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1. Introduction. Consider the following hyperlogistic equation
d i N -1)1%
ENy =m0 T] [1 —(—Tf—)] 1=, (1.1)
dt j=1 K

where r, K, 1, € (0, =), and a; = p,/q; are rational numbers with g, odd, p; and g; are
co-prime, 1 <j =<m, and ﬁ (-1)%=-1.
j=1
When m =1 and «, =1, Eq. (1.1) reduces to the well-known delay logistic equation

d
d_tN(t) = rN(t)[l - (1.2)

which has been extensively investigated by many authors. See for example [3, §, 6, 7, 10,
13, 16]. Other related work includes [1, 2, 12] (in the case m =1 and «, #1) and [4] (in
the case a;=...=a, =1). Allowing m #1, we wish to discuss the effect of different
delayed terms on the oscillatory and asymptotic behaviors of solutions.

By making a change of variables

=201,

one can write (1.1) as

ditx(t) +r[l +x(1)] ﬁ x(t = 1) = 0. (1.3)

We are interested in those solutions x(r) of (1.3) satisfying x(r)=—1 which
correspond to solutions N(f) of (1.1) satisfying N(t) =0. Thus, the initial condition

{x(t) =)= -1, teltg— 1,10,
e C([tO -1 tO]’ [_1’ oo)) and (1) > -1

shouid be specified, where 7= max{r,,..., 7,,}. It can be easily shown that for any #, and
any ¢ satisfying (1.4) Eq. (1.3)-(1.4) has a unique solution x(¢; 5, ¢) on [t, — 7, <) and
x(t)>—1fort =1,

Of major concern in this paper is the oscillatory property of equation (1.3). We will

(1.4)

show that all solutions of (1.3)~(1.4) are oscillatory when 2 a; <1, but at least one

non-oscillatory solution exists when E o;>1. For the case where 2 a;=1, we will
j=1 j=1
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establish an equivalence, as far as oscillation is concerned, between (1.3) and its so-called
quasilinearized equation

d m
YO+ l:l1 y(t - 1) =0, (1.5)

whose oscillation has been thoroughly studied in (8, 9, 14, 15]. Consequently, some
existing results can be applied to give necessary and sufficient conditions for the

oscillation of Eq. (1.3) when § a;=1.
j=1

2. The case § a; <1

j=1
THeEOREM 2.1. Ifa = ﬁ a; <1, then every solution of Eq. (1.3)~(1.4) oscillates.
=1

Proof. Assume, by way of contradiction, that Eq. (1.3)-(1.4) has a non-oscillatory
solution x(r). We first suppose that x(¢r) is eventually positive. Then, by (1.3), we
eventually have

d%x(t) =-r(1 +x(1)) f[x“f(t - 1) <0,

which implies that x(¢) is eventually decreasing. thus
x(t—1)=x(t) eventually, forj=1,...,m.

and hence

%x(z) +r(l+x(@))xe(t) < d%x(t) +r(l1 +x(t)) ﬁ x%i(t — 1) =0.

j=1

Thus

‘%x""(t) =-(1-a)yfl+x(t)]s-1-a)r,

which implies that x' ~%(f) —» — o, as t — c. This is impossible since x(r) >0 eventually and
1-a>0

We next suppose that x(t) is eventually negative. Noting that x(t) > -1 for r =0, we
have eventually

L%x(t) =~-r(1+x(1) 'ljxai(t - 1)

= r(1+x(t)) ﬁ [—x(t - 1)]%>0,
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which implies that x(r) is eventually increasing. Hence, there exists 7;>0 such that
x(t—1)=x(1)<Oand 1+x(1)>1+x(T;)>0,forall 1> T, and j=1,...,m. Therefore

LX)+ 1+ xR O =220+ +x0) [ 290 -5)=0,  1>T,

j=1

and hence

d

axl_“(t) =-r(1-a)(1+x())
<-r(l-a)1+x(T}))<0, =T,

Integrating the above inequality from 7, to t>0 and letting r— », we would get
x'7%(t)—> —o, as t— . This is a contradiction to the fact that x(t)> —1 for + =0, and
completes the proof.

3. The case § a;> 1.
j=1

THeoreEM 3.1. If a = ﬁ a;>1, then Eq. (1.3) has a non-oscillatory solution.
j=1

In order to complete the proof of Theorem 3.1, we will need the following Lemma
from {15].

Lemma 3.2. Every solution of Eq. (1.5) with § «; =1 oscillates if and only if
j=1

& 1

r 2 a]f] >-,

j=1 €

Moreover, the above inequality holds if and only if

d m
0 y(@) +r ]y - 7;) =0 has no eventually positive solution,
j=

d m
@ y(t) +r [ y*i(t — 7)) =0 has no eventually negative solution.
j=1

Proof of Theorem 3.1. Choose rational numbers B;=r;/s; € [0,) with §; odd,
1=j=m, such that

Bi<ea;, for j=1,....m, X B;=1, _[]1(_1)3,=-1.
i

Let £ >0 satisfy
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Then, by Lemma 3.2, the following equation
d m
—x(t)+re [[xP(t-1)=0 . (3.1)
dt j=1

has a positive solution x(¢) defined on [t,, ) for some #,=0. It is clear that x(r)— 0, as

m mn
t— . Since B;<q;and ¥ B;< X a;, we have
j=1 j=1

.fl, x*(t - 1)
lim(1 + x(£)) —————=0.
a ~H1 xPi(t — 1)

=

Thus, there exists ; >t such that

m m
A+x@®) [1x%¢ -ty <e[] xP(t— 1), for r=n,
j=1 j=1

and hence
d T o d T .5
X0+ +x(0) [T x%( - 1)) < xO+re [Txf(c-1)=0, for ¢2r. (3.2)
j=1 j=1
Set y(t) = In(1 + x(1)). Then, from (3.2) we have

Lo+ r T -11<0, for =1,
dt =1
which yields
yoy>r| [1[eC % -1]ds, for t=u,. (3.3)

t j=1
Define X to be the set of piecewise continuous functions z:[t;, =7, ©)— [0, 1] and endow
X with the usual pointwise ordering <, that is
u=neut)=sz(), forall r=n-1

Then (X; <) becomes an ordered set. It is obvious that for any nonempty subset M of X,
inf(M) and sup(M) exist. So (X; =) is actually a complete lattice. Define a mapping ¥ on
X as follows:

— xﬁ[e""’f')z“"")—l]"fds, 1=,
(Yz)(1) = YO = /
t—(‘I’Z)(h)+(l‘t—), L-T<t=1,
1 1

For each 7 € X, we can show that

05(%)(:)5% [[[e¢®-1]ds<1, for t=1,
y

t j=1

https://doi.org/10.1017/50017089500031529 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031529

A HYPERLOGISTIC DELAY EQUATION 259

and

0=(¥z)(r)=1, for tel—-1,4]
This shows that WX < X. Moreover, it can be easily verified that ¥ is a monotone
increasing mapping. Therefore, by the Knaster-Tarski fixed-point theorem (see [11]), we
know that there exists a z € X such that Wz =z, that is
— 1 11 [eX¢-6=W — 1] ds, for =1,
Z(f) = y(t) t j=1 .

é(‘pz)(t‘) + (1 - Z>’ h-T<t=<t,. (3.4)

By (3.4), z(1) is continuous on [t; — T, ®). Moreover, since z(t) >0 for ¢t € [, — 1,1;), we
must have z(1) >0, for all r=1,. Set w(r) = y(t)z(¢). Then w(¢) is positive, continuous on
[ty — 7, ®) and satisfies

w() = ff [e¥¢~% —1)¥ds, for t=1,. (3.5)
r j=1
Differentiating (3.5) yields
d m
—w)+r[][e"?-1]%=0, for t=1,
dt j=1

which shows that e —1 is a positive solution of (1.3) on [t;, ®). This completes the
proof.

4. The case § a; =1

j=1
The following theorem establishes an equivalence between the oscillation of Eq.
(1.3)-(1.4) and the oscillation of Eq. (1.5):

THEOREM 4.1, When § a; =1, every solution of Eq. (1.3)-(1.4) oscillates if and only
j=1

if every solution of Eq. (1.5) oscillates.

Proof. =: Assume that Eq. (1.5) has a non-oscillatory solution y(¢). Since —y(z) is also
a solution of Eq. (1.5), we may assume that y(¢) is eventually positive. We will prove that
Eq. (1.3)-(1.4) has a non-oscillatory solution for some #, To this end, we only need to
prove that the following equation

4 2 +r H (1-e 3= 4.2)
dt j=1

has an eventually positive solution. Let , be such that y(r — 7) >0 for 1 =, Using the
inequality 1 — e™* = x for x =0, we have

d%y(t)+rn(l—e'y("’i))"is%y(t)+rHy"’f(t—rj)=0, for =1, (4.3)
j=1

j=1
It can be easily shown that y(¢)— 0, as t — «. Integrating the above inequality from ¢ to
o, we obtain

< m
yyz=r| [T(Q1=-e"9) for r=1,
t j=1

Now a similar argument to the proof of Theorem 3.1 shows that (4.2) would have an
eventually positive solution z() on [#,, ) satisfying z(r) >0 for all 1 = ¢,.
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& Assume, for the sake of contradiction, that (1.3)-(1.4) has a non-oscillatory
solution x(¢) for every t5. Then 1+ x(t) >0, for t =1;,. We now distinguish two cases:

Case (i): x(¢) is eventually positive. Then there exists T =1, such that x(r) >0, for
t=T. From (1.3) it follows that

%x(t) +r I'j x%(t - 1)< ‘%x(t) +r(1+x(1)) ﬁ x%(t— 1) =0. 4.9

This, together with Lemma 3.2, implies that (1.5) has a non-oscillatory solution, contrary
to the assumption that every solution of (1.5) oscillates.

Case (ii): x(¢) is eventually negative. Since 1+ x(r) >0, for t =¢, and x(¢) <0 for
t=T, for some T =1, we have

d%x(t) =r(1+x()) ﬁ [-x(t=1)]*>0, for =T,

from which we can easily see that x(¢).70 as t — «. On the other hand, in view of Lemma
3.2, we can choose € € (0, 1) such that

= 1
r(t—e) > o;T; > -, 4.5)
j=1 e

Now, let T, > T be sufficiently large such that 1 >1+ x(¢) >1 — ¢, for t = T. Then, by (1.3)
we have

ix(r) +r(1-¢) ﬁ X%t - 1) = ﬁx(t) +r(1+x(1)) Im] x%(t—1,)=0,
dr j=1 dt j=1

for r=T+1, (4.6)

which is also a contradiction since, by Lemma 3.2, (4.5) implies that the inequality

—x(t)+r(l—£)Hx“'(t— 7)=0

j=1

can not have an eventually negative solution. This completes the proof.

The following corollary is an immediate result of Theorem 4.1 and Lemma 3.2.

CoroLLary 4.2. If '2"‘, a; =1, then every solution of (1.3)-(1.4) oscillates (or every
j=1

positive solution of (1.1) oscillates about the steady state K) if and only if

& 1
rz al‘l']>—
j=1 e
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