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GROUND MOTION ON ALLUVIAL VALLEYS UNDER
INCIDENT PLANE SH WAVES
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Abstract

The scattering and diffraction of harmonic SH waves by an arbitrarily shaped
alluvial valley in a layered material is considered. The problem is solved in terms
of boundary integral equations which yield a numerical solution.

1. Introduction

After a substantial earthquake it is often found that damage is concentrated
in particular areas [5]. This may be accounted for by various causes such
as poor quality of construction, local topography and the local geology. One
explanation which has been put forward is that the damage distribution is
caused by seismic wave amplification associated with the local topography
and soil characteristics [10].

Motivated by the need to provide reliable design parameters for structures,
the problem has been studied by numerous authors. In certain circumstances
ground-motion amplifications can be studied adequately by simple shear-
beam amplification models. However, for irregular topographies, the problem
must be studied as a spatial phenomenon. The simplest models which yield
significant information in this area are two-dimensional, and several studies
([!]» [2], [3], [7], [8], [10]) of this type have provided a basic understanding
of the problem.

Integral equation formulations have been found to be particularly useful in
obtaining numerical solutions to problems of this type. In particular, Wong
and Jennings [9] used singular integral equations to solve the problem of
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scattering and diffraction of SH-waves by canyons of arbitrary cross section.
Subsequently Wong et al. [11] extended the method of [9] to the case of
a layer overlying a semi-infinite soil medium, and applied their analysis to
modeling the variations in measured displacements during a full-scale low-
amplitude wave propagation test. Also Sanchez-Sesma and Esquivel [6] con-
sidered ground motion on alluvial valleys under incident planar SH-waves.

The present work can be considered as an extension of previous work on
integral equation formulations to include the case of anisotropic materials.
In many cases the medium through which the waves are propagating is not
homogeneous and isotropic, and is more accurately modeled as an anisotropic
material. In particular, the current work examines the effect of anisotropy
on ground motion on alluvial valleys under incident planar SH waves. Nu-
merical results are obtained, and these are compared with those given in [6]
for isotropic materials.

2. Statement of the problem

Referring to a Cartesian frame Oxxx2x3 , consider an anisotropic elastic
half-space occupying the region x2 > 0 . The half-space is divided into
two regions which contain different homogeneous anisotropic materials (see
Figure 1). The materials are assumed to adhere rigidly to each other so that
the displacement and stress are continuous across the interface. Also, the
geometries of the two regions are assumed not to vary in the Ox2 direction,
and the boundary x2 = 0 is traction free.

A horizontally polarised SH wave propagates towards the surface of the
elastic half-space. This is in the form of a plane wave with unit amplitude,

REGION 2
(2) - (2)

REGION 1

P ,\\

*2

FIGURE 1. The alluvial valley and surrounding half-space.
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and gives rise to a displacement field

( ^ ^) (1)

where co is the circular frequency, cl and c2 are constants and w3̂  denotes
the displacement in the Ox3 direction in region 1 (see Figure 1). The prob-
lem is to determine the displacements associated with the reflected, diffracted
and refracted waves.

3. Integral equation formulation

Since the incident wave is of the form (1), and the geometry does not vary
in the Ox3 direction, a solution of the problem can be obtained in terms of
plane polarised SH waves. For such waves, the only nonzero displacement
in this case is w3, which must satisfy the equation of motion for antiplane
elastic deformations of anisotropic materials. That is,

where w^ and w3
2' denote the displacements in regions 1 and 2 respec-

tively. Also kj*' denote the elastic moduli, which must satisfy the symmetry

conditions kff = k^, p^ denotes the density, / denotes the time, and
summation from 1 to 2 is assumed for repeated Latin indices only.

In view of the form of the incident plane wave (1), a solution to (2)
is sought for which the displacement has a time dependence of the form
exp(ittf) so that

u\a\x{ ,x2,t) = M(Q)(X, , x2)exp(iQrt). (8)

Equation (3) provides a solution to (2) if u^a' satisfies the equation

Suppose the incident wave (1) has an angle of incidence y7 (Figure 2).
Then c, =/?(1)/siny/ and c2 = Pw/cosyr where /?(1) is a constant. Now
Uj^ as given by (1) must satisfy (2) so that

f POM - AlV S i n h + 2^12 S i n ?/ C0S ?/ + A22 COs y/ / «
IP J - {1) \?)

where fi is the wave velocity of the incident wave.
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FIGURE 2. Angles of incidence and reflection.

Consider the case when regions 1 and 2 are occupied by the same mate-
rial. In order to satisfy the traction-free surface condition on x2 = 0, it is
necessary to have a reflected wave of the form

(1) . / X, X ,
U ' = exp ICO It + -r r

3R \ c[ c'
(6)

The displacement M ĵ in the half-space is given by the sum of the dis-
placements given by (1) and (6). Thus

(1) ( l ) . / X, X7 \ . ( X, X, \
u\> = u\z = expitt 11 + — + — I + expiw / + -± - - f •

V c\ ci) \ c\ ci)

The stresses are given by

(a) _ ,(a)54a

so that the stress on

•8'- '4?f

On =

= 0 is

t + -f

y ax..

exp

This stress will be zero for all time t if

(7)

(8)

(9)

and

21

or
1 2X (i)

(10)
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This equation serves to provide c2 in terms of the unknown quantities
c2, c,, X^l and X22 . Note that if (6) is substituted into (2) then since it
represents a solution to (2) it follows that

M2

and if (10) is used to substitute for l/c'2 in (11), and then into (5), so that
(10) ensures (6) is a solution to (2) on the assumption that (1) is also a
solution to (2).

Let c, = fi'/sin(yR) and c2 = fi'/cos(yR) where yR is the angle of reflec-
tion (see Figure 2). Then

i lp?4(12)p4
CX 1+2(^/42) tan(y7)

and once yR has been determined from this equation, the wave speed /?'
of the reflected wave may be readily determined from the equation /? =
cl

l

To include the influence of a different anisotropic material in region 2 let
the displacement in region 1 be given by (3) with

«(1) = 4 1 ) + «i1) (13)
where MQ1' denotes the displacement obtained from (7) while u^ denotes
the displacement due to diffracted waves. The displacement in region 2 is
given by (3) with u^ = w^ denoting the displacement associated with the
refracted waves.

In order to find u^ and M'2) , it is convenient to obtain an integral equa-
tion solution of (4). To derive the integral equation, first consider the inho-
mogeneous equation associated with (4). That is,

W ^ + piaWu^ = h(°\Xl,X2) (14)

where h(-a\xl, x2) is a given function. Any two solutions [/'"' and V^ of
(14) are related by the integral equation

ds = jf (*f»Kw - h^ do

(15)
where Cl is the region under consideration and Cl has a boundary dCl with
an outward pointing normal n = (ni, n2). Also hff and h^ denote the

https://doi.org/10.1017/S0334270000007013 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007013


[6] Ground motion on alluvial valleys 245

right-hand side of (14) corresponding to the solutions t/(a) and F ( Q ) respec-
tively.

Now suppose h^ - 6(x - x0) where d denote the Dirac delta func-
tion, x = (x{, x2) and XQ = (a, b) where x 6 ft and x,, e ft. Then if
u(a){a, b) = U(a), (15) provides

Cu*\a, b) = f^ [^^«,M
(a) - tf-£-niV^ ds (16)

where C is a constant such that C — 1 if (a, 6) E ft and if (a, b) e 9ft

then 0 < C < 1. Also F ( Q ) satisfies the equation

Kv (a) 2,Aa) s/ x

/ ; / a ^ r + / > w F <J(x"x°)-
To obtain a solution to (16), it is helpful to proceed as follows. Let Z(Q) =

XX+T^X2 and "z(a)
 = X , + T ^ A : 2 where r(a) is the complex root with positive

imaginary part of the quadratic

A?? + 2A(
1°2

)T(Q) + Ag)(T( a ) ) 2 = 0 (18)
and the bar denotes the conjugate of a complex number. Then (17) trans-
forms to

+ P ( ^ 2 ^ > - 6(x - x0) .

(19)
Let z(Q) = jfcjo) + ijfcf , z(a) = * j o ) - ix^ and r(a) = t(a) + ir(a) where

* [ a ) , x(
2
a), f(a) and t{a) are real numbers. Then

x(°) = xx + T(a)x2 and * £ ° = *(O)JC2. (20)

Use of (20) in (19) provides

^ ^ W ^ W ^ x - x , , (21)

where

^ = 2 " V O )
 ( 2 3)

and

A solution to (21) may be written in the form

V(a) = {-K(a)H™{75(a)R(a)) (25)
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where H^ denotes the Hankel function of the second kind and order zero
and

R{a) = ^ (*{ o ) -A ( o ) ) 2 + (jfc<o)-£(o))2, (26)

where a(a) = a + i(a)b and b{a) = bt{a) so that

R { a ) = y / { x l + r(a)x2 -a- x(a)bf + ( X 2 T ( Q ) - bx(a))2. (27)

Hence the integral equation is given by (16) with the fundamental solution
V{a) given by (25).

Now any solution to (17) may be used in the integral equation (16). Here
it is convenient to choose a solution to (17) which gives rise to the term
X^hdV^/dXj) equalling zero on x2 = 0, it follows that the integral along
the boundary x2 = 0 in (16) will be zero. By image considerations it may
be seen that a suitable choice of solution of (17) is

£ ? (28)
where

R{a) = y/(xl + i{a)x2 -a- iMb)2 + (x2t
{a) - bf{a)f (29)

and

^ a ) = y/(x1 + i(a)x2 - a - x{a)b)2 + (x2t
{a) + bf{a))2. (30)

By applying (16) to region 1 with the Green's function (28) it is only nec-
essary to integrate over the material interface between regions 1 and 2. The
integration along the Ox{ axis is zero so the only contribution is obtained
from the interface. Similarly in region 2 it is necessary to integrate only on
the interface between regions 1 and 2. In applying the integral equation (16),
the boundary conditions over the interface involve the continuity of stress
and displacement so that

M
(l) = «(2), (31)

and

The conditions (31) and (32) can be used in conjunction with (16) to solve
for the displacement and stress over the interface and the displacement along
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the traction free surface x2 = 0. Once this has been done, (16) gives the
value of M(a)(a, b) at all points {a, b) in the half-space x2 > 0.

4. Numerical results

Suppose region 2 (Figure 1) is defined by x2 + x\ < a2 with x2 > 0 ,
the material in region 1 has the elastic moduli k^) and density p^ and the

material in region 2 has the elastic moduli A^ and density / / 2 ) .
The material properties can be written as dimensionless quantities in the

form

AS? = A i M ? (33)
and

P = P12)/PW- (34)

The ratio of the diameter 2a of the alluvial valley to the wavelength A
of the incident wave is denoted by rj so that

r, = 2a/A. (35)

Let T be the duration of time for the initial wave to travel a distance of one
wave length A so that

(36)

or from (1)

T = 2n/co. (37)

Use of (35), (36) and (37) provides

wa. (38)

All length measurements are made dimensionless by referring lengths to the
valley's radius a . So x[ = jc,/a and x'2 = x2/a. Using these dimensionless
quantities, (16) becomes
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where

pi*) = i ^a)42)(coMRM) + tf • ' f l f W ^ ) ] , (40)

cj + i(a)x'2 - d - t(Q) d')2 + {x'2r
M ~ d'r^)2, (41)

A(a) = yj(x[ + i{a)x'2 - d - f(a )d'f + (x2r(a) + d'i{a))2, (42)

(44)

(45)

[j?(1)]2 = X\l] sin2 y7 + 2A(/2
) sin y7 cos y7 + A^ cos2 y7, (46)

t(o) = AjjVAjf, (47)

and

(48)

The displacement u^a\c, d) has amplitude x which is the ratio of the
displacement to the amplitude of the initial incident wave «|a ) .

Since the initial incident wave has amplitude unity it follows that the
displacement can be written as

u = x exp(i<£). (49)

In the numerical calculations, values of the displacement amplitude x
were obtained on the surface x'2 = 0, which is the place of interest in most
considerations concerning earthquakes. The amplitude ^ is a function of
the parameters r\, p, yr , and the moduli A^ .

If the material in either region 1 or region 2 is transversely isotropic and
the x* and x\ axes are the axes of symmetry for the material with the x3

axis normal to the transverse plane, then using the transformation law for
Cartesian tensors

*!? = aimajn^mn (50)

where X*^ , X*22^ and X*i2
a^ = 0 are the elastic moduli referred to the Ox*x2

frame and
cos(C) sin^

where £ is the angle between the x^ axis and the x{ axis (Figure 3).
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( a )

22

X2

FIGURE 3. Angle of anisotropy f.

The numerical procedure used to solve the boundary integral equation (16)
was a standard procedure used for equations of this type [4]. The interface
boundary between regions 1 and 2 was divided into 80 equal segments and
the unknowns in (16) assumed to be constant over each segment. Equation
(16) was thus reduced to a system of linear algebraic equations for the values
of the unknown variables on each segment. Once this system was solved,
(16) was used to determine the displacement on the line x2 = 0. Results for
the case when both regions 1 and 2 are isotropic compared favourably with
the results published in [6]. Further results for the isotropic case compared
well with values calculated by the method published in [7].

The numerical solutions displayed in Figures 4, 5, 6, 7 and 8 are for the
case when region 1 is an isotropic material with X[^ = 1, X^ = 1, X\1} = 0
and p = 2/3 . For Figures 4, 5 and 6, region 2 has the parameters A^2) = 1/6,

FIGURE 4. Effect of anisotropy, yt = 60° .
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FIGURE 5. Effect of anisotropy, y, = 30° .

FIGURE 6. Effect of anisotropy, y, = 0° .

Aj22) = 1/3, A*2
2) = 0 and rj = 1.0. Calculations were carried out for the

angles f = 0° , 15° , 30° , 45° , 60° , 75° and 90° . In Figure 4, y{ = 60° ,
while in Figure 5, y7 = 30° and in Figure 6, yt = 0° . These figures illustrate
the effect of anisotropy in the alluvial valley on the surface displacements.

The results show how anisotropy effects the location of the largest displace-
ment amplitude. For example, it is clear from Figure 6 that when £ = 0°
and 90° , the displacement is symmetric about x[ = 0 but when 0 < £ < 90,
the maximum displacement lies in the region -2 < x[ < 0.

Results shown in Figure 7 are for the same parameters as Figure 4 with
y; = 60°, but with the semi-circular geometry in region 2 replaced by a
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FIGURE 7. Effect of a rectangular valley.

FIGURE 8. Effect of wavelength.

rectangle with length 2a along the xi axis and depth a on the x2 axis.
Figure 8 shows results obtained using the same parameters as in Figure 4

but with C = 75° and>/ = 0.1, 0.5, 1.0, 1.5, 2.0. The results show that
in this case, the number of peaks and troughs in the displacement amplitude
varied significantly for different wavelenghts.

In Figure 9, anisotropy was introduced to the surrounding material in
region 1. The alluvial valley had the same parameters as for Figure 7 but
the outside material had the elastic moduli X[\l) = 1/6, X*21

X) = 1/3 and
r\ = 1.0. The angle £ was varied in steps of 15° and the results showed that

https://doi.org/10.1017/S0334270000007013 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007013


252 David L. Clements and Ashley Larsson [13]

-2

FIGURE 9. Effect of anisotropy in region 1.

the angle £ for region 1 had little effect on the displacement amplitude on
the surface in region 2.

5. Conclusion

A boundary element method for the scattering and diffraction of SH waves
by anisotropic alluvial valleys with an arbitrary cross section has been con-
structed in this paper by the use of the fundamental solution given in (28).
The use of (16) allows the surface displacement to be calculated. The method
includes previously obtained methods as special cases. For these cases the
numerical results compared well with those given by Trifunac's method and
by Sanchez-Sesma and Esquivel [6].

For the materials considered in numerical examples the results showed
that anisotropy in the valley has a significant effect on the amplitude of the
surface displacement.
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