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1. Introduction

The concept of simultaneous or collective continuity of a family of single
valued functions was introduced by Gale [3] for regular spaces to replace equicon-
tinuity in metric spaces. Smithson [6] extended the standard point-open and
compact-open function space topologies to include multi-valued functions. The
aim of this paper is to use these topologies and extend the notion of collective
continuity in order to obtain an Ascoli type theorem for multi-valued functions
analogous to Theorem 1 in [3, p. 304]. We have the following theorem in mind:

THEOREM. Let X be a T, k-space and Y a normal T, space. Let € = {fe Y™,
[ is continuous and point-compact} have the compact-open topology. Then a point-
like family F < € is compact if and only if

(@) &F is closedin€

(b) FIx]is compact for each x € X, and

(c) Every closed subset of F is collectively continuous

(See Theorem 4.5).

2. Preliminaries

Let X and Y be non-empty sets. 1f f(x) is a non-empty subset of ¥ for each
x € X, we say f'is a multi-valued function or multifunction from X to Y and write
J: X - Y. If Y carries a topology and f(x) is a non-empty closed (compact) subset
of Y for each x € X, we say that f is point-closed (point-compact). We will write
Jx instead of f(x), and A4 = the closure of 4.

REMARK 2.1. Let P(Y) be the set of all non-empty subsets of Y. Clearly a
multi-valued function f* X — Y induces a single-valued f* € (P(Y))* by f'(x) = fx.
Now let R « X'x Y be a relation, 4 — X and

AR = {y€eY; (x, v)e R for some x € A}.

Since there is a natural bijection between (P(Y))* and the set of all relations
466
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R < X x Y such that YR™! = X, one may think of a multi-valued function, more
fundamentally perhaps, as such a relation. The reader is referred to [2] for further
discussion along these lines.

Let f* X — Y be a multifunction. If 4 = X, f(4) = U {fx;xe 4}.If B c Y,
f B={x;fxnB#0} and fB = {x; fx = B}. We will adopt the notion of
continuity of a multifunction as given in [7]:

DEerINITION 2.2. Let X and Y be spaces. Then f: X — Y is continuous on X
if for each x € X, (1) and (2) hold:

(1) Given U opzn in Y such that fx n U # @, there exists a neighborhood
V of x in X such that fz n U # @ for all ze V (Equivalently, f~U is open in X
when U is open in Y).

(2) Given U open in Y such that fx < U, there exists a neighborhood ¥
of xin X such that f(V) = U. (Equivalently, f * U'is openin X when Ulis openin Y).

ReMARK 2.3. If f: X — Y is point-closed and S(Y) is the set of non-empty
closed subsets of Y, we can give S(Y') the Vietoris topology in which a basic open
set is of the form

{AeS(Y);AcvUandAnU; #0,i=1,"--,n}

where U, is open in Y for each i. Now finduces a single-valued map /*(S(Y ))* by
f*(x) = fx. We can then define f to be continuous provided /* is continuous. This
is also equivalent to Definition 2.2 (See [7] and [8]). In [5, p. 120], one finds that
Definition 2.2 is the same as strong continuity and that Ponomarev defines f to be
continuous provided that f satisfies only (2) of Definition 2.2. Berge [1, p. 109]
and Day and Franklin [2, p. 289] additionally require f to be point-compact.
The following lemmas, though elementary, will be crucial in later results.

LEMMA 2.4. Let f: X - Y be a point-closed continuous multifunction from X
to a normal T, space Y. If fx n U # O for some U open in Y, there exists a neigh-
borhood V of x in X such that fz " U # @ forallze V.

PrOOF. Let y € fx n U. By regularity, choose W open in Y such that yeW
and W < U. Since f is continuous, fv N W # @ for all v in some neighborhood
V of x in X. Let ze V and suppose fz "U = @. Then fzn W =0 and so by
normality, we can find G open in Y such that fz ¢ G and G n W = §. Again by
continuity, there exists a neighborhood H of z in X such that f(H) = G. Since
ze V, pick a veVn H. Then fo n W # 0 and fo = G, a contradiction, since
GnW=0.

A multifunction satisfying Definition 2.2 (1) is called lower semi-continuous.
The following lemma appears as Lemma 1 in [6]:

LeEMMA 2.5. Let f : X —» Y be lower semi-continuous from X to a regular space
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Y. If K c X is compact, and if fx O\ V # @ for all x € K, where V is an open subset
of Y, then there exists an open set Win Y such that W< V and fx n W # 0 for

all xe K.

3. Point-open and compact-open topologies

In [6], the concept of a product space is extended to include multi-valued
functions: Let X be a non-empty set and {Y, ; x € X} a family of sets indexed by X.

A multifunction
fiX>u{Y,;xeX}

is called an m-choice function on X if fx < Y, for each x € X. The m-product,
P{Y,;xe X} = {f;fis an m-choice function on X}.

The projections p, defined by p.(f) = fx are now multifunctions from the m-
product to Y,. In case Y, = Y for each x € X, the m-product is simply written
ymX,

As in the case of single-valued functions [4, p. 90], if each Y, is given a
topology, the m-product topology will bs the smallest topology on the m-product
such that all the projections are continuous. Therefore, with Definition 2.2 in
mind, the following definitions become natural.

DEFINITION 3.1. Let U and V be open in Y. The m-product topology &' on Y™
is that topology having all sets of the form

{(fifxcUtor {fifxa v +0}

as a subbasis.

DEFINITION 3.2. Let & < Y™X. The topology of pointwise convergence or the
point-open topology # on F is &' relativized to F.

Again, as with the single-valued case, we can broaden the concept of nearness
of functions by requiring that if f behaves a certain way on compact sets, then
functions near f must also behave in this way. The smallest topology compatible
with this requirement is the compact-open topology [4, p. 221]. We therefore make
the following definition for multi-valued functions.

DEFINITION 3.3. Let # < Y™, 4 = X compact and U, ¥ open in Y. The
compact-open topology A~ is that topology on & having all sets of the form

{(feF;f(A)c Ulor {feF;fxnV +0forall xe A}
as a subbasis.

REMARK 3.4. The reader is referred to [6] for further discussion and motiva-
tion of the topologies & and . Reference [2, Prop. 1] is suggested for the treat-
ment of the compact-open topology in the language of relations.
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4. Collective continuity

Since a multifunction admits two types of inverse images, we must modify
Gale’s definition of collective or simultaneous continuity so that we may include
multifunctions (see the parentbetical remark after Theorem 1, p. 304 in [3]).

DEFINITION 4.1. Let # < Y™ and B < Y.
M UF - B)=U{f BfeFland JF*(B) = U{/*B; fe F}.
@) NF~(B) = {f B:fe F} and \F*(B) = (\{f*B.fc F}.

DerINITION 4.2, A family &F < Y™ is collectively continuous provided
\UZ ~(B)and | J& *(B) are closed in X whenever B is closed in ¥, or equivalently
()% ~(B) and ()% *(B) are open in X whenever B is open in Y.

LEMMA 4.3. Let € = {fe Y™ ; f is continuous and point-compact} have the
A -topology, and let Y be a regular Hausdorff space. If & < € is such that each
closed subset of F is collectively continuous, then P =4 on F.

Proor. Clearly & < 4 by Definitions 3.2 and 3.3.
Let
G={feb;f(d)c Uandfxn V # f for xe A4},

where A4 is compact in X and U, V are open in Y. We show that G is open in
(7, P):

Let fe G n . Then f(A4) is compact [1, p. 110]. Since Y is regular, there
exists H open in Y such that f(4) = Hand H — U. Foreachxe 4, fxnV # 0
and sc by Lemma 2.5, there exists V' open in Y such that V' < Vand fxn V' #0
for all xe A.

For each x € 4, define W(x) = {ge F; gx = H and gx n V' # 0}. Then
W(x) is closed in (£, 2) and hence in (%, X£"), and non-empty since '€ W(x).
By collective continuity, the sets

Nx)=nW(x) (V)and M(x) = n W(x)*(U)

are open in X and contain x. Let 0(x) = N(x) n M (x) for each x € A. Since 4
is compact, there exist x, - - -, x,€ 4 such that 4 = | ) {0(x;); i = 1, -+, n}.
For each i, let G; = {ge F; gx; = H and gx; n V' # @}. Clearly

feN{Gyi=1,---,n},

and so it suffices to show that ({G,;; i = 1,---,n} = G. Suppose gx; = H and
gx;n V' #9 for each i. It xe A, xe 0(x;) for some i, and so gx = U and
gxn V' #0,ie., g e G and the proof is complete.

NOTATION. Let # < Y™ and xe X. F[x] = (J{fx; fe F}.

DEFINITION 4.4. Let # < Y™ bz a pointclosed family and let # bz the
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P-closure of F in the set of all_point-closed multifunctions in Y™, Then % is
called point-like if whenever g e # and gx, = % [x,], there exists an f'e & such
that fx, = gx,.

THEOREM 4.5. Let X be a T, k-space and Y a normal T, space. Let € = {fe Y™;
[ is continuous and point-compact} have the J -topology. Then a point-like family
F < € is compact if and only if

(a) F is dosed in €

(b) F[x] is compact for each x € X, and

(c) Every closed subset of F is collectively continuous.

PROOF. Necessity. If & is compact, then (a) follows since (€, X7) is T, [6,
Prop. 6). (b) follews since F [x] = p,(&) and each p, is continuous. Now since
& is compact, any closed subset of # will also be compact and so it is sufficient
to prove (c) for & itself, i.e., we show that & is collectively continous. Let B be
closed in Y and A4 compact in X. Since X is a k-space [4, p. 230], we need only show
that the sets S = (JF (B))n4 and S = (|JF "(B))n A are relatively
closed. We handle S’ first: Suppose z ¢ S”. Note that the non-trivial case will
occur when z € A4. 1t follows that z ¢ | ] # *(B), and so fz n (Y—B) # 0 for each
feZ. By Lemma 2.4, there exists a neighborhood N(f) of z in X such that fz n
(Y—B) # 0 for all xe N(f).

Now B(f) = N(f) n A is compact and so the set

W(f) = {g; gx n (Y—B) # ¢ for all x e B(f)}

is open in (F, A"). Since fe W(f), the collection {W(f); fe & } covers #. Since
& is compact, there exist fy, - -, f, € F such that {W(f;); i = 1,---, n} covers
F.

Let B* = n {B(f;); i = 1, -+, n}. Then for each fe &, fx n (Y—B) # 90
for all x e B* and so B* n ({ J# "(B)) = 0. If we let

N*=n {N(fi)si=1, ", n},

then N* n 4 is a neighborhood of z in 4 which does not meet S’ (note that
N* n A = B*). Therefore z is not in the relative closure of S’, and so §’ is rela-
tively closed.

To show that S is relatively closed, we must modify the above argument.
Suppose z¢ S. Again, we need only consider the case when ze . Then
z¢ (JF ~(B), and so fz ¢ Y— B for each fe &. Since each f is continuous, we
may use the normality of Y to find a neighberhood N(f) of z in X such that
FIN(f)) = Y—B. As before, B(f) = N(f) n A is compact, and so the szt

W(f)={9eF;9(B(f)) = Y-B}

is cpen in (&, A). Now since f(N(f)) = f(N(f)) [S,p. 120}, the collection
{W(f); fe F} covers Z. The rest of the argument is similar to that given above.
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Sufficiency. Since the family & saiisfies (c), by Lemma 4.3 we mey consider
Z embedded in (%, Z). By (b), the m-product P{# [x]; xe X} is P-compact,
and since # < P{Z [x]; x € X}, it suffices to prove that % is closed in (¥, #).
Arguing as in [3, p. 306], this will be accomplished by showing that Fc®,
where # denotes the P-closure of & in the set of point-closed members of Y™*.

Let g € %. We show g is continuous and point-compact: Since Z is contained
in the m-product P{Z [x]; x € X}, and & is point-like, g is point-compact (note
that every fe & is point-compact). We now verify continuity.

Let ze X and gz = U where U is open in Y. By repeated application of nor-
mality, we can find G and G’ open in Y such that gz = G, G = G’ and G’ < U.
Let T = {fe &; fz = G}. Then Tis P-closed and non-empty since Z is point-like.
By collective continuity, N(z) = ()T*(G’) is a neighborhood of z in X. We claim
g(N(z)) = U. Let x € N(z) and let W be any neighborhood of y € gx. The set

M= {fife = G} n{f;fxn W #0}

is a P-neighborhood of g and so there exists an fe M N Z. Since f'eT,
f'x< G and f'x " W # 9. Therefore Wn G’ # @, and since y was chosen
arbitrarily in gx, we have gx < G < U.

Suppose gz N V # 0 where V is open in Y. Let y € gz n V. By regularity,
find G cpen in Y such that ye G and G = V. By normality, find G’ open in Y
such that G = G’ and G’ = V. As before, T = {fe F;fz n G # 0} is non-empty
since Z is point-like, and since T'is P-closed, M (z) = (T~ (G’)is a neighborhood
of z by collective continuity. We claim that gx n ¥ # @ for all x € M(z). Suppose
gxn V =0 for some x e M(z). Then gx n G’ = 9, and so by normality there
exists H open in Y such that gx = Hand H n G' = f. Now since the set

M= {fifxc H}n{fifzn G # 0}

is a Z-neighborhood of g, there exists an f” € M . Then f’ € T and so we bave
f'xn G # 0, a contradiction, since f'’x = H and H n G' = . We have shown
that g satisfies Definition 2.2 and the proof is complete.

COROLLARY 4.6. Let F be a point-compact family of continuous multifunctions
Sfrom a T, k-space to a normal T, space Y, and let F have the A -topology. Then
the map ® : X » (Y™, A) defined by ®(x) f = fx is continuous.

PrOOF. Let
G = {0;0(4) =« Uand 6 (f) n V # 0 for each fe A4}

where A is compact in (&, X") and U, V are open in Y. Suppose &(x) € G. Let
N(x) = (\A*(U) and M(x) = (Y4~ (V). By Theorem 4.5, N(x) n M(x) is a
neighborhood of x. If ze N(x) n M(x), fz < U and fz n V # @ for each fe A.
Hence &(z) € G and so ®(N(x) n M(x)) = G.
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REMARK 4.7. Although the proofs in this section parallel those given in [3] for
the single valued case, some nontrivial modifications had to be made. For example,
the reader is directed to the crucial roles played by Lemmas 2.4 and 2.5 in our main
results. Note that the hypothesis that & be point-like in Theorem 4.5 doe not lose
the single-valued functions. Moreover, it does not seem likely that it can be
dropped since it not only guaranteed that the sets 7" be nonempty, but it insured
that each g € & be point-compact (and hence point-closed) so that the full force
of normality of Y could be used. Finally, although Theorem 4.5 can’t be considered
as a true extension of Gale’s theorem since we require ¥ to be normal T, and not
just regular, it is frequently necessary to assume the next stronger separation axiom
in order to generalize many results from single-valued to multi-valued functions.
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