko].

3 A General Construction

A similar construction works for an arbitrary Banach space E, using the fact that
every separable subspace Y of a Banach space E has a normalized Markushevich basis

(M-basis). Let {en} be the (densely spanning) basis and {e∗n} its dual coefficients

(which separate points of Y ), satisfying 〈e∗m, en〉 = δn,m and ‖e∗n‖ ‖em‖ ≤ 2, [F-H-H,
page 188]. Fix an infinite dimensional subspace Y , with M-basis as above.

Define ep,m and e∗p,m as before. Then define

f2(x) :=

{

max
(

e∗1 (x) + 1, sup{e∗p,m(x) : p prime, m ≥ 2}
)

, if x ∈ Y ,

+∞, else.

Again, f2 is lsc and convex. Then, as before, f2(0) = f2(ep,m) = 1, f2(−e1) = 0

and f2(x) ≥ 〈e∗p,m, x〉 for all x ∈ E and p prime, m ≥ 2, which implies that e∗p,m ∈
∂ f2(ep,m).

Since {en, e∗m} is biorthogonal and bounded, e∗m converges weak∗ to 0. The same
arguments now show that the graph of ∂ f2 is not norm×bw∗ closed. This proves:
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Theorem 3 Let E be a Banach space. The following are equivalent:

(i) E is finite dimensional.

(ii) The graph of ∂ f is norm×bw∗ closed for each closed proper convex f on E.

(iii) The graph of each maximal monotone operator T on E is norm×bw∗ closed.

This result again emphasizes that all limiting constructions of generalized gradi-

ents that capture the convex subdifferential must fail to be closed for general lower
semi-continuous mappings, unless they are locally bounded. It would be interesting
to determine whether such examples can be constructed with f having a point of
continuity.

4 The Sequential Normal Cone

Similar, quite comprehensive, related problems arise when defining normal cones

([B-L], [Cl], [M-S], [R-W]) outside of finite dimensions. Recall that for ε ≥ 0,

the ε-Fréchet normal cone to a set Ω at a point x ∈ Ω is

N̂ε(x; Ω) :=
{

x∗ ∈ E∗ : lim sup
u→x,u∈Ω

〈x∗, u − x〉

‖u − x‖
≤ ε

}

.

We set N̂(x; Ω) := N̂0(x; Ω). Thus, in the case of a convex set, N̂(x; Ω) coincides
with the classical normal cone from convex analysis. The sequential (limiting-Fréchet)

normal cone to a set Ω at a point x̄ ∈ Ω is then

N(x̄; Ω) := lim sup
x→x̄, ε↓0

N̂ε(x; Ω),

which again coincides with the convex normal cone for a convex set. Here, for a mul-
tifunction Λ : E → 2E∗

, ‘limsup’ denotes the sequential Kuratowski-Painlevé upper
limit with respect to the norm topology in E and the (bounded) weak-star topology

in E∗:

lim sup
x→x̄

Λ(x) := {x∗ ∈ E∗ : ∃xn → x̄, x∗n ⇀ x∗, x∗n ∈ Λ(xn), ∀n ∈ N}.

We settle here for exhibiting the possible behaviour in `2(N). The general argu-

ment is quite similar, again using Markusevich bases [F-H-H]. The argument again
exploits the fact that weak∗ convergent sequences are bounded.

Example 4 If Ω is a closed subset of separable Hilbert space then N(0; Ω) need not
be even norm closed. Indeed, let H := `2(N) and let Ω be the norm closed set

{s(e1 − je j) + t( je1 − ek) : k > j > 1, s, t ≥ 0} ∪ {te1 : t ≥ 0}

where e1, e2, . . . , en, . . . , is the usual basis for `2. Then N(0; Ω) is not closed since
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(i) e∗1 + j−1e∗j ∈ N(0; Ω),
(ii) e∗1 /∈ N(0; Ω) and

(iii) e∗1 + j−1e∗j → e∗1 .

Proof If e∗j,k := e∗1 + j−1e∗j + je∗k for 1 < j < k then e∗j,k ∈ N̂
(

k−1( je1 − ek); Ω
)

,

as is easily computed. For each j we have k−1( je1 − ek) → 0 and e∗j,k ⇀ e∗1 + j−1e∗j
as k → ∞. Thus e∗1 + j−1e∗j ∈ N(0; Ω) which establishes (i). It is easy to verify (iii).
Also it is not hard to show that Ω is closed.

So we need to show e∗1 /∈ N(0; Ω). Suppose not: then there are xn → 0, εn ↓ 0

and x∗n ∈ N̂εn
(xn; Ω) such that x∗n ⇀ e∗1 . Suppose some xn = tne1 for tn ≥ 0. Put

u := xn + re1 for r > 0 so we have

εn ≥ lim sup
Ω

u→xn

〈

x∗n ,
u − xn

‖u − xn‖

〉

≥ lim sup
r→0+

〈

x∗n ,
re1

‖re1‖

〉

= 〈x∗n , e1〉.

On the other hand, x∗n ⇀ e∗1 implies 〈x∗n , e1〉 → 1, so that only finitely many xn can
be of the form xn = tne1 for tn ≥ 0. So all but finitely many xn are necessarily of the
form s(e1 − je j) + t( je1 − ek) where k > j > 1, s, t ≥ 0.

Now let xn = s(e1 − je j) + t( je1 − ek) where s = s(n) ≥ 0, t = t(n) ≥ 0,
j = j(n) > 1 and k = k(n) > j(n). Hence, considering u := xn + r( je1 − ek), we get

εn ≥ lim sup
Ω

u→xn

〈

x∗n ,
u − xn

‖u − xn‖

〉

≥ lim sup
r→0+

〈

x∗n ,
r( je1 − ek)

‖r( je1 − ek)‖

〉

=

〈

x∗n ,
je1 − ek

‖ je1 − ek‖

〉

,

so that

(1) 〈x∗n , e1 − j−1ek〉 ≤ εn

√

1 + j−2,

while considering u := xn + r(e1 − je j), we have

εn ≥ lim sup
Ω

u→xn

〈

x∗n ,
u − xn

‖u − xn‖

〉

≥ lim sup
r→0+

〈

x∗n ,
r(e1 − je j)

‖r(e1 − je j)‖

〉

=

〈

x∗n ,
e1 − je j

‖e1 − je j‖

〉

,

so that

(2) 〈x∗n , e1〉 ≤ 〈x∗n , je j〉 + εn

√

1 + j2.

Letting n → ∞ in (1) we obtain

1 ≤ lim inf〈x∗n , j(n)−1ek(n)〉.
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If the j(n) are unbounded then this shows the sequence x∗n is unbounded, contra-
dicting its weak convergence. We therefore have only finitely many j(n). But then (2)

contradicts x∗n ⇀ e∗1 .

Remarks 5 (a) Since each e∗j,k is a proximal normal to Ω at k−1( je1 − ek) we see that
a similar result holds for the limiting proximal normal cone, a preferred tool for many

authors (see ([B-L], [Cl], [M-S], [R-W] for the definitions and for the consequences
of using this alternative normal cone).

(b) Of course, one may simply take the closure in the definition of N(x̄; Ω) but

this has some drawbacks, as not every member of the normal cone is then a sequential
limit. An alternative is to define the limiting Fréchet normal cone more topologically,
which allows one to repair the lack of closure at the expense of a more cumbersome
and less intuitive limiting construction. Related issues are discussed in [B-F2] and

[M-S].
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