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We present a number of measures and techniques to characterise and effectively con-
struct quasi-isodynamic stellarators within the near-axis framework, without the need to
resort to the computation of global equilibria. These include measures of the reliability
of the model (including aspect-ratio limits and the appearance of ripple wells), quantifi-
cation of omnigeneity through εeff, measure and construction of MHD-stabilised fields,
and the sensitivity of the field to the pressure gradient. The paper presents, discusses and
gives examples of all of these, for which expansions to second order are crucial. This
opens the door to the exploration of how key underlying choices of the field design gov-
ern the interaction of desired properties (‘trade-offs’) and provides a practical toolkit to
perform efficient optimisation directly within the space of near-axis quasi-isodynamic
configurations.
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1. Introduction

The range of stellarator magnetic confinement fields is broad (Spitzer Jr 1958;
Boozer 1998; Helander 2014), making it a daunting task both to understand and
design them. This is true even when one restricts attention to particular subsets,
known to have certain key properties such as omnigeneity (Hall & McNamara
1975; Bernardin, Moses & Tataronis 1986; Cary & Shasharina 1997; Helander
2014). Omnigenous fields are capable of confining, by definition, all collision-
less charged particle orbits (Northrop 1961; Littlejohn 1983; Wesson 2011; Blank
2004); hence, the particular interest in them. Even though the magnetic field magni-
tude |B| on their nested flux surfaces requires careful consideration (Boozer 1983;
Nührenberg & Zille 1988; Cary & Shasharina 1997; Parra et al. 2015), there remains
a wide range of choices to be made. This is true whether the problem is attacked
from the optimisation perspective (Mynick 2006) or a more controlled analytical
approach.

One prominent case of the latter, with which this paper shall be concerned, is
the near-axis description of the field (Mercier 1964; Solov’ev & Shafranov 1970;
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Lortz & Nührenberg 1976; Garren & Boozer 1991b). Consisting of an asymptotic
description of the equilibrium field in the distance (described by r ) from its centre
(called the magnetic axis), the fields reduce to being represented by only a few func-
tions and parameters. These constitute a model for the field that has proved powerful
in advancing the theoretical understanding of optimised omnigeneous stellarators
(Mercier 1964; Lortz & Nührenberg 1976; Jorge & Landreman 2020; Landreman
& Jorge 2020; Landreman 2021; Rodríguez et al. 2022b, 2024) as well as providing
a practical tool in stellarator design (Camacho Mata, Plunk & Jorge 2022; Jorge et
al. 2022; Landreman & Sengupta 2019; Landreman 2022; Rodríguez et al. 2023).
The latter has however been restricted for the most part to a particularly mature
subclass of omnigeneous stellarators: namely, quasisymmetric stellarators (Boozer
1983; Burby, Kallinikos & MacKay 2020; Nührenberg & Zille 1988; Rodríguez et
al. 2020). Only recently (Camacho Mata et al. 2022; Camacho Mata & Plunk 2023;
Jorge et al. 2022; Plunk, Landreman & Helander 2019; Rodríguez & Plunk 2023;
Rodriguez, Plunk & Jorge 2025) has the near-axis framework of quasi-isodynamic
(QI) fields (Cary & Shasharina 1997; Helander & Nührenberg 2009; Nührenberg
2010), the other big class of optimised stellarators, been sufficiently developed. The
lateness of this development has been a consequence of the complex treatment
that these fields demand; while QS fields possess a direction of symmetry in |B|
(either toroidal or helical), the QI fields do not (although they have closed poloidal
contours).

The objective of this work is to help enable full use of the recent advances in
the near-axis description of QI stellarators. In particular, although Rodriguez et
al. (2025) verified the construction of approximately QI fields to second order, it
left open the issue of how to go about obtaining ‘good’ solutions, i.e. how to best
select input parameters, how to evaluate candidate fields and how to navigate the
extremely large design space that the near-axis construction opens up. To address
this, we develop a set of measures and techniques using second-order near-axis expan-
sion to incorporate notions of neoclassical transport, magnetohydrodynamic (MHD)
stability and equilibrium sensitivity into the construction of QI stellarators. With
these tools in hand, we are in a position to construct and more thoroughly evaluate
stellarator design candidates, and conduct systematic studies exploring things like
optimisation trade-offs.

The paper is organised as follows. In § 2, essential definitions and notation of
near-axis theory are provided. The rest of the paper is divided into sections describ-
ing different types of measures. In § 3, we introduce the measure of field error
δB that quantifies the deviation of a finite aspect ratio consistent equilibrium from
its asymptotic near-axis description, following Landreman (2021). This does how-
ever not qualify the physical impact of such deviations. Thus, in § 4, we present
calculations of the neoclassical εeff effective ripple (Nemov et al. 1999) within the
near-axis expansion, a form to quantify the lack of omnigeneity in which second
order is central. In § 5, we study the appearance of localised ripple wells in the
field, a feature that the near-axis description of εeff cannot capture, focusing on find-
ing at what aspect ratio these first appear. Some questions of MHD stability are
addressed in § 6, where we explore the sensitivity of the magnetic well (Greene 1997;
Landreman & Jorge 2020) of a near-axis field to the choice of second-order shaping.
Finally, in § 7, we study the role played by the pressure gradient and quantify the
sensitivity of a given field to changes in plasma β. We conclude with some closing
remarks.
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2. Definitions and notation

This paper does not re-derive the inverse-coordinate near-axis framework (Garren
& Boozer 1991b; Landreman & Sengupta 2019), but the work is best understood
with some familiarity with how the equilibrium equations for an approximately QI
field are solved through second order in the expansion. A full detailed and pedagogi-
cal account may be found from Rodriguez et al. (2025) and references within, but we
provide some pointers on notation to help make the presentation as self-contained
as possible.

In the vein of the near-axis expansion, all equilibrium quantities are expanded in
a Taylor–Fourier series in powers of r =

√
2ψ/B̄ (a pseudo-radial distance from the

axis, where ψ is 2π times the toroidal magnetic flux and B̄ a reference magnetic
field) and cosine (sine) harmonic in the poloidal, θ , (or helical, χ = θ − Nϕ for
N ∈Z) angle. Here, the angles are part of the Boozer coordinate system (Boozer
1981; D’haeseleer et al. 2012), which eases the description of the magnetic field. This
way, any function f is written as f =∑∞

n=0 rn fn and fn =∑n
m=0( f c

nm(ϕ) cos mχ +
f s
nm(ϕ) sin mχ), where the latter sum is over even or odd numbers depending on the

parity of n.
1

This subscript notation (Rodriguez et al. 2025, § 2.3) will be repeatedly
used and we refer to n as the order (first, second, etc.) of the expansion.

In the inverse-coordinate framework, a magnetic field is described by only a few
functions. First, the ϕ-functions involved in the expansion of the magnetic field
strength, B = |B|. Second, because of the inverse-coordinate nature of the expansion,
we describe flux surfaces of the magnetic field through the functions X, Y and Z ,
which define the relative position of flux surfaces with respect to the magnetic axis
in the Frenet–Serret frame (normal, binormal and tangent, respectively) of the latter
(Rodriguez et al. 2025, (2.2)). Thus, the expansion of these functions also forms part
of the description. Finally, the covariant components of the field, {G, I, Bψ}, are also
explicitly involved (Rodriguez et al. 2025, (2.1)), as is the rotational transform of the
field, ι.

The governing equilibrium equations impose important relations between the com-
ponents of all of these quantities, and that is on what solving the near-axis expansion
is focused. Those relations are detailed in the context of QI fields by Rodriguez
et al. (2025). It is however important to emphasise which ingredients are required
to uniquely define a field in this framework. An approximately QI near-axis field is
uniquely defined to first order by the set {κ(�), τ (�), B0(ϕ), d̄(ϕ), α1(ϕ)}, where the
first two are the curvature and torsion defining the shape of a magnetic axis (which
must have vanishing curvature points (Plunk et al. 2019; Camacho Mata & Plunk
2023; Rodriguez et al. 2025), the third is the magnetic strength along the axis as a
function of the toroidal Boozer angle (whose turning points must match the κ = 0
points), and the latter two define B1 (Rodriguez et al. 2025, (2.4)),

B1 = κ(ϕ)B0(ϕ)d̄(ϕ) cos [χ − α1(ϕ)] . (2.1)

In an ideal QI field, κ and d̄ must be odd and even functions, respectively, with
respect to B0 about every trapping well minima. The function α1 may be defined as
(if we take ϕ = 0 to be the minimum of B0)

α1 = (ι0 − N )ϕ − π/2 + αbuf(ϕ), (2.2)

1We may use the following shorthand as well: Fc
11 = F1c , Fs

11 = F1s , Fc
22 = F2c , Fs

22 = F2s for any function that
F may be.
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where in the ideal case, αbuf = 0. The periodicity constraint on α1 generally requires
finite non-omnigeneous deviations close to B0 maxima (i.e. buffers), which are cap-
tured by finite αbuf (Plunk et al. 2019; Rodríguez & Plunk 2023; Rodriguez et al.
2025). These first-order choices also uniquely determine the elliptical shaping of flux
surfaces around the magnetic axis.

At second order, the key degrees of freedom (inputs) are {p2, X2c(ϕ), X2s(ϕ)},
where the former parameter is the pressure gradient and the latter two are related
to triangular shaping. The latter two are directly linked to the shaping of the field
strength on the flux surfaces as well. For the detailed role played by each of these
and a complete consistent description, we again refer the reader to Rodriguez et al.
(2025).

3. Field truncation error δB

The construction of QI fields using the near-axis expansion is rather non-trivial
already at first order in the expansion. Different choices of magnetic axis and the
shaping of elliptical cross-sections require a careful balance. Unless actively sought,
such fields will tend to present particularly elongated and twisted shapes (Camacho
Mata et al. 2022).

Even when suitable parameters are found, we must always remember that the field
resulting from the near-axis description is approximate in nature. The study and
design of a stellarator field requires, in practice, the full non-expanded equilibrium
field. Thus, we generally need to construct a finite aspect ratio version of the near-
axis field, which will show some deviations from the purely asymptotic description.
Significant deviations can lead to the loss of those properties of the field carefully
instilled in the near-axis field. This particularly concerns |B|, the field strength, which
controls guiding centre dynamics of particles, and omnigeneity. When such devia-
tions are limited, the near-axis description may be deemed good. This measure of
goodness has been previously used (Camacho Mata et al. 2022; Camacho Mata &
Plunk 2023) to gauge the suitability of first-order near-axis QI fields as interesting
candidates for optimised stellarators, and is thus of some interest. This focus on first
order allows us to make a first assessment of the near-axis construction without hav-
ing to explicitly go to higher order. Indeed, depending on the choice of first-order
parameters, there is a strong degree of variation of truncation error, which has in
the past lead to many unfeasible configurations that do not have the desired field at
a reasonable aspect ratio.

To define this goodness more precisely, let us introduce the field strengths Bglobal

and B(1)
nae. Define Bglobal as the field strength of the global equilibrium at its outermost

flux surface ψ =ψa parametrised by θ and ϕ, angular poloidal and toroidal Boozer
coordinates (Boozer 1981). This global equilibrium is meant to be a finite aspect ratio
representation of the near-axis field and we follow the prescription of Landreman &
Sengupta (2019). That is, given a first-order near-axis field, we calculate the shape
of the elliptical flux surface at some radius r = a (i.e. a =

√
2ψa/B̄) and use it as

the outer boundary of a global nested-flux surface, vacuum field. The solution then
defines Bglobal.

The comparison of this global field can then be made to the first-order near-axis
one, evaluated at the edge, B(1)

nae = B0 + a2 B1. We define the field error as

δB =
√∫

(Bglobal − B1st
nae)

2 dϕ dθ

/√∫
B2

global dϕ dθ; (3.1)
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the normalised root-mean-square difference. Large values imply significant differ-
ences between the realised field and the near-axis model, and thus the expectation of
them behaving quite differently.

Gauging the goodness of a near-axis expansion (NAE) field as defined in (3.1)
requires us to solve a global equilibrium. Whether one uses VMEC (Hirshman &
Whitson 1983), DESC (Dudt & Kolemen 2020), GVEC (Hindenlang et al. 2019) or
any other nested flux surface solver, computing δB is numerically costly as compared
with the near-axis field, impeding in addition its theoretical investigation. Can we
make sense of this goodness of the field from within the near-axis framework?

3.1. Near-axis perspective on δB
By definition, δB measures the discrepancy between the full-B and the truncation

of an asymptotic form. That is, δB is, in a sense, a measure of the truncation error
of the asymptotic expansion. The truncation error of an asymptotic series (Bender &
Orszag 2013, § 3.5) can be gauged by the next order in the expansion,

2
and thus the

calculation to second order could possibly be used to estimate δB. There is however
an important caveat: in the near-axis expansion, moving from order N to order
N + 1 in the expansion brings new degrees of freedom. From first to second, we
may shape the triangularity of surfaces in an infinite number of ways.

Amongst this myriad of possibilities, we should pick that which most closely cor-
responds to our particular scenario. This was dealt with by Landreman & Sengupta
(2019) and Landreman (2021), who used the first-order near-axis field of interest at
r = a to impose the shape of the outermost boundary of a global equilibrium, which
they then asymptotically described. Formally, the description of the global equilib-
rium field B̃ requires a double expansion in r (a near-axis expansion) and a (a large
aspect ratio expansion to deal with the ‘global’ nature of the field). Asymptotically
computing this field and evaluating its difference with B(1)

nae(r = a)= B0 + aB1 can
be shown to be (Landreman 2021, § 5.2)

3

B̃2 = a2 B̃(2)
0 + r 2(B̃(0)

20 + B̃(0)
2c cos 2χ + B̃(0)

2s sin 2χ). (3.2)

The first is a mirror term, (C24) of Landreman (2021), and arises from the finite
aspect ratio construction (expansion in a) and is necessary to guarantee a con-
stant toroidal flux ψa = B̄a2/2. As such, it is a perturbation on the near-axis input
B0(ϕ), the magnetic field on axis that sets the leading trapping well structure. The
r -dependent terms in (3.2) correspond to the second-order near-axis expansion of
B̃, whose shaping is chosen to match the outermost surface. They may therefore be
found in a form analogous to the regular second-order construction, solving (A41)–
(A42) of Landreman & Sengupta (2019) using (C9)–(C12) of Landreman (2021)
and then applying (A34)–(A36) of Landreman & Sengupta (2019).

2Note that this is true by definition for sufficiently small r , the expansion variable. In any form, the next order
bears information about the truncation error.

3We note that the construction detailed by Landreman (2021), in particular (C30), is not correct. This
is apparent from the lack of symmetry of the expression with respect to the mid-point of a field period. The
expression should be correctly constructed taking the N -fold symmetry into account, f̄ (2)(ϕ)= ∫ ϕ

0 B̂(ϕ′) dϕ′ +
(1/2 − Nϕ/2π)

∫ 2π/N
0 B̂(ϕ′) dϕ′ − N/2π

∫ 2π/N
0 dϕ′′ ∫ ϕ′′

0 B̂(ϕ′)dϕ′.
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The field error δB may therefore be estimated as

δBar = a2

√√√√ 1
2π

∫ 2π

0

[
(B̃(0)

20 + B̃(2)
0 )

2 + (B̃(0)
2c )

2

2
+ (B̃(0)

2s )
2

2

]
dϕ, (3.3)

where all fields have been evaluated at the boundary r = a.

3.2. Numerical implementation

We have implemented the computation of δBar numerically in pyQIC,
4

following
the original work of Landreman (2021), and introducing all the appropriate general-
isations that apply to QI fields, especially the non-uniform B0 and correct handling
of half-helicity axes (Camacho Mata & Plunk 2023; Rodriguez et al. 2025). In prac-
tice, the resources devoted to finding B̃ quantities are analogous to those employed
when solving the second-order equations of a near-axis equilibrium. In fact, the very
equations involved are quite similar and more specific details may be found in the
code itself.

To benchmark δB, we need a set of near-axis configurations and their associated
finite aspect ratio equilibria. The latter are obtained running the global flux-surface
equilibrium code VMEC (Hirshman & Whitson 1983), constructed using the near-axis
surface at r/R = 0.07 (roughly an aspect ratio of A = 14). As for the benchmark set,
we use a set of 1680 approximately QI, half-helicity near-axis fields (see some details
in Appendix A and a fuller description in an upcoming publication). To compute
δB as defined in (3.1), the field strength is computed in Boozer coordinates using
BOOZXFORM (Sanchez et al. 2000). The comparison of δB to the near-axis estimate
δBar is shown in figure 1.

The agreement is excellent (the correlation is in excess of 0.99), especially strong
for the lowest δB values. At larger δB, there is a clear systematic deviation, with the
near-axis δBar overestimating the field discrepancy. This overestimation is a result of
fields with larger δB having a tendency for increased shaping and sensitivity, and
thus smaller radii of convergence. Evaluation at a finite aspect ratio thus tends to
overestimate the magnitude of the field. However, δBar retains a monotonic relation
with δB.

The behaviour of the field error is clearly seen to depend on the number of field
periods. They appear to form separate clusters, with the larger field period num-
bers leading to larger deviations (in agreement with the arguments before, with the
exception of the special case N = 1). Rescaling δB/N 2 (see inset of figure 1) clusters
all different fields together. This quadratic scaling follows the involvement of second
derivatives in ϕ in the construction of the second-order near-axis equilibrium expan-
sion (see Rodriguez et al. 2025) and approximate scaling symmetries in axis shapes
as discussed by Plunk et al. (2025).

Altogether, the error field near-axis measure δBar is an excellent predictor of
δB. The systematic deviation may lead to a failure of a qualitative agreement at
larger errors, but even this departure could be refined by using a fit of the curve in
figure 1 to map δBar to δB.

4The code may be found in https://github.com/SebereX/pyQIC.git, a significantly different
version of the original code of Jorge et al. (2022), and the particular branch is specified in the Zenodo repository.
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FIGURE 1. Benchmark of the error field measure δBar. The main plot compares the field error
δB, (3.1), evaluated using the global equilibrium computed with VMEC, to the near-axis estimate
δBar for the QI near-axis configurations in the benchmark database of Appendix A.1. The black
broken line represents δB = δBnae and the dotted one is the moving average of the scatter. The
colours for δBar denote the number of field periods of the configurations (see legend). The inset
plot shows the same data scaled by the field period number as 1/N 2.

4. Effective ripple: εeff

Although the simplicity of the field error δB makes it appealing as a measure of
how ‘good’ a given first-order near-axis field is, it ignores the fact that not all field
deviations (even if they may correspond to the same δB) affect the behaviour of the
field equally. In particular, some deviations will spoil omnigeneity more than others.
The field error measure overlooks a second important point, namely that deviations
from omnigeneity are unavoidable to a certain degree (Cary & Shasharina 1997)
even at first order (Plunk et al. 2019; Rodríguez & Plunk 2023), so it is important
to separately evaluate such deviations at each order. Thus, we are in need of some
way of measuring the departure from ideal omnigeneity, of which there are many
(Mynick 2006; Nemov et al. 2008; Rodríguez et al. 2022a; Goodman et al. 2023;
Dudt et al. 2024).

In this paper, we consider the effective ripple εeff as the measure of deviations
from omnegeneity or ‘omnigeneity error’. This is a geometric, dimensionless scalar
quantity defined by Nemov et al. (1999) whose magnitude (or more precisely, that
of ε3/2

eff ) controls the neoclassical electron heat transport across a flux surface in a
plasma that balances the radial losses with collisions; i.e. the so-called 1/ν regime.
Given its clear physical interpretation, the evaluation of εeff is commonly used to
assess modern optimised stellarators, which aim at values below a per cent. Here,
we shall be interested in evaluating it within the near-axis framework. Doing so will:
(i) avoid having to solve global equilibria and perform neoclassical calculations to
assess fields; and (ii) provide insight on how near-axis choices affect it.
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Following Nemov et al. (1999, (29)), we express εeff in our own notation as

ε
3/2
eff = π(R̄ B̄)2

8
√

2
lim

L→∞
F(L)

∫ 1/Bmin

1/Bmax

dλ λ
Nwell∑
j=1

E j(λ), (4.1)

where

E j(λ)= Hj(λ)
2

I j(λ)
, (4.2a)

Hj(λ)= 1

B̄2

∫ � j,R

� j,L

H(λ, B)
B × ∇ B ·∇ ψ

B
d�, (4.2b)

I j(λ)=
∫ � j,R

� j,L

√
1 − λB

B
d�, (4.2c)

F(L)=
(∫ L

0

d�
B

)(∫ L

0
|∇ψ |d�

B

)−2

(4.2d)

and

H(λ, B)=
√

1 − λB

(B/B̄)2

(
4
λB

− 1
)
. (4.3)

The factors R̄ and B̄ are reference length (major radius) and magnetic field mag-
nitudes that normalise εeff to make it a dimensionless quantity. The effective ripple
is then to be understood as a sum over all trapped particles, λ, in all wells, labelled
j , along the field line, running from 0 to L (in the limit of L → ∞). That is, on
an irrational surface, over the whole flux surface. Note that this involves a sum
over very different classes of trapped particles, including particles that travel over
a fraction or many periods of the torus, which makes the calculation particularly
hard.

Each of these classes of particles contributes to the total ripple through E j(λ)� 0,
defined in (4.2a), which for the field to be omnigeneous, must vanish for all
trapped particles. The non-omnigeneous drive comes through Hj , an average
between bounce points � j,R/L of the off-surface magnetic drift, vd ·∇ ψ , weighted
by the parallel velocity ∝ √

1 − λB. The heat flux, Γ , depends quadratically on Hj .
This dependence stems from having Γ ∼ δ f vd ·∇ ψ , where the perturbed parti-
cle distribution δ f arises from a balance between the average drift and collisions.
The competing mixing rate of collisions is related to the function I j , which is
formally similar to the second adiabatic invariant. Finally, F(L) is a geometric nor-
malisation factor that plays the role of normalising the off-surface projection of
the drift.

4.1. Identification of the expansion
Many of the complexities involved in evaluating εeff, (4.1), disappear when its

asymptotic near-axis form is considered. To see this, let us start by introducing the
asymptotic form of the magnetic field strength, which defines trapped particle classes
and determines the radial drift. Concerned with the description of a magnetic field
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that is approximately QI, we can write B ≈ B0(ϕ)+ r B1(χ, ϕ)+ r 2 B2(χ, ϕ), where
(Rodriguez et al. 2025)

B1 = −B0(ϕ)d(ϕ) sin [α− αbuf(ϕ)], (4.4a)
B2 = B20(ϕ)+ B2c(ϕ) cos 2χ + B2s(ϕ) sin 2χ. (4.4b)

To zeroth order in r , B0(ϕ) defines (by assumption) a single toroidal trapping well
per field period. The higher order contributions in r =

√
2ψ/B̄ then deform this

underlying well to make distinct ones for different field lines, labelled by α = θ −
ιϕ. Asymptotically, they do not introduce additional wells. The particular form of
B1 in (4.4a) corresponds to that of an omnigeneous field (when taking d to be
an odd function respect to B0, and d = 0 at the bottom and top of the trapping
well), except where αbuf �= 0, i.e. the buffer regions. These are for the most part
unavoidable near the edges of the toroidal domain (Cary & Shasharina 1997; Plunk
et al. 2019; Rodríguez & Plunk 2023). The second-order field contribution is for
now chosen simply to satisfy stellarator symmetry, so B20 and B2c are even, and
B2s odd.

As a result of the trapping wells becoming labelled by α, the infinite sum over
trapping wells in the effective ripple, (4.1), becomes by Weyl’s lemma of equidistri-
bution (Weyl 1916) (Stein & Shakarchi 2011, Lemma 2.2) (assuming an irrational
rotational transform),

Nwell∑
j=1

f j ≈ Nwell

2π

∫ 2π

0
f (α) dα, (4.5)

where Nwell is the number of wells within a field line portion of length L. That is, the
sum over wells simply corresponds to an average over α.

Changing variables from � to ϕ (with the appropriate Boozer Jacobian J= (G +
ιI )/B2, D’haeseleer et al. 2012, (6.6.8b)) and writing flux surface averages in terms
of (α, ϕ),

ε
3/2
eff = π

8
√

2

(R̄ B̄)2

G2

∫ 1/Bmin

1/Bmax

λÊ(λ) dλ, (4.6)

where

Ê(λ)= 1
π

∫ 2π

0

Ĥ(λ, α)2

Î (λ, α)
dα, (4.7)

and all remaining definitions can be found explicitly at the beginning of Appendix B.
The functions Ĥ and Î (directly linked to the previous Hj and I j of Nemov et al.
1999), (B1a)–(B1b), have been defined to be dimensionless, and G2 (directly
related to F) has dimensions of [L]2, which matches the presence of the
normalising R̄.

In this form, the asymptotic expansion in powers of r can be carried out explicitly
and we do so in Appendix B. The details may be found there, and we emphasise the
importance of carefully considering bounce integrals and 1/

√
1 − λB factors (as in

Rodríguez & Mackenbach 2023 and Rodríguez et al. 2024). In the main text, we
summarise the resulting expressions in ε3/2

eff ≈ ε
3/2,(0)
eff + r 2ε

3/2,(2)
eff + O(r 4), and focus

on their significance.
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4.2. Contribution from buffer regions: ε3/2,(0)
eff

The leading order contribution in the distance from the magnetic axis r to ε3/2
eff is

a constant offset that sets a lower bound to the effective ripple value in the limit of
r → 0. The leading order asymptotic form can be written purely in terms of first-
(and zeroth-) order quantities (see the details in Appendix B),

ε
3/2,(0)
eff = π

8
√

2

(R̄ B̄)2

(G(1))2
∫ 1/Bmin

0

1/Bmax
0

λ
(h(1))2

I (0)
dλ, (4.8)

where

h(1) =
∫ ϕ+

ϕ−

B0

B̄
H(λ, B0)d sin αbuf dϕ, (4.9a)

I (0) =
∫ ϕ+

ϕ−

√
1 − λB0

(B0/B̄)2
dϕ, (4.9b)

(G(1))2 = 2
(

1
2π

∫ 2π

0
dα
∫ 2π/N

0
dϕ
Ψ (1)

B0

)2
/(∫ 2π/N

0

dϕ
B2

0

)
, (4.9c)

where

Ψ (1) = [
(X1c sin χ − X1s cos χ)2 + (Y1c sin χ − Y1s cos χ)2

]1/2
. (4.10)

The expression ε3/2,(0)
eff , as can be seen by inspecting h(1), measures the impact that

buffer regions have on omnigeneity. If such buffers were not present (which may
only happen if the rotational transform matches the helicity of the axis, ι0 = M
(Plunk et al. 2019; Camacho Mata & Plunk 2023; Rodriguez et al. 2025), then
αbuf = 0 and h(1) = 0, implying εeff → 0 as r → 0. In general though, they will make
a finite contribution, and the expression above allows us to gauge its magnitude. It
is a measure of the level of non-omnigeneity of the first-order construction. Only if
this is sufficiently small is it reasonable to proceed to the next order in the expansion
(second order) to evaluate the omnigeneity at that order (Rodríguez & Plunk 2023;
Rodriguez et al. 2025).

The expression for h(1), (4.9a), is then a local measure: trapped particles that do
not venture into buffer regions near the trapping well tops, such as deeply trapped
ones, will not contribute by any amount. Thus, a smaller buffer results in a smaller
fraction of contributing particles. Those trapped particles that do, contribute to h(1)

only through their radial magnetic drift (proportional to d) in the buffer region. By
construction, and to abide by the condition of pseudosymmetry that avoids losses at
turning points of the magnetic field, d = 0 is chosen to vanish at both the bottom and
the top of the trapping well. Hence, we expect d ≈ 0 near the trapping well tops and
thus in the buffer regions, automatically limiting the magnitude of the effective rip-
ple. To make this somewhat more quantitative, consider the buffer to have a toroidal
extent δ about the well top. For a magnetic axis with a curvature κ that has a zero of
order v (fixing the form of d = d̄κ , Plunk et al. 2019; Rodríguez & Plunk 2023) and
a field B0 with a first derivative of order u − 1, following (4.9a), we expect a scaling
h(1) ∝ δu/2 × δv × δ ∼ δu/2+v+1. The first factor comes from the slowing down of the
particle speed near the tops; the second comes from the low radial drift linked to
d itself; and the latter is the size of the buffer domain. The natural impulse to take
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FIGURE 2. Benchmark of effective ripple calculation. The plots show, in log scale, a comparison
of the effective ripple as calculated using the code NEO on global equilibria (scatter points) and
calculated with the near-axis estimate (solid lines), for a number of different benchmark con-
figurations (see Appendix A). The two detail plots on the right show the individual comparison
for two of the cases, including the zeroth-order ripple offset ε(0)eff as reference (dotted line). The
ripple is normalised to a reference B̄ = 1 T and R̄ = 1 m.

δ→ 0 has, though, dire consequences on the shaping of the resulting field (Plunk
et al. 2019; Camacho Mata et al. 2022). One could alternatively increase the order of
the power of δ, for instance, by making the top of the trapping well flatter. Without
the need to resort to any of these, the behaviour of I (0) helps reduce the buffer con-
tribution even further. This second-adiabatic-invariant-like factor is largest for barely
trapped particles, reducing the contribution of the buffer to the effective ripple. This
physically corresponds to these particles being more strongly diffused by collisions
in λ space, to a large extent because they travel for a longer time, and thus their
drift contribution is offset to some degree. All in all, the contribution of the buffer
tends to be small (see figure 2), setting a negligible lower bound on εeff in the limit
of r → 0.

4.3. Omnigeneity to second order: ε3/2,(2)
eff

Given the rather benign contribution to the effective ripple from first order, it
is important to assess the next order contribution to εeff. The evaluation of the
order r 2 correction to the effective ripple is presented in detail in Appendix B. The
calculation is significantly more involved than first order, requiring the next two
order corrections of many terms and even involving third-order quantities formally.
Many of those terms do not, in practice, contribute significantly, and it is a great
convenience to retain only second-order contributions.

5
For this reason, we write a

5One could carry out an analysis similar to that in § 3 to find the third-order components corresponding to the
finite build of a second-order finite aspect ratio equilibrium construction, but we shall not do that here.
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reduced, simplified form of these contributions (see Appendix B for a more detailed
account of this) that focuses on the next order contribution to H ,

ε
3/2,(2)
eff = π

8
√

2

(R̄ B̄)2

(G(1))2
∫ 1/Bmin

0

1/Bmax
0

λ
(h(2))2

I (0)
dλ, (4.11)

where

h(2) = −2
∫ ϕ+

ϕ−
H(λ, B0)

ΔBQI
2c

B̄
dϕ, (4.12a)

ΔBQI
2c = BQI

2c − 1
4
∂ϕ

(
B2

0 d2

B ′
0

cos 2αbuf

)
, (4.12b)

and BQI
2c = −(B2c cos 2ῑϕ + B2s sin 2ῑϕ). The expression in (4.12b) is equivalent to

the omnigeneity condition at second order when it vanishes, as derived explicitly by
Rodríguez & Plunk (2023 (32c)). Thus, this approximation to the asymptotic O(r 2)
behaviour of the effective ripple is driven by the second-order non-omnigeneous
behaviour and will generally dominate ε3/2,(0)

eff at a finite aspect ratio.
Unlike to leading order, in this case, the non-omnigeneous contribution is spread

over the entirety of the trapping well, wherever ΔBQI
2c �= 0, a local measure of radial

drift imbalance. An imbalance at some point ϕ will affect all trapped particles with
λ< 1/B0(ϕ) that pass over this point. Although they feel such deviation from omni-
geneity, this is not to say that they will necessarily behave in a non-omnigeneous
fashion, as the bounce-integral in (4.12a) can lead to partial cancellations of ΔBQI

2c ,
which can have either sign. However, it remains true that if ΔBQI

2c �= 0, then
ε

3/2,(2)
eff �= 0.
The abovementioned scenario then describes the significance of the omnigene-

ity condition of Rodríguez & Plunk (2023), which is a property of second-order
fields. As such, different choices of second-order shaping (namely, triangularity and
Shafranov shift) will affect the omnigeneous behaviour of the field and their choice
becomes key in constructing the stellarator field. This is not to say that the first-
order near-axis construction is no longer important, as it will remain to strongly
affect the amount and form of second-order shaping needed to make a field more
omnigeneous. A clear example of this is the radial drift involved in (4.12b), which
by increasing axis curvature (and thus d for a controlled elongation of flux surfaces)
will generally require stronger shaping.

One may ask how can the shape at second order be chosen to omnigenise a
field and if it is an example of an optimisation problem. As shown by Rodriguez
et al. (2025, (3.6)–(3.7)), there is however a unique, closed form choice of shaping
that exactly achieves ΔBQI

2c = 0. This excludes, though, the neighbourhoods (in ϕ)
of flattening points of the magnetic axis, where the shaping necessary to achieve
this ideal omnigeneous behaviour would diverge unless the first-order construction
was specially chosen. Excluding regions around flattening points (see further discus-
sion later) and applying this choice of shaping, we say we have ‘omnigenised’ the
construction.
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FIGURE 3. Diagram with different contributions to εeff. (a) Deformation of |B| within the prin-
cipal well violating the equal radial drift condition of omnigeneity (depicted by broken line).
(b) Appearance of local ripple or secondary wells. (c) Misalignment of field maxima, leading to
multiple-well trapped particles.

4.4. Numerical implementation and benchmark
Let us first benchmark the near-axis estimate of the abovementioned effective

ripple. To that end, we take an extended set of second-order near-axis equilibria
previously used by Rodriguez et al. (2025), described in Appendix A, and their asso-
ciated global equilibria at a number of different aspect ratios. We then compare the
near-axis estimate of εeff (as a function of r ), implemented in the pyQIC framework,

6

with the effective ripple computed by the neoclassical code NEO of the finite aspect
ratio equilibria. The comparison is presented in figure 2 as a function of aspect ratio
A = R/r .

The agreement between the predicted near-axis εeff and the finite volume equilib-
ria calculation, although not exact, is excellent over quite a large range of A. The
buffer region contribution in all cases sets a rather benign lower bound to the value
of εeff at large aspect ratios and seems to be in agreement with the global calcu-
lation. This shows the critical role played by the second order in the expansion,
which controls the dominant O(r 4/3) behaviour. At lower aspect ratios, A � 10, the
departures grow, as the deformation of the field increases and departs from its
asymptotic description (see figure 3). The latter is unable to capture local ripples

7

and the appearance of new trapped particle classes (as in figure 3b), or misalignment
of maxima (as in figure 3c) with the associated abrupt modification of trapped par-
ticle behaviour. These effects become increasingly prominent at lower aspect ratios,
and thus additional deviations between the near-axis and global calculation are to be
expected.

4.5. Measures of omnigeneity
With the benchmark in place, we now introduce different measures based on

the effective ripple to assess near-axis fields. We propose measures to characterise
the effective ripple of second-order constructions, first-order constructions and the
shaping involved when the latter are omnigenised at second order.

We start with the fundamental form of the effective ripple.

6The implementation makes use of the newer version of the BAD code for bounce averaging.
7We do not consider the presence of θ -independent sub-wells (Parra et al. 2015), and assume that any ripple

will be localised in θ , and thus will be non-omnigeneous.
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(a) Effective ripple from buffer regions, ε3/2,(0)
eff .

Leading order contribution to the effective ripple from the buffer regions, see
(4.8). Its calculation requires information of first order and the evaluation of
bounce integrals between bounce points defined by B0(ϕ).

(b) Second-order effective ripple, ε3/2,(2)
eff .

Approximate, order O(r 4/3) contribution to the effective ripple due to omni-
geneity breaking at second order, see (4.11). It requires information on the
second-order construction and once again the evaluation of bounce integrals
with bounce points defined by B0(ϕ).

These combine into a single measure in item (c).

(c) Effective ripple at the edge, εedge
eff .

Estimation of the effective ripple value at the flux surface corresponding to a
reference aspect ratio of Aref = 10 evaluated using the asymptotic expressions

ε
edge
eff =

(
ε

3/2,(0)
eff + r 2

refε
3/2,(2)
eff

)2/3
, (4.13)

with rref = R/Aref and R is the major radius calculated using the magnetic axis
length, L , as R = L/2π .

The εedge
eff is a dimensionless measure that can be directly interpreted as one would

the effective ripple of an optimised stellarator. This is a measure that diagnoses the
effective ripple of a fully consistent second-order near-axis construction. However,
as discussed previously in this section and by Rodriguez et al. (2025), there are
certain aspects of the field that are a result of lower-order choices in the near-
axis construction. Thus, we would like to have some way to assess this ‘intrinsic’
behaviour. The simplest measure is item (d).

(d) Non-omnigeneous mismatch at the well bottom,
8
ΔBQI

min.
Define

ΔBQI
min = r 2

ref

ΔBQI
2c

B̄

∣∣∣∣∣
min

(4.14)

evaluated at the bottom of the trapping well. Here, B̄ is the average value of B0

and rref a reference radial value (which we compute for Aref = 10). The measure
provides a sense of omnigeneity breaking near the bottom of the trapping well
normalised to the average field strength. It only requires first -order quantities,
following (3.8) of Rodriguez et al. (2025).

To translate this relative breaking of omnigeneity into the language of the effective
ripple, we can evaluate εedge

eff for a near-axis field constructed using the omnigeneising
shaping at second order. That is, the shaping that forces ΔBQI

2c = 0 for all ϕ, barring
some masked region near the flattening points. The shaping needed to achieve this
is given by Rodriguez et al. (2025, (3.6)–(3.7)). The remaining ripple value is the
result of the contribution from the straight sections, we denote as item (e).

8We could define an equivalent measure at the top of the well. However, the behaviour at the minimum is of
greater importance as all trapped particles experience it.
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(e) Effective ripple of omnigenised field, εshap
eff .

Estimate of the effective ripple of an omnigenised near-axis field at rref. It is
defined as εedge

eff for a field in which the second-order shaping has been chosen
to enforce ΔBQI

2c = 0 everywhere except a 15 % of the toroidal domain around
the inflexion points. This evaluation requires solving the second-order near-
axis equations with the appropriate omnigenising shaping and computing the
appropriate bounce integrals.

To quantify how much shaping is required to construct this omnigenised field, we
define item (f).

(f ) Average omnigenising shaping, T̂ shap.
Averaged measure of the amount of shaping introduced at second order. We
define

T̂ 2 = r 2
ref

2π

∫ 2π

0

(
X 2

20 + Y 2
20 + Z 2

20 + X 2
2c + X 2

2s + Y 2
2c + Y 2

2s + Z 2
2c + Z 2

2s

2

)
dϕ.

(4.15)
which we have non-dimensionalised with respect to the minor radius rref,
indicating the relative deformation of the elliptical cross-sections needed to
omnigenise a field. We define T̂ shap as the shaping value of the omnigenised
field at an aspect ratio Aref = 10 = R/rref. Note that T̂ = T̂ [X2c, X2s] may be
considered a functional of the two free shaping functions at second order.

The average measure T̂ quantifies second-order shaping in absolute terms, but
makes no reference to the first-order shape that it modifies. To elucidate how shaped
a configuration is, it is important to consider the interaction with first-order shaping
at finite radius r . To capture this, we introduce the critical radius rc (or its reciprocal,
the critical aspect ratio Ac ∼ R/rc) defined by Landreman (2021). This measure
captures the complexity of flux surfaces by reflecting the maximal radial extent at
which flux surfaces continue to exist without any unphysical intersection, i.e. before
the Jacobian of the coordinate system vanishes. That way, low Ac indicates that
the second-order shaping is compatible with lower first-order shaping for relatively
compact fields.

(g) Minimal aspect ratio of omnigenised field, Ashap
c .

Minimum value of the aspect ratio A for which the near-axis construction of
the omnigenised field does not present locally self-intersecting flux surfaces.
This is based on the definition of Landreman (2021),

Ac = R/min [r | ∃ θ, ϕ :J(r, θ, ϕ)= 0] , (4.16)

where J is the Jacobian of the {r, θ, ϕ} coordinate system.

We gather the abovementioned measures evaluated on the configurations in the
benchmark in table 1. The first figure to look at is the effective ripple at the
edge, which provides a single measure to contextualise these near-axis construc-
tions amongst the space of optimised stellarators. Configurations with values below
a per cent are often regarded as adequate with regards to neoclassical behaviour.
It is clear that the second-order (O(r 4/3)) contribution dominates the behaviour of
εeff. To understand how much of the behaviour comes from the particular choice
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Configs 4.1 4.2 4.3 4.4 (unopt) 4.4 (opt) # 50 # 76

ε
3/2,(0)
eff × 105 0.01 1.75 0.63 0.16 0.08 0.33 0.52

ε
3/2,(2)
eff [m−2] 0.290 3.079 0.643 0.790 0.313 3.829 0.263

ε
edge
eff [%] 2.46 13.5 3.46 5.47 3.10 11.4 1.91

ε
shap
eff [%] 2.41 3.20 4.12 2.67 0.059 7.74 0.063

ΔBQI
min [%] 5.78 0.94 2.53 0.94 0.08 4.17 0.21

Ac 2.09 5.84 2.38 4.46 4.93 3.00 1.59

Ashap
c 19.8 22.0 10.9 24.0 19.0 11.2 12.6

T̂ shap 2.27 0.78 0.30 0.75 0.79 0.24 0.30

TABLE 1. Shaping configurations for effective ripple. The table shows information regarding
the omnigeneous nature of the near-axis constructions in the benchmark. The table is separated
into two main parts. Top rows show the measures of omnigeneity, in particular, the effective
ripple for the original second order field in the benchmark (top), and the omnigenised form of
the field (bottom). The lower rows present information regarding the shaping of the original

field (top) and the omnigenised field. All the measures are defined in the main text.

at second order and how much is intrinsic to the lower orders, we then look at the
properties of the omnigenised field.

The lack of omnigeneity near the inflexion points is manifest in εshap
eff , which does

not approach the baseline value ε(0)eff for any of the configurations. This is also indi-
cated by the non-zero values of ΔBQI

min. However, the optimised version of config.
4.4 (by construction) and # 76, both show reduced ripple. What might appear most
surprising, though, is that not all omnigenised configurations exhibit smaller ripple
than their original forms, that is, εshap

eff > ε
edge
eff in some cases. This is a result of a

strong non-omnigeneous drive near the bottom of the well, which, in the original
configuration, partially cancelled the ΔBQI

2c away from it.
Figure 4 shows in more detail what the act of omnigenising is, presenting the

case of configuration # 76. We choose this case because it has an intrinsic near-
omnigeneous behaviour (small ΔBQI

min) at the bottom of its trapping well, and thus
nicely illustrates the omnigenising effect of shaping. We observe that moderate vari-
ations in the cross-sections lead to significant changes in the ripple. The plot in panel
(a) shows how gradually increasing the shaping to its perfect omnigenising value (0
meaning unshaped and 1 the completely shaped case) reduces the ripple, while the
changes in the surfaces lead to a significant increase in Ac. This reflects a general
tendency observed with near-axis QI constructions: second-order shaping to improve
omnigeneity is often costly in terms of shaping. Freedom at first order must also be
used to effectively construct omnigeneous fields.

5. Appearance of secondary trapping wells: Aw

In the previous section, we focused on assessing omnigeneity in terms of the
asymptotic behaviour of εeff. However, we noted that this did not account for the
appearance of small localised secondary wells, which we now consider (see figure 3b).
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FIGURE 4. Evolution of effective ripple with omnigenising second-order shaping. The plots
show the evolution of the half-helicity benchmark configuration #76 with changing second-order
shaping. (a) Evolution of εedge

eff (solid) and Ac (broken) as a function of shaping. A value of 0
for the scaled shape corresponds to the original second-order benchmark configuration, while
a value of 1 indicates the omnigenised construction. The shaping is scaled linearly in between.
(b) Examples of cross-sections in cylindrical coordinates at three values of shaping, indicated as
vertical lines on the left plot.

The formation of these defects is linked to increased neoclassical transport (Ho &
Kulsrud 1987) and particle losses (Mynick 1983; Paul et al. 2022). It is simple to
picture a newly formed class of ripple-trapped particles, which live on those local
ripples and thus experience whichever the local non-zero radial drift is. A deeper
well results in more trapped particles, and the further from the bottom and top
along the trapping well such ripple is, the stronger the local drift is. Having a sense
of the presence of such ripples is then important.

5.1. Construction of a ripple well measure, Aw
How do these secondary wells appear in the approximately QI near-axis scenario?

By construction choice, in the limit of an infinite aspect ratio equilibrium (r → 0),
there is a single well defined by B0 and thus no trace of any secondary wells. The
ripple well question is then a finite aspect ratio one, which will require evaluating the
asymptotic description at a finite A. We define Aw as the largest aspect ratio A for
which a ripple well first appears along a magnetic field line within our asymptotic
near-axis field model. Trapping wells are identified seeking points at which ∂ϕ|αB = 0
(i.e. partial toroidal derivative keeping the field line label constant, namely ∂ϕ|αB =
(∂ϕ + ι∂θ )B). To distinguish ripple wells from the main trapping well defined by
B0(ϕ) on axis, we shall picture the appearance of secondary wells as a ‘dynamic’
action in radius. As we look at surfaces of decreasing aspect ratio, ripples may start
forming but must do so by first forming inflexion points, ∂ϕ|2αB = 0. We therefore
define the ripple-well aspect ratio,

Aw = R
/

min
{
r | ∃ θ, ϕ : ∂ϕ|αB(r, θ, ϕ)= 0, ∂2

ϕ|αB(r, θ, ϕ)= 0
}
. (5.1)

In practice, finding Aw requires a procedure (detailed in Appendix C) similar
to the calculation of the critical radius rc introduced previously and originally by
Landreman (2021). Briefly put, the two conditions in the definition of (5.1) written in
terms of B(r, θ, ϕ)=∑2

n=0 rn Bn(θ, ϕ) may be interpreted as simultaneous algebraic
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FIGURE 5. Ripple well diagnostic measure Âw for configurations 4.1 and 4.3. The plots show
(left) the function 1/ Âw as a function of α, the field line label, for configs. (a) 4.1 and (b) 4.3, the
spaghetti diagrams. The hatched area represents Âw > Aw, and the shaded regions the interval
of α that have a ripple well. The right plots show the |B| contours corresponding to the r values
indicated by the horizontal silver lines on the left plot. The solid black line in the contour plots
shows the direction of a magnetic field line, the broken white line contours of ∂ϕ |αB = 0 and
the scatter, inflexions captured by the spaghetti diagram.

equations on r and θ , which may be solved for every ϕ. The resulting multiple roots
may then be written as a multi-valued function Âw(α) (eliminating ϕ), of which the
maximum is Aw.

5.2. Assessment and application
Let us consider the behaviour of ripple wells in two of the example configurations

in the benchmark (see Appendix A) and plot in figure 5 the multi-valued function
1/ Âw. For illustration purposes, we accompany these plots with the corresponding
B contours.

The plots of 1/ Âw, which we refer to as spaghetti diagrams (borrowing from the
condensed matter lingo), are best interpreted from bottom to top. In the interval
0< 1/ Âw < 1/Aw, the field does not present any secondary well, even though it
may present topological defects in the contours of |B|, i.e. puddles (Rodríguez &
Plunk 2023). At Âw = Aw, a band is reached; that is, an inflexion point appears
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Configs 4.1 4.2 4.3 4.4 (unopt) 4.4 (opt) # 50 # 76
Aw 27.4 37.0 12.9 32.8 24.4 18.5 16.5
Ac 2.09 5.84 2.38 4.46 4.93 3.00 1.59

TABLE 2. Ripple well distance in the benchmark configurations. The table shows the values
of the aspect ratio when the first ripple-well appears, Aw, and that at which the near-axis

construction breaks down, Ac , for the configurations used as a benchmark in the paper.

along a field line for the first time. By symmetry, these inflexions occur in pairs.
Pairs of bifurcating branches appear and separate with increasing 1/ Âw. The shaded
areas these curves bound represent every field line (i.e. intervals of α) containing
secondary wells. This area grows at lower aspect ratios and additional bifurcations
do appear. We must mention the unpaired bifurcations that appear near α/π ≈ 1 of
panel (a), which appear to contravene the general behaviour presented previously,
as they do not bound field lines with ripples. In fact, field lines in between have
extended trapping wells. At least, until these branches cross.

With all this into account, at a finite A< Aw, we expect more ripples in config. 4.1
as compared with 4.3. What the spaghetti diagram fails to indicate is the location
(in ϕ) of such ripples and thus how strong is the radial drift experienced by ripple-
trapped particles. To fully assess the relevance of ripples, some of that information
should be taken into account, but we shall not explore this further here, and leave the
relationship between Aw and the level of departure of the near-axis approximation
to εeff (see previous section) for future investigation.

The comparison of different configurations can be made more quantitative by
looking at Aw, which we present in table 2. The ripple measure Aw exhibits
some correlation with the shaping measure Ac (they have a Pearson correlation of
ρ = 0.75, p − val = 0.05). The more shaping means the more variation in the field,
the larger the second-order field terms and thus the larger Aw. However, this is far
from being a one-to-one relationship and Aw merits its own use as a field diagnostic.
Minimising Aw leads to ‘cleaner’ |B| contours at finite aspect ratios. From this brief
benchmark, it appears that half-helicity configurations (as well as the second-order
QI optimised one) are more resilient to the appearance of wells. There are other ele-
ments in the near-axis equilibrium that have the potential to significantly influence
the appearance of ripple wells, one being the shape of B0. We would expect con-
figurations with flatter minima, as those favouring MHD stability and maximum-J
(Plunk et al. 2024; Rodríguez et al. 2024), to be more susceptible to the appearance
of ripples.

6. Magnetic well stability and shaping: W and GW

There are crucial physical features of the field beyond omnigeneity that also
depend on the second-order form of the field. In particular, we are interested in
MHD stability, which we capture in this paper through the so-called magnetic well
criterion (Greene 1997): a field is deemed unstable (in particular, to interchange
instability in the low plasma β limit) if V ′′ > 0, where V is the volume enclosed by
flux surfaces and the primes denote derivatives with respect to ψ . In the context of
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the near-axis framework, V ′′ can be written in simple form as (Landreman & Jorge
2020, (3.6))

V ′′ = 2π
∣∣∣∣G0

B̄

∣∣∣∣
∫ 2π

0

dϕ
B4

0

[
3
(
B2

1s + B2
1c

)− 4B0 B20 − μ0 p2 B2
0

π

∫ 2π

0

dϕ′

B0(ϕ′)2

]
+ O(r 2),

(6.1)
where symbols have their standard near-axis meaning (Landreman & Sengupta 2019;
Rodriguez et al. 2025). The key ingredient here is B20, the poloidally averaged
‘radial’ gradient of |B|. A positive value is beneficial to stability as it tends to make
field-lines curve outwards (from force balance, ∇⊥(B2/2)= B2κ −μ0∇ p for κ the
curvature of field lines). The field component B20 controls other physics such as
precession and the maximum-J property. We do not delve into this here, but refer
the reader to Rodríguez et al. (2024) for an in-depth discussion and several useful
measures.

Values of V ′′ are often reported as a relative well measure, given in the form of
a percentage (Solov’ev & Shafranov 1970, (14.29)). Following this convention, we
define the relative well of a finite aspect ratio equilibrium as W = ∫ ψa

0 V ′′dψ/V ′(0),
where ψa is the edge value of ψ . Such a measure might in general be misleading,
as the magnetic well criterion is a locally radial one. In the present case of the
near-axis expansion, where V ′′ is constant to leading order, though, W is merely a
normalisation choice for V ′′. Choosing as a reference rref = R/Aref (unless otherwise
stated, with Aref ∼ 10), in the near-axis framework, we define

W = B̄r 2
ref

4πG0

[∫ 2π

0

dϕ
B2

0

]−1

V ′′. (6.2)

With such a measure, we may assess the stability of a prescribed second-order
field. We expect the stability to depend both on shaping choices such as triangularity
and Shafranov shift (Freidberg 2014, (12.89)), second-order quantities, but also first-
order ones. In fact, following the works of Rodríguez et al. (2024, 2025), we can look
near the straight sections of the field, where second-order shaping has no effect, to
study the intrinsic stability contribution of the first order. In particular, the function
B20 will have some prescribed value there.

(a) Relative radial gradient at the trapping well bottom, B20,min.
We define B20,min as

B20,min = r 2
ref

B20

B0

∣∣∣∣
min

(6.3)

at the bottom of the trapping well. This is the poloidal-averaged radial gradient
at the bottom of the well, which controls the poloidal precession of deeply
trapped particles and contributes to stability if positive (Plunk et al. 2024;
Rodríguez & Mackenbach 2023; Rodríguez et al. 2024). This is an intrinsic
feature of the first-order construction. The measure is normalised to serve as
a relative field strength change at a reference surface of aspect ratio Aref.

Away from these special points, it is possible to choose the second-order shaping
to make the field MHD stable, but how should this shape be chosen and how much
does that shaping depend on the lower orders?
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6.1. Sensitivity of vacuum well
To determine the sensitivity of the magnetic well to the shaping at second order,

we compute the variation of the magnetic well defined in (6.1) with respect to
the input functions X2c and X2s on which the integrand depends. Following the
general prescription detailed in Appendix E for computing the shape gradient
GS = (δS/δX2c, δS/δX2s) of a general functional of the form

S =
∫ 2π

0
f (B20, B2c, B2s, ϕ) dϕ, (6.4)

we may compute the shape gradient associated with the magnetic well, GW . For the
magnetic well, we need

∂ f

∂B20
= −2r 2

ref

B3
0

[∫ 2π

0

dϕ
B2

0

]−1

,
∂ f

∂B2c
= 0,

∂ f

∂B2s
= 0, (6.5)

which may be used to compute explicitly the gradient, as in Appendix E.
Although explicit, the resulting gradient involves the inversion of a differential lin-

ear operator (see Appendix D). This is a result of B20 being part of a self-consistent
equilibrium solution. The necessary calculation to find the gradient is then compu-
tationally equivalent to solving a modified, second-order near-axis equilibrium. The
strength of this gradient calculation is that, because the magnetic well is linear on
B20, and thus also on the shaping, the gradient is independent of second order.
Once we have computed the gradient, we know precisely how the magnetic well will
change under changes in the shaping.

Before exploiting this knowledge of the gradient to concoct some diagnosing mea-
sures of the fields, we can gain some perspective on GW by considering the simplest
limit we can: that of an up-down symmetric tokamak field.

9
In this limit, any toroidal

derivative drops out and (see details in Appendix E.1)

GW
2c = 3r 2

ref

πR

d̄4 − 1

d̄4 − 3
, GW

2s = 0, (6.6)

where d̄ = 1 corresponds to a tokamak with circular cross-sections.
10

For the case
of circular cross-sections, the magnetic well is insensitive to changes in shaping (tri-
angularity) (Rodríguez 2023). For a vertically elongated cross-section (d̄ < 1), an
increase in X2c (i.e. of positive triangularity) favours the vacuum well, matching the
well-known tokamak intuition (Freidberg 2014; Rodríguez 2023). The divergence as
d̄4 → 3 is worrisome, as it leads to ill-behaviour for a very particular horizontally
elongated elliptically shaped tokamak. Such behaviour was previously described and
analysed by Rodríguez et al. (2023) in the context of quasisymmetric stellarators,
where the generalisation of the above observations is true. The divergence is indica-
tive of only one particular form of shaping X2c being physical and consistent with

9The considerations presented here hold beyond the context of fields with poloidally closed |B| contours. They
extend to any general magnetohydrostatic equilibrium near-axis field with the appropriate adjustments.

10 It is common to use η̄ instead of d̄ in the tokamak and quasisymmetric literature (Garren & Boozer 1991a;
Landreman & Sengupta 2019), but we here try to remain consistent with the rest of the notation in the paper.
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how the construction is being carried out. This unphysicality can be seen on a simi-
lar divergence of triangularity, (D11). Fortunately, configurations of interest tend to
live away from this singularity.

Having a knowledge of the gradient GW provides complete insight into the sen-
sitivity of the magnetic well of a configuration. In particular, we are interested in
knowing what is the minimal amount of shaping that would make a given first-order
near-axis configuration achieve a magnetic well (mirroring the practical approach of
Plunk et al. (2024). Because we have computed the shape gradient, we know pre-
cisely which shaping combinations will make a configuration stable: we simply need
to choose X2c and X2s such that

C=
∫ 2π

0

(GW
2c X2c + GW

2s X2s

)
dϕ + Wref = 0, (6.7)

where Wref is the magnetic well value of the second-order near-axis construction for
X2c = 0 = X2s . This imposes marginal stability, and in the rare case of Wref > 0, it
would require relaxing the stability of the field. The ‘problem’, though, is that there
is no unique way of choosing the shaping to satisfy this constraint. We must then
impose some regularising choice, which we take to be one that minimises shaping
in the form of an integral over the sum of squares of all the second-order shaping
functions, as defined in (4.15).

11
The problem of finding the minimal stabilising

shaping can then be formulated as one of finding X2c and X2s that minimise the
following constrained variational problem:

T 2[X2c, X2s] = T̂ 2[X2c, X2s] − λ C[X2c, X2s], (6.8)

where λ is a Lagrange multiplier. We denote the resulting shaping as Xmhd
2c and

Xmhd
2s , for which explicit expressions may be found in Appendix F. These expressions

involve the shape gradients computed previously, as well as some additional matrix
multiplications, and could in principle be studied analytically. The main power of
the approach is however providing a prescription to construct marginally stable
approximately QI near-axis fields given a choice of axis, magnetic field strength on
axis and first-order information.

To assess such stabilised constructions, we introduce some simple measures. One
of the simplest is the following.

(b) Average second-order shaping of stabilised field, T̂ mhd.
The root-mean-square value of the consistent stabilised second-order shaping,
evaluated using (4.15) using the minimal, stabilising choice of shaping, T̂ mhd =
T̂ [Xmhd

2c , Xmhd
2s ]. It is therefore a simple measure of the amount of shaping

necessary to stabilise a field, normalised to some reference rref.

A more accurate measure of the shaping that takes toroidal variation into
consideration may also be introduced as follows.

11This is a natural regularising choice, L2 norm, but others would also be possible (especially those that include
penalties penalising large toroidal variations). Simpler forms could also be constructed only minimising the choice
of input functions, which does however capture the notion of second-order shaping less accurately.
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Configs 4.1 4.2 4.3 4.4 (unopt) 4.4 (opt) # 50 # 76
B20,min [%] −2.15 0.80 −2.10 −1.37 −0.99 −5.27 −0.52

W [%] 5.78 5.56 4.52 9.12 8.52 6.64 4.12
|Wmhd| × 10−16 1.53 1.39 2.10 1.78 2.97 5.00 0.48

Ac 2.09 5.84 2.38 4.46 4.93 3.00 1.59
Amhd

c 5.17 6.10 4.70 6.43 6.23 5.91 4.82
T̂ mhd 0.20 0.17 0.16 0.22 0.19 0.22 0.13

|ΔW/ΔAc| [%] 1.30 8.48 1.25 2.43 3.29 1.37 1.20

TABLE 3. Magnetic well sensitivity of benchmark configurations. The table shows the values
of the magnetic well and re-shaped fields for the benchmark configurations, the shape T̂ and

rmhd
c second-order shaping measures.

(c) Critical aspect ratio of stabilised field, Amhd
c .

The minimum aspect ratio for which the near-axis construction of the stabilised
configuration is physical (non-intersecting flux-surfaces). That is, Ac for the
near-axis field evaluated with Xmhd

2c and Xmhd
2s . It is a dimensionless quantity.

Finally, to get a sense of the sensitivity of the shaping and the magnetic well, we
also define ΔW/ΔAc as follows.

(d) Magnetic well sensitivity, ΔW/ΔAc.
Change in the magnetic well W with the change of shaping as measured by Ac

around the marginally stable point. Here, we define it by finite differencing as

ΔW

ΔAc
= W (V ′′ = 1 T−2 m−1)

Ac(V ′′ = 1 T−2 m−1)− Ac(V ′′ = 0)
, (6.9)

a dimensionless quantity. A larger value indicates increased sensitivity to shap-
ing. We leave a more precise (perhaps analytic) form of this quantity to future
work.

6.2. Numerical implementation and benchmark
We apply the abovementioned measures to the configurations that constitute the

benchmark for this paper. We compute the shape gradient for all such configura-
tions, compute their stabilised versions and evaluate the scalar measures presented
previously. A summary of the relevant vacuum-well-related properties is gathered
in table 3. We start by noting that all configurations in the benchmark are MHD
unstable, which appears to be the overwhelming tendency with constructed QI fields,
as is the case with the other classes of omnigeneous fields (Landreman & Jorge
2020; Landreman 2022; Rodríguez et al. 2023). All examples encountered require
some concerted shaping to push them towards MHD stability, which we illustrate in
figure 6. The correctness of the approach is evidenced in the vanishing of
the magnetic well machine precision for the reshaped configurations, Wmhd , in
table 3.

Beyond the qualitative assessment of the shaping needed from the cross-sections,
both the measures T̂ and Amhd

c quantitatively describe the amount of shaping, with
the simpler form correlating with the latter. Whenever the re-shaped configuration
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FIGURE 6. Stabilised configurations and sensitivity of vacuum magnetic well to shaping. (a,b)
Plots show (left) the shaping input for stabilising the near-axis fields and (right) the resulting
re-shaped cross-sections for the first three configurations of the benchmark. The black, solid
lines represent the re-shaped configuration, while the dotted one denotes the starting point. (c)
Change in the magnetic well as a function of the shaping measure Ac, illustrating the sensitivity
of the fields to shaping.

has a small value for the critical radius, it means that significant shaping is present
and if there is a large difference from the original benchmark field construction, Ac

in table 3, we can conclude that the magnetic well is quite insensitive to shaping. Such
sensitivity is more precisely measured by ΔW/ΔAc. Note its large value in the case
of config. 4.2, figure 6(b), where minor changes in the shape of the cross-sections
are enough to stabilise the field (see figure 6c). This configuration is also special in
that B20,min > 0, as we may expect from the help of having a finite plasma beta in
that case. The high sensitivity is a potentially problematic feature of the field if small
changes in its shaping can change the response significantly. Note however that this
sensitivity does change with W (see figure 6c) so that a given configuration could
perhaps be made less sensitive if sufficiently stabilised. This merits further study.

If one was interested in finding the most MHD stable configurations, these mea-
sures could be used as a target of optimisation, which could be helped by the
exploitation of ideas from Plunk et al. (2024) and Rodríguez et al. (2024). Before
moving on, we note that this notion of MHD stability is only a minimal one,
but not necessarily sufficient to achieve true MHD stability. Behaviour such as
localised ballooning modes will react differently to the field geometry. In addition,
this stabilising reshaping necessarily causes other second-order behaviours to change,
and the ensuing trade-offs are an important venue of future work.

7. β-sensitivity of Shafranov shift

So far in this paper, we have made little explicit reference to plasma pressure.
As we change the plasma pressure, though, we expect the magnetic field to change,
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as the Lorentz forces should continuously balance pressure gradients. One of the
most notable consequences is the change in the Shafranov shift, the relative rigid
displacement of nested flux surfaces with respect to each other. To describe this
shift, we must define a reference point, a ‘centre’, for each cross-section at different
radii, and define the Shafranov shift to be the ψ -derivative of the position of that
mid-point. In the context of the near-axis description, the Shafranov shift can be
defined as (Rodríguez 2023, (3.5); Landreman 2021)

Δ =
(
Δx

Δy

)
=
(

X20 + X2c

Y20 + Y2c

)
, (7.1)

where the displacements are in the normal (x) or binormal (y) direction as defined
by the signed Frenet–Serret frame of the magnetic axis. This expression matches the
known definition in the tokamak limit, but one should bear in mind that there is no
unique way in which to define the ‘centre’ of a non-elliptical cross-section.

As the pressure gradient increases, so does the Shafranov shift, which results from
the plasma pushing against the magnetic field (the poloidal field and hence ι, in a
tokamak). Formally, as plasma pressure increases, so does B20 linearly, and with it,
the rigid displacement of surfaces X20, eventually leading to two consecutive flux
surfaces to touch (see figure 9). This breakdown limits the existence of the equilib-
rium and thus it is important to gauge how sensitive a field is to changes in pressure.
In the context of the near-axis expansion, the sensitivity of a field to changes in the
pressure is most naturally formulated keeping the shape of the magnetic axis fixed.
This is unlike the scenario of how an actual stellarator might be operated experi-
mentally, namely by fixing some given coil currents (and thus a vacuum field), and
letting plasma pressure grow. Modelling the latter, which generally will require the
magnetic axis shape to vary with β, would involve mathematically separating the
vacuum from the plasma field and performing a double expansion, and we do not
do that here.

7.1. Shafranov shift shape gradient, S
The variations problem is now one of δΔ, a change in the shift, with δp2, a change

in the pressure gradient. As a result of the change in the plasma pressure, from the
definition in (7.1),

δΔ =
(
δX20

δY20

)
︸ ︷︷ ︸
Rigid shift

+
(

0
δY2c

)
︸ ︷︷ ︸

Triangular shaping

, (7.2)

where we distinguish between the shift of the ‘cross-section’ due to a rigid displace-
ment and due to triangular shaping. Although both contribute to the Shafranov shift,
we shall here focus on the θ -average, rigid shift, most useful when thinking of the
problem in terms of shifted ellipses (see figure 9).

The variation required then simply involves the second-order equations in
Appendix D, explicitly in (D3). In this case, unlike for the magnetic well sensitivity,
we need the variation respect to δp2, a scalar,

L̂

(
δX20

δY20

)
= δ f
δp2

δp2, (7.3)
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the variation of L̂ vanishing exactly. Solving this linear system, we may define

S= L̂
−1 δ f
δp2

, (7.4)

which is a vector function of ϕ. This gradient holds for all second-order choices, as
the equation is linear on p2. That is, S is a property of the first-order field.

It is natural to introduce some normalisation for the gradient now. With [Δ] =
[L]−1 and [p2] = [p][L]−2, introducing the dimensionless plasma beta parameter
βp,2 =μ0 p2/(B̄2/2) for some reference magnetic field and the reference rref =
R/Aref, we define Ŝ= (B̄2/2μ0rref)S. We should therefore interpret this gradient
as a fractional displacement of the surface at a reference aspect ratio Aref due to a
change in plasma beta. We define the following.

(a) Maximum sensitivity of Shafranov shift, Ŝmax.
Maximum relative value of the Shafranov shift gradient with respect to changes
of plasma β at a reference aspect ratio Aref,

Ŝmax = max
ϕ

[
B̄2

2μ0rref
|S|
]
. (7.5)

It is illuminating to consider the familiar tokamak limit. Simplifying the system
(see details in Appendix D.3), and considering for simplicity an up-down symmetric
configuration,

Ŝmax = Aref

ι20

d̄4

d̄4 − 3
, (7.6)

where all quantities have their usual meaning. The sensitivity grows with aspect ratio,
as the same displacement becomes relatively larger compared with the minor radius.
The scaling with ∝ ι−2

0 responds to the physical picture of the poloidal field balancing
the pressure gradient. A stronger poloidal component means the more resilient the
field is to the push of the pressure. The role of elongation is more involved, although
it guarantees for vertically elongated configurations, d̄ < 1, Ŝx < 0. That is, there will
be a bunching of surfaces on the outboard side. It also shows the artificial divergence
discussed in the previous section.

So far, the gradient measure defined in (7.5), Ŝmax, provides a scalar measure of
sensitivity without distinguishing direction. The significance of any given shift does
however depend on the direction in which it occurs. It is not the same to rigidly shift
nested ellipses in the direction of the minor axis or the major axis. For directions
in which surfaces are closer to each other, the bunching of surfaces is easier and
so, potentially, is their intersection. We define an associated critical β as that value
for which, due to the rigid Shafranov shift, the underlying first-order ellipses just
touch at a radius of rref. This definition directly uses Ŝ, as described in detail in
Appendix G and illustrated in figure 9.

(b) Estimate of critical plasma β, βΔ.
Estimate of the critical plasma βp at which, due to the rigid part of the
Shafranov shift, the first-order near-axis elliptical flux surfaces of an equi-
librium just touch at r = rref. The value of the plasma beta is defined as
a dimensionless scalar βΔ, for which a full definition is provided in (G12).
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FIGURE 7. Shafranov shift sensitivity to plasma β. The plots show the shape gradient Ŝx and
Ŝy for configurations (a) 4.1 and (b) 4.3 in the benchmark set.

Large values of βΔ indicate the resilience of the Shafranov shift to changes in
plasma β.

The metric βΔ condenses the information of the gradient S into a single physically
meaningful measure. However, it does so under certain simplifying assumptions.
In particular, when it comes to describing when flux surfaces touch each other,
it ignores the triangular shaping of flux surfaces, approximating them as ellipses.
Thus, βΔ is only an estimate of the true critical plasma β, which we may compute
numerically.

(c) Numerical critical plasma β, βc.
Critical value of βp = r 2

refβp,2, for an assumed aspect ratio Aref, at which the
flux surfaces of the near-axis construction just touch. That is, for βp = βc, we
have Ac = Aref.

In other words, fixing βp = βc, the near-axis construction will not succeed for
aspect ratios below Aref. The value of βc may be found by a root search (and thus is
more numerically costly) and includes all elements of shaping up to (and including)
second order. We emphasise that this quantity, although defined in exact terms, may
still not be the most realistic β limit, because it is calculated taking the axis fixed,
allowing flux surfaces to move around it as the plasma beta is changed.

7.2. Implementation and examples
We assess the Shafranov shift sensitivity in the configurations of the benchmark.

Figure 7 shows the shape gradient of the Shafranov shift for two different examples
and table 4 summarises the scalar features of the configurations.

12

The sensitivity Smax shows that there exists a wide range of sensitivities to changes
in plasma β. The gradient as a function of ϕ delves deeper into these differences
showing the stark difference in the binormal shift of the surfaces (which the half-
helicity field 4.3 appears to avoid to a large extent). The gradients also vanish at
certain points in ϕ, corresponding to the directions that would break the up-down

12The gradient calculation can be shown by finite differencing to be correct to machine precision.
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Configs 4.1 4.2 4.3 4.4 (unopt) 4.4 (opt) # 50 # 76
Ŝmax 17.82 2.52 4.30 7.02 6.02 2.40 3.31
βΔ[%] 3.98 24.30 20.20 11.57 16.15 47.61 22.51
βc [%] 8.30 15.29 23.66 14.13 19.31 48.65 22.47

|ι0| 0.110 1.230 0.768 0.385 0.359 0.943 0.918

TABLE 4. Shafranov shift sensitivity to plasma pressure. The table shows the values of the
maximum sensitivity of the Shafranov shift, the estimate and numerical critical β as well
as the reference rotational transform on axis. The half-helicity fields appear to be the most
resilient in the benchmark set. The comparison of βc to βΔ shows that although βc includes

some key elements of the full phenomena, it can deviate significantly.

symmetry of the cross-sections at stellarator symmetric points. From this bench-
mark, the lowest number of field period configuration (config. 4.1) is the most
sensitive, which also has the lowest value of rotational transform. This is true of
βΔ as well, showing that half-helicity configurations (namely configs. 4.3, # 50 and
# 76) consistently exhibit larger beta limits.

The tools introduced here make it possible, in principle, to explore the generality
of such observations, but an in-depth analysis is left for future work.

8. Conclusions

Recent works have demonstrated that it is possible to find approximately
quasi-isodynamic stellarator equilibria to second order using near-axis theory, and
faithfully reproduce their properties in global equilibria at finite aspect ratio. Such
‘directly constructed’ stellarator equilibria can in principle be used as the basis for
further integrated optimisation to develop new stellarator designs.

However, to make the near-axis construction really practically useful, both for
developing fundamental understanding and as a tool for stellarator optimisation,
it is critical to develop techniques to navigate the space of second-order solutions.
The present work tackles this task by defining a set of measures designed to assess
the key properties for which a quasi-isodynamic stellarator strives, including low
neoclassical transport, quality of omnigeneity and robust stability. Other measures
already implemented (although not mentioned in the text) include the coil complexity
proxy L∇B (Landreman 2021; Kappel, Landreman & Malhotra 2024), the effective
Rosenbluth–Hinton residual (Rosenbluth & Hinton 1998; Rodriguez & Plunk 2025;
Zhu, Lin & Bhattacharjee 2025) and proxies to evaluate the maximum-J property
(Rodríguez et al. 2024). Virtually any other measure that depends on magnetic
geometry, for instance, MHD ballooning stability or micro-turbulence, can be readily
implemented as well in the future.

The procedure for obtaining fields to second order involves fixing a set of free
functions at zeroth, first and second order. Unsurprisingly, there is a certain inter-
action between these choices and the metrics have been formulated in a manner to
help assess these choices. We also propose constructive approaches to make these
choices, e.g. a way to obtain a minimally shaped, marginally stable (in the magnetic
well sense) field or to construct an optimally ‘omnigenised’ configuration given a
first-order construction.
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The toolset presented here, consisting of both absolute measures (e.g. εeff on edge)
and sensitivity measures (shape gradient of the magnetic well), now opens the way to
exploratory studies of the broad parameter space of QI stellarators, and systematic
investigation of ‘trade-offs’ – i.e. the compatibility of desired stellarators properties,
underlying reasons and strategies for effectively striking compromises.
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Appendix A. Benchmark configuration summary
Throughout the paper, we use a number of near-axis fields as a way of benchmark-

ing or illustrating the various measures introduced. In this section, we summarise of
what those configurations consist, indicating their main features and referring to the
right piece of literature where appropriate.

A.1. QI database
In § 3, we use a large set of QI configurations as a way to benchmark the δB

measure. This benchmark set had previously been used in work like Rodriguez &
Plunk (2025), and we now present some of its details. A full description of its
construction and the theoretical elements that go into it will be the focus of future
publication (Plunk et al. 2025). For a specific example, see Plunk et al. (2024).

The benchmark set consists of first-order QI configurations with a number of field
periods ranging from N = 1 to 6, constructed as a three-parameter family as follows.
The first parameter is related to the shape of the magnetic axis, which is described
by its curvature, κ , and torsion, τ . For technical reasons, these must be defined
differently for the case N = 1, as compared with N � 2. For the former, we define

κ = cos2

(
N�

2

)
sin
(

N�

2

)
(κ1 sin(N�)+ κ2 sin(2N�)) , (A1)

τ = τ0 + τ1 cos(N�)+ τ2 cos(2N�), (A2)

while in the latter case (N � 2), we set κ2 = 0 and τ2 = 0. This difference is because
four degrees of freedom are here used to close the curve smoothly for the case
N = 1, while only two degrees of freedom are required for N � 2. Thus, a single
parameter remains to define a one-parameter family of curves. The variable � is the
length along the curve. This describes a stellarator symmetric axis with zeroes of
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second order at the tops and third order at the bottom. This is consistent with a
curve of half-helicity (Camacho Mata & Plunk 2023; Rodriguez et al. 2025). The
total length of the axis is taken to be L = 2π .

The magnetic field on axis B0 is chosen to match the zeroes of κ ,

B0 = 1 + 0.25 cos(N�)+ 0.0625 cos(2N�), (A3)

and to have a mirror ratio of ∼24 %.
13

The breaking of omnigeneity necessary at
first order is done through a smooth buffer region as described by Rodriguez et al.
(2025, § B.2.3) of order k = 3.

The first-order construction is finalised by the choice of the elongation profile,

ρ = ρ0 + ρ1 cos(Nϕ), (A4)

which is directly related to the more common near-axis quantities of Landreman
& Sengupta (2019) and Rodriguez et al. (2025)] by ρ = ē + (1 + σ 2)/ē, where
ē = d̄2 B0/B̄ (which is intimately related to the true elongation of the flux surface)
(Plunk et al. 2024). These two parameters {ρ0, ρ1}, together with τ1, are our three
parameters that span the QI database set considered.

Considering different values of these parameters, the QI database is constructed
with a total of 1680 configurations distributed in {63, 502, 358, 244, 250, 263}
between number of field periods {1, 2, 3, 4, 5, 6}. Further details on the procedure
followed to construct such configurations will follow in a future paper.

A.2. Benchmark configurations from Rodriguez et al. (2025)
In the rest of the paper, we use a reduced set of benchmark configurations, mainly

based on those used and explored by Rodriguez et al. (2025, § 4) to test the cor-
rect near-axis construction to second order. Here, we briefly summarise the key
properties of each of those configurations,

(a) Configuration 4.1: minimally shaped second-order stellarator symmetric, vac-
uum configuration with N = 2, a smooth buffer region with k = 5, mirror ratio
15 % and first-order zeroes of curvature (zero helicity axis).

(b) Configuration 4.2: shaped second-order stellarator symmetric, finite beta and
current configuration with N = 3, a smooth buffer region with k = 5, mirror
ratio 25 % and first-order zeroes of curvature (zero helicity axis).

(c) Configuration 4.3: minimally shaped second-order stellarator symmetric, vac-
uum configuration with N = 3, a smooth buffer region with k = 5, mirror ratio
25 %, and third-order zero of curvature at the bottom and two at the top
(half-helicity axis).

(d) Configuration 4.4: minimally shaped second-order stellarator symmetric, vac-
uum configuration with N = 3, a smooth buffer region with k = 5, mirror ratio
25 %, and third-order zero of curvature at the bottom and first-order zeroes of
curvature (zero helicity axis). The first-order choices were then optimised to
minimise the second-order QI error in the central 20 % of the toroidal domain.
In this paper, we include both the unoptimised and optimised versions.

Figure 8 shows three-dimensional renditions of these configurations for reference.

13Here, mirror ratio is defined as Δmirr = (B0,max − B0,min)/(B0,max + B0,min), which is the most used form.
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FIGURE 8. Three-dimensional rendition of configurations in the benchmark set constructed for
r = 0.1 and with the colourmap denoting the strength of the magnetic field |B|.

A.3. Additional half-helicity configurations
In addition to the abovementioned findings, we also include two additional half-

helicity fields constructed much in the same way as Config. 4.4, but corresponding
to other constructions in the same parameter family.

(a) Config. # 50: κ1 = −7.451287, τ0 = 1.379097, τ1 = −0.444444, ρ0 = 4.5, ρ1 =
−0.9.

(b) Config. # 76: κ1 = −8.938611, τ0 = 1.284143, τ1 = −0.177778, ρ0 = 4.5, ρ1 =
−0.9.

The case of # 76 is particularly interesting, as it has a rather omnigeneous intrinsic
second-order behaviour. See figure 8 for the configurations.

Appendix B. Details on the near-axis form of εeff

In this appendix, we present the details of the asymptotic treatment of the effec-
tive ripple of a magnetic field with poloidal contours of |B| within the near-axis
framework. The expression we must evaluate asymptotically is the following:

ε
3/2
eff = π

8
√

2

(R̄ B̄)2

G2

∫ 1/Bmin

1/Bmax

λÊ(λ) dλ, (4.6)

where

Ê(λ)= 1
π

∫ 2π

0

Ĥ(λ, α)2

Î (λ, α)
dα, (4.7)

Ĥ(λ, α)= 1

B̄

∫ ϕ+

ϕ−

H(λ, B)
B2

B × ∇ B ·∇ ψ dϕ, (B1a)

Î (λ, α)=
∫ ϕ+

ϕ−

√
1 − λB

(B/B̄)2
dϕ, (B1b)
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G2 = 2
(

1
2π

∫ 2π

0
dα
∫ 2π/N

0
dϕ

|∇ψ |
B2

)2
/(

1
2π

∫ 2π

0
dα
∫ 2π/N

0

dϕ
B2

)
, (B1c)

H(λ, B)=
√

1 − λB

(B/B̄)2

(
4
λB

− 1
)
, (4.3)

where we have explicitly applied the considerations in § 4.1 to write the expressions
in the most near-axis friendly form.

B.1. Expansion of Ĥ

For the expansion of Ĥ , let us write using Boozer coordinates

B × ∇ B ·∇ ψ = B2

G + ιI
(I∂ϕ − G∂θ)B, (B2)

which may be directly expanded,

B × ∇ B ·∇ ψ

B2
≈ r B0d cos(α − αbuf)+ (B3)

+ r 2

(
BQI

2s cos 2α − BQI
2c sin 2α+ I2 B ′

0

G0

)
+ O(r 3), (B4)

where the order O(r 3) term will include third-order elements of the magnetic field
magnitude and thus we shall not include them.

With this expansion of the radial drift and noting that H vanishes at bounce points,
the perturbation of Ĥ is a combination of the asymptotic form of the drift and that
of the integrand H. At first order, we easily obtain Ĥ ≈ rh(1) sin α,

h(1) =
∫ ϕ+

ϕ−

B0

B̄
H(λ, B0)d sin αbuf dϕ, (4.9b)

where the odd part of the radial drift does not contribute, as its contributions from
each side of the well precisely cancel out.

At second order, we must consider both the contributions from the modification
in the drift, but also the measure H. To avoid the explicit appearance of the singular
integrand 1/

√
1 − λB0, we integrate the resulting expression by parts (the boundary

term being guaranteed to vanish for a field without puddles, Rodríguez & Plunk
2023), and thus, after enforcing parity in ϕ and collecting terms Ĥ from both the
perturbed Ĥ ≈ rh(1) sin α+ r 2h(2) sin 2α,

h(2) = −2
∫ ϕ+

ϕ−
H(λ, B0)

ΔBQI
2c

B̄
dϕ, (4.12a)

ΔBQI
2c = BQI

2c − 1
4
∂ϕ

(
B2

0 d2

B ′
0

cos 2αbuf

)
. (4.12b)
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B.2. Expansion of Î

We may now proceed in a similar fashion with the asymptotic evaluation of Î . It
is useful to note that Î is almost the expression for the second adiabatic invariant
J‖ for trapped particles labelled by λ. Fortunately, the asymptotic treatment of such
expressions (especially at higher order), with the careful handling of the boundary
contributions, has already been done elsewhere and thus we simply need to get the
appropriate expressions from Rodríguez et al. (2024).

The leading order asymptotic form is simple, Î ≈ I (0),

I (0) =
∫ ϕ+

ϕ−

√
1 − λB0

(B0/B̄)2
dϕ. (4.9b)

For the next orders, we can directly draw from (A14) of Rodríguez et al. (2024),
and thus write separating Î ≈ I (0) + r I (1) cos α + r 2( Ī (2) + Ĩ (2) cos 2α),

I (1) = −2
∫ ϕ+

ϕ−
F �(λ, B0)d sin αbuf dϕ, (B6)

and

Ī (2) = −2
∫ ϕ+

ϕ−

F �(λ, B0)

B0

[
B20 − 1

4
∂ϕ

(
B2

0 d2

B ′
0

)]
dϕ, (B7a)

Ĩ (2) = 2
∫ ϕ+

ϕ−

F �(λ, B0)

B0

[
BQI

2c − 1
4
∂ϕ

(
B2

0 d2

B ′
0

cos 2αbuf

)]
dϕ, (B7b)

where

F �(λ, B0)= 1√
1 − λB0

1 − 3λB0/4

(B0/B̄)2
. (B8)

Note that all the α dependence of Î vanishes in the QI limit, as it must do given
the similarity of Î with J‖; the second adiabatic invariant is a flux function in an
omnigeneous field (Bernardin et al. 1986). The first-order correction is purely driven
by the buffer region, while the second comes from the second-order QI mismatch. In
that omnigeneous limit, Ī (2) is the only higher order correction left to second order,
and it represents the change in the field line length (B20), but also in the velocity of
the trapped particle along the bounce trajectory.

B.3. Constructing E
Let us then consider now using the asymptotic definitions Ĥ ≈ rh(1) sin α +

r 2h(2) sin 2α and Î ≈ I (0) + r I (1) cos α + r 2( Ī (2) + Ĩ (2) cos 2α),

1
2π

∫ 2π

0

Ĥ 2

Î
dα ≈ r 2

2

[
(h(1))2

I (0)
+ r 2

(
(h(2))2

I (0)
−h(2)h(1)

I (0)
I (1)

I (0)︸ ︷︷ ︸
1

(B9)

+ (h(1))2

I (0)

[(
I (1)

2I (0)

)2

− Ī (2) − Ĩ (2)/2
I (0)

]
︸ ︷︷ ︸

2

)]
. (B10)
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A careful consideration of this expansion will show that we have a priori unfairly
omitted a contribution that is also of order r 4, and that comes from beating of h(1)

with what would be h(3), and in particular its sin α harmonic. That term involves
higher order magnetic field components, notably Bc

31, and thus goes beyond the
second-order considerations here. Setting this third component aside, the term will
also have components inherited from lower orders, which can be evaluated explicitly
to assess their magnitude. In practice, these contributions appear to be small. All in
all, we shall ignore such a contribution.

In fact, in practice, at order O(r 4), the main contribution comes from h(2); namely,
the breaking of omnigeneity at second order. Thus, in practice, and as explicitly
presented in the text, we will focus on this term.

B.4. Expansion of geometric factor G
Let us write the geometric factor G2 = 2D2/L and consider the asymptotic expan-

sion of the integrals. Following Jorge & Landreman (2020, (33)) and carrying it out
to higher order, we write

D = 1
2π

∫
dα
∫

dϕ
B2

|∇ψ |

≈ r

D1︷ ︸︸ ︷
1

2π

∫
dα
∫

dϕ
B0

T1 +r 2

D2︷ ︸︸ ︷
1

2π

∫
dα
∫

dϕ
B0

T1

(
T2

T1
− 2

B1

B0

)
+

+ r 3 1
2π

∫
dα
∫

dϕ
B2

0

T1

(
T3

T1
− 2

B1T2

B0T1
+ 3

(
B1

B0

)2

− 2
B2

B0

)
︸ ︷︷ ︸

D3

, (B11)

where |∇ψ |/B0 ≈ rT1 + r 2T2 + . . ., and we may explicitly write

T1 =
√
(∂χ X1)2 + (∂χY1)2, (B12a)

T2 = 1
T1

[
T 2

1

B1

B0
+ ∂χ X1∂χ X2 + ∂χY1∂χY2

]
, (B12b)

and we omit the explicit form of T3 for brevity. Note that D2 ≈ 0 as we have odd
α-harmonics that average to zero (even if there is a complicated α-dependence in
T1). To evaluate the α-average of the other quantities, we must explicitly write their
poloidal angle dependence. For instance, T1 in the text (4.10), (Jorge & Landreman
2020, (33)),

|∇ψ |2 ≈ r 2 B2
0

[
(X1c sin χ − X1s cos χ)2 + (Y1c sin χ − Y1s cos χ)2

]
. (B13)

Because we have |∇ψ | instead of |∇ψ |2, the integral over χ must be performed
numerically (or related to elliptic integrals, Gradshteyn & Ryzhik 2014, (3.670.1)).

The expansion of L is simpler and only the expansion in B is necessary.
Considering the average over α to eliminate the bare harmonics of χ , we write

L = 1
2π

∫
dα
∫

dϕ
B2

≈
∫

dϕ
B2

0︸ ︷︷ ︸
L0

+r 2 1
2π

∫
dα
∫

dϕ
B2

0

[
3
(

B1

B0

)2

− 2
B2

B0

]
︸ ︷︷ ︸

L2

. (B14)
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Configs 4.1 4.2 4.3 4.4 (unopt) 4.4 (opt) # 50 # 76
1 9.99× 10 -06 2.37×10-04 −2.99×10-04 4.80×10-05 2.35×10-05 −8.30×10-05 2.31×10-04

2 −1.72×10-06−2.69×10-05−5.76×10-05−1.66×10-05−1.83×10-05−7.11×10-06−9.91×10-05

3 6.26×10-08 −1.85×10-06 3.25×10-06 −3.31×10-07−1.04×10-06 1.98×10-07 6.68×10-06

TABLE 5. Relative magnitude of additional asymptotic terms in ε3/2,(2)
eff . The table shows the

relative contribution to ε3/2,(2)
eff of the asymptotic terms 1 , 2 and 3 . The smallness of these

contributions throughout the benchmark configurations supports, along with the role of QI
breaking, the expression for the effective ripple measure used.

With both of these,

1
G2

≈ L0

G0 D2
1

[
1 + r 2

(
L2

L0
− G2

G0
− 2

D3

D1

)
︸ ︷︷ ︸

3

]
. (B15)

In practice, it is the leading order piece that matters and which we defined as G(0) in
the main text.

B.5. Assessment of approximation
With the approximations and expansions considered previously, we may then con-

struct the leading order forms of ε3/2
eff as presented in § 4. We had argued that some

of the terms involved in the asymptotic expression of the effective ripple are, in prac-
tice, subsidiary, even though not in the O(r) sense. We now provide some numerical
evidence in such regard using the benchmark configurations in the paper as a test-
bed. In table 5, we summarise the relative magnitude of different contributions in
an attempt to argue the correctness of the approximation to εeff. We show by 1 , 2
and 3 the relative contribution by the terms denoted by these symbols in the above-
mentioned asymptotic expansions to ε3/2,(2)

eff . The smallness of these terms gives us
an argument to focus on the contribution of the second-order QI breaking and use
it as a part of our effective ripple measure. The benchmark in figure 2 also seconds
this.

Appendix C. Details of the ripple well measure Aw calculation
In this appendix, we develop the formalism necessary to efficiently evaluate the

ripple well measure Aw presented in the main text, § 5; namely,

Aw = R/min
{
r | ∃ θ, ϕ : ∂ϕ|αB(r, θ, ϕ)= 0, ∂2

ϕ|αB(r, θ, ϕ)= 0
}
. (5.1)

The multi-valued form of Aw for each fixed ϕ was defined as Âw, with Aw = maxϕ Âw.

C.1. First-order construction: too simple
Let us consider first, as a way of introduction, Aw for the simplest case of a first-

order field: B(θ, ϕ)= B0(ϕ)+ r B1(θ, ϕ), where B1(θ, ϕ) is given in (4.4a). The two
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conditions in (5.1) to solve simultaneously are

B ′
0 + r(S′ cos α − C ′ sin α)= 0, (C1a)

B ′′
0 + r(S′′ cos α− C ′′ sin α)= 0, (C1b)

where S = B0d sin αbuf, C = B0d cos αbuf and primes denote derivatives in ϕ.
Combining these equations and assuming r �= 0, one may solve for tan α and
substitute it back to retain a real, positive root for r ,

R/ Â(1)
w =

∣∣∣∣ B ′
0

S′ − C ′ tan α

√
1 + tan2 α

∣∣∣∣ , (C2)

where α is given by

tan α = (S′/B ′
0)

′

(C ′/B ′
0)

′ , (C3)

defined in the appropriate quadrant so that 1/ Â(1)
w solves the original set of equa-

tions. Note that in obtaining an expression for tan α, we have assumed that the
equation is not trivially satisfied by r = 0. This would have worked for B ′

0 = 0 = B ′′
0 ,

which now instead sees r̂w → ∞.
14

This should make it clear that the appearance of
secondary wells is not the same as the breakdown of |B| contour topology.

In practice, the appearance of secondary wells due to the first-order variation of
the field is too simplistic. It is far from capturing the evolution of a second-order
near-axis field construction. We must therefore turn to the more complex higher
order consideration.

C.2. Higher order form
The procedure at higher orders resembles the procedure followed in the construc-

tion of the critical radius rc by Landreman (2021). The latter corresponds to the
smallest distance from the axis at which flux surfaces become ill-behaved; namely,
the first instance of a vanishing coordinate Jacobian J= ∂ψx × ∂θ x · ∂ϕx = 0. That
problem requires the solution of a set of equations formally analogous to those for
Aw, see Landreman (2021, § 4). We exploit that analogy and adapt that work to our
problem.

Using the helical angle χ = θ − Nϕ, where N is the helicity of the magnetic
axis (Rodríguez et al. 2022b; Camacho Mata & Plunk 2023; Rodriguez et al.
2025), and writing B1(χ, ϕ)= B1c(ϕ) cos χ + B1s(ϕ) sin χ and B2(χ, ϕ)= B20(ϕ)+
B2c(ϕ) cos 2χ + B2s(ϕ) sin 2χ , the first condition that Âw must satisfy is ∂ϕB|α = 0,
which explicitly reads

g0 + r (g1c cos χ + g1s sin χ)+ r 2 (g20 + g2c cos 2χ + g2s sin 2χ)= 0, (C4)

where

g0 = B ′
0, (C5a)

g1c = B ′
1c + ῑB1s, g1s = B ′

1s − ῑB1c, (C5b)
g20 = B ′

20, g2c = B ′
2c + 2ῑB2s, g2s = B ′

2s − 2ῑB2c. (C5c)

14To show this, it is sufficient to consider the no-buffer limit of (C2), which at the bottom of the well requires
B ′′

0 d ′ = 0 and r sin α = B ′
0/C ′, so that rw = B ′

0/C ′ = 1/d + B ′
0/B0d ′. Regardless of how one chooses the orders of

B0 and d, this expression diverges as the bottom of the well is approached.
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The second condition, namely ∂2
ϕB|α = 0, can also be found explicitly and written in

a form analogous to (C4). We shall not give it explicitly for brevity. Given these two
equations, we approach their solution by isolating r for every ϕ and eliminating it
from the equations, reducing the system to a single equation on harmonics of χ . We
shall call this the K-equation. Following this procedure, we may write

r = f1c cos χ + f1s sin χ
f20 + f2c cos 2χ + f2s sin 2χ

, (C6)

where

f1c = B ′
0(B

′′
1c + 2ῑ0 B ′

1s − ῑ20 B1c)− B ′′
0 (B

′
1c + ῑ0 B1s), (C7a)

f1s = B ′
0(B

′′
1s − 2ῑ0 B ′

1c − ῑ20 B1s)+ B ′′
0 (−B ′

1s + ῑ0 B1c), (C7b)
f20 = B ′′

0 B ′
20 − B ′

0 B ′′
20, (C7c)

f2c = −B ′
0(B

′′
2c + 4ῑ0 B ′

2s − 4ῑ20 B2c)+ B ′′
0 (B

′
2c + 2ῑ0 B2s), (C7d)

f2s = B ′
0(−B ′′

2s + 4ῑ0 B ′
2c + 4ῑ20 B2s)+ B ′′

0 (B
′
2s − 2ῑ0 B2c). (C7e)

Eliminating r from (C4), we are left with the following K-equation in the coordinates
χ and ϕ,

K0 + K2c cos 2χ + K2s sin 2χ + K4s sin 4χ + K4s sin 4χ = 0, (C8)

where

K0 = 1
4

[
2g0( f 2

2c + 2 f 2
20 + f 2

2s)+ f1c( f2cg1c + f2s g1s)+ f1s( f2s g1c − f2cg1s)

+ 2 f20( f1cg1c + f1s g1s)+ 2( f 2
1c + f 2

1s)g20

+ +( f 2
1c − f 2

1s)g2c + 2 f1c f1s g2s

]
, (C9a)

K2c = 1
2

[
f1c f2cg1c + f20(4 f2cg0 + f1cg1c − f1s g1s)+ f 2

1c(g20 + g2c)

+ f1s( f2cg1s − f1s g20 + f1s g2c)] , (C9b)

K2s = 1
2

[ f1c f2s g1c + f1s f2s g1s + f20(4 f2s g0 + f1s g1c + f1cg1s)

+ 2 f1c f1s g20 + ( f 2
1c + f 2

1s)g2s

]
, (C9c)

K4c = 1
4

[
2( f 2

2c − f 2
2s)g0 − f2s( f1s g1c + f1cg1s)+ f2c( f1cg1c − f1s g1s)

+ ( f 2
1c − f 2

1s)g2c − 2 f1c f1s g2s

]
, (C9d)

K4s = 1
4

[ f2c(4 f2s g0 + f1s g1c + f1cg1s)+ f1c( f2s g1c + 2 f1s g2c)

+ ( f 2
1c − f 2

1s)g2s − f1s f2s g1s

]
. (C9e)

With the equation cast this way, we may then proceed the way that is detailed by
Landreman (2021, § 4.2). That is, we solve the K -equation for sin 2χ which is a
quartic, being careful about the sign of the trigonometric functions. As a result, we
have up to four real roots for each value of ϕ considered in the toroidal domain.
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Each one of these roots corresponds to a value of r using (C6), and thus represents
a triplet (r, χ, ϕ). Finding α = χ − ῑϕ, we may then represent the values of r for
this multitude of roots as a function of α, namely Âw. This is what we represent in
figure 5 in § 5. The largest of all these roots is Aw.

Appendix D. Linear system of equations at second order
The construction of the near-axis field at second order has been detailed else-

where, most notably by Landreman & Sengupta (2019), and in the QI scenario by
Rodriguez et al. (2025), where a thorough and pedagogical description is provided.
Here, we shall not reproduce the derivation of the construction nor the way in which
this is solved. However, we shall for completeness write some of the key equations
involved in the near-axis construction to second order. In particular, the equations
that the different pieces of the second-order shaping satisfy, focusing on the operator
notation that we use in this paper.

D.1. Expressions for Y2

The harmonics of Y2 are defined through (A32)–(A33) of Landreman & Sengupta
(2019) as (

Y2c

Y2s

)
=
(Y0

2cY0
2s

)
︸ ︷︷ ︸

Y0

+
(YX20

2c YY20
2c

YX20
2s YY20

2s

)
︸ ︷︷ ︸

Ȳ

(
X20

Y20

)
+
(YX2c

2c YX2s
2c

YX2c
2s YX2s

2s

)
︸ ︷︷ ︸

Ŷ

(
X2c

X2s

)
, (D1)

where the components of each matrix are

Y0
2c = κ B̄

B0

X1c X1s

X 2
1c + X 2

1s

, (D2a)

YX20
2c = X1sY1s − X1cY1c

X 2
1c + X 2

1s

, (D2b)

YY20
2c = −1 + 2

X 2
1c

X 2
1c + X 2

1s

, (D2c)

YX2c
2c = X1cY1c + X1sY1s

X 2
1c + X 2

1s

=YX2s
2s , (D2d)

Y0
2s = κ B̄

2B0

X 2
1s − X 2

1c

X 2
1c + X 2

1s

, (D2e)

YX20
2s = − X1sY1c + X1cY1s

X 2
1c + X 2

1s

, (D2f )

YY20
2s = 2

X1c X1s

X 2
1c + X 2

1s

, (D2g)

YX2s
2c = X1cY1s − X1sY1c

X 2
1c + X 2

1s

= −YX2c
2s . (D2h)

This is a purely algebraic equation, which involves no derivatives.
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D.2. Equation for X20 and Y20

To complete the construction at second order, using X2c and X2s as inputs to
the problem, we need to solve for X20 and Y20. The equations to solve are (A41)–
(A42) of Landreman & Sengupta (2019), which constitute two coupled first-order
ordinary differential equations in ϕ to be solved simultaneously. Explicitly solving
such a system requires rewriting all second-order quantities explicitly in terms of
X20, Y20, X2c, X2s and their derivatives, which involves (D1).

Instead of writing all the components of these operators out explicitly, we show
how one should systematically proceed to find these through one particular example.
The fully fleshed components may be found in the numerical implementation of the
near-axis construction presented in the repository published alongside this work. In
its operator form, the full expression is

L̂

(
X20

Y20

)
= −F̂

(
X2c

X2s

)
+ f , (D3)

and now we focus on constructing explicitly, say, L00. That is, the piece of the
operator acting on X20 in (A41) of Landreman & Sengupta (2019), not just explicitly,
but also through other second-order functions. Here, both L̂ and F̂ represent linear
differential operators of first order that act on a vector of dimension 2, as shown.
The vector f represents a combination of first-order terms.

Let us be more explicit and consider the contributions one by one. First, the
explicit X ′

20 components,

AX ′
20

= −X1s
d

dϕ
, (D4a)

and explicit in X20,

AX20 = −Y1s

(
τ�′ − 2

I2

B̄
�′
)

− 4Y1c
G0

B̄
Z2c − 4Y1s

G0

B̄
Z2s . (D4b)

We must then also consider the pieces that depend on Y2c and Y2s , which we know
are also related to X20 by (D1). So we write again,

AY2c = 4X1s
G0

B̄
Z2s − X1c

(
4

G0

B̄
Z20 − 2β0�

′
)

+ X1s

(
τ�′ − 2�′ I2

B̄

)
− 2Y1c ῑ0,

(D4c)

AY2s = −4X1s
G0

B̄
Z2c − X1c

(
τ�′ − 2�′ I2

B̄

)
− X1s

(
4

G0

B̄
Z20 − 2β0�

′
)

− 2Y1s ῑ0,

(D4d)

and finally, the terms that depend on the derivatives of these,

AY ′
2c

= −Y1s
d

dϕ
, (D4e)

AY ′
2s

= Y1c
d

dϕ
. (D4f )
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With these expressions, we may then write L̂00 explicitly,

L̂00 = AX20 +YX20
2c AY2c +YX20

2s AY2s − Y1s(YX20
2c )

′ + Y1c(YX20
2s )

′

− (X1s + Y1sYX20
2c − Y1cYX20

2s )
d

dϕ
. (D5)

Following a similar procedure with the other components (which we spare the reader
from), the remainder terms of L̂ may be found, as well as those of F̂ and f .

D.3. Tokamak limit simplification
Even though the topology of |B| contours over flux surfaces is different in toka-

maks compared with QI configurations, the equilibrium construction remains largely
the same. For the tokamak limit expressions evaluated in the main text, it is then
appropriate to consider the abovementioned tokamak limit of the operators. The
toroidal coordinate ϕ being one of symmetry simplifies the evaluation of the expres-
sions significantly, especially because the toroidal derivatives may be taken to vanish
exactly.

In the near-axis tokamak notation, we also have X1c = d̄ and X1s = 0, with Y1s =
1/d̄, and define the major radius R0 = G0/B0. Taking this into consideration and
going through the equations, the following is true in the tokamak limit. The operator
L̂ becomes

L̂tok = −ῑ0 B0

d̄

⎛
⎝d̄2 − 3

d̄2
(1 + σ 2)4σ

0 2

⎞
⎠ , (D6)

which becomes diagonal in the case of an up-down symmetric tokamak (i.e. σ = 0).
Note here the possibility of a singular matrix if, in the up-down symmetric scenario,
d̄4 = 3. This singularity was discussed in the main text and is directly related to how
the equilibrium problem is being solved. This is however seldom a problem given
the typical values of elongation considered.

For F̂,

F̂tok = −ῑ0 3B0

d̄3

(
d̄4 − 1 + σ 2 2σ

2σ −(d̄4 − 1 + σ 2)

)
, (D7)

which is a symmetric matrix. Finally,

f tok = B0 ῑ0

d̄ R0

⎛
⎜⎜⎜⎝

1
2
[1 + 2(d̄4 + σ 2)] −

(
d̄

ῑ0

)2
μ0 p2

B2
0/2

5
2
σ

⎞
⎟⎟⎟⎠ . (D8)

The matrix operators can be easily inverted and thus used for the shape gradient
calculations in the paper.

D.4. Triangularity
It is often illuminating to use more geometrical definitions of the shaping other

than those directly involved in the near-axis construction. At second order, we may
define an approximation to triangularity following Rodríguez (2023),

δ = 2
(

Y2s

Y1s
− X2c

X1c

)
, (D9)
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which through (D1) depends on all X20, X2s, X2c and Y20. For the purpose of this
paper, we are interested in the variations of this expression with respect to the
second-order shape choices. That is,

δδ = − 2
Y1s

⎡
⎣(YX20

2s

YY20
2s

)T

L̂
−1
F̂−

(
YX2c

2s

YX2s
2s

)T
⎤
⎦(δX2c

δX2s

)
− 2

X1c
δX2c, (D10)

which is rather complicated. In the tokamak limit, using the expressions in (D6) and
(D7), the expression simplifies significantly to give

δδtok = 2

d̄

d̄4 + 3

d̄4 − 3
δX2c, (D11)

as used in the main text. Note the appearance of the diverging denominator here,
which signals the huge variation in the geometric triangularity due to a change in the
input function X2c when close to the resonance, emphasising the perilous balance
there.

Appendix E. General sensitivity theory
In this appendix, we consider the evaluation of the shape gradient of some func-

tional S with respect to the shaping degrees of freedom at second order. Let such a
functional be of the form,

S[B20, B2c, B2s] =
∫ 2π

0
f (B20, B2c, B2s, ϕ) dϕ, (E1)

a functional that depends directly on the second-order magnetic field functions. As
we change the second-order shaping, we are interested in how S changes, call it
δS. Assuming f to be differentiable with respect to the three components of the
second-order magnetic field magnitude,

δS =
∫ 2π

0

(
∂ f

∂B20
δB20 + ∂ f

∂B2c
δB2c + ∂ f

∂B2s
δB2s

)
dϕ, (E2)

and the partial derivatives are meant to be taken keeping the other second-order
magnetic field components fixed.

15
To proceed further, we must relate the variation

of these magnetic field components to the shaping. To that end, we draw from the
presentation of the second-order construction in § 2.4 of Rodriguez et al. (2025) and
the explicit equations in Appendix A of Landreman & Sengupta (2019).

The shaping freedom is on the functions X2s and X2c, which represent in some
form the triangularity that we may exploit to modify S. More precisely, they describe
the m = 2 variation of the distance of the flux surfaces from the magnetic axis along
the normal of the latter. As the flux surface is deformed, the magnetic field mag-
nitude must change accordingly, and thus B2c and B2s are quite directly modified.
From (2.7) of Rodriguez et al. (2025) or (A35)–(A36) in Landreman & Sengupta
(2019),

δB2c = κB0 δX2c, (E3)
δB2s = κB0 δX2s . (E4)

15It truly is a variation in the functional theory sense.
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A larger curvature of the magnetic axis results in a stronger supported perpendicular
gradient of the magnetic field, and thus the easier the magnitude of the magnetic
field can be shaped.

The variation of B20 ((A34) of Landreman & Sengupta (2019)) depends directly on
X20, which must be self-consistently solved alongside Y20 in (D3). The dependence on
X2c and X2s (and their derivatives) do therefore involve the inversion of differential
operators, so in the notation of Appendix D.2,

δB20 = −κB0

(
10
)
L̂

−1
F̂

(
δX2c

δX2s

)
. (E5)

Once again, we encounter the proportionality to κ , which denotes the partial inability
of the shaping to modify the field, especially near inflexion points. However, this
does not mean that the shaping at these points has no influence on S. Effects lose
locality through the inversion of L̂.

With this, we write

δS =
∫ 2π

0
κB0

[
−
(
∂ f

∂B20
0
)
L̂

−1
F̂+

(
∂ f

∂B2c

∂ f

∂B2s

)]
︸ ︷︷ ︸

=GT

δX2 dϕ, (E6)

where G can be thought of as the shape gradient G= (G2c, G2s) and δX2 =
(δX2c, δX2s). The function G can then be interpreted as the so-called shape gradi-
ent of S with respect to the shaping X2. That is, it measures the amount by which
an infinitesimal local variation of second-order shaping would change the non-local
value of S.

A priori, and with all the quantities in G being known (they belong to the first-
order NAE), we could directly calculate it. However, it is in practice convenient to
avoid having to invert L̂ explicitly.

16
Instead, we may formulate the calculation of G

through an adjoint problem. For simplicity, let us discretise the equation, as we will
do anyway in practice. Defining a grid {ϕ0, ϕ1, . . . , ϕN−1} and discretising integrals
with the appropriate numerical scheme weight

∫
f dϕ ≈∑

wi f (ϕi), we write

δS =
2(N−1)∑

i=0

wiGiδX2,i , (E7)

where

Gi = − 1
wi

(
F

T
)

i j
y j + κB0

⎛
⎜⎜⎝
∂ f

∂B2c

∂ f

∂B2s

⎞
⎟⎟⎠ , (E8)

and y is the solution to the following adjoint problem:

L
T y =

⎛
⎝κB0w

∂ f

∂B20

0

⎞
⎠ . (E9)

16Avoiding explicit inversion of the matrix in solving a linear system tends to be numerically faster and more
stable (Cormen et al. 2022, Chap. 28).
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Thus, to compute the shape gradient G, the key is to perform an adjoint solve to find
y. The system to solve is nevertheless almost the same as for the direct second-order
solve problem, (D3), as it involves L, and thus it involves a complexity analogous
to a second-order solve itself. This construction presented in generality may be used
for a variety of different measures.

The answer will depend on how we discretise the integral and thus on the weights
w. This is the price to pay for not having to integrate by parts. In its most basic
form, using the standard trapezoidal scheme, the weight (Süli & Mayers 2003,
p. 202)

wi =

⎧⎪⎪⎨
⎪⎪⎩

1
2
(P + ϕ1 − ϕN−1) , (i = 0)

1
2
(ϕi+1 − ϕi−1) , (0< i < N )

(E10)

where P is the period of the domain (2π if the whole toroidal angle extent is
considered).

E.1. Tokamak limit
Let us consider the simplifying limit of a tokamak, where the toroidal derivatives

vanish, and thus the procedure is rather simple (in fact, without the need to use a
particular collocation grid). In this limit, using the expressions in Appendix D.3, we
may write for the magnetic well,

GW = −κB0
∂ f

∂B20
(L−1

F)T

(
1
0

)
= −3κB0

∂ f

∂B20

⎛
⎜⎜⎜⎝

d̄4 − 1 − 3σ 2

d̄4 − 3(1 + σ 2)

− 2σ(σ 2 + d̄4)

3(1 + σ 2)− d̄4

⎞
⎟⎟⎟⎠ . (E11)

Using the derivative of f for W explicitly, (6.5), and taking the up-down symmetric
limit for simplicity (σ = 0), we are left with

GW = 3r 2
ref

πR

d̄4 − 1

d̄4 − 3

(
1
0

)
. (E12)

This is the expression presented in the main text, (6.6).

Appendix F. Variational re-shaping problem
In this appendix, we show how the variational problem of § 6 leads to a very

particular form for the shaping inputs at second order in the near-axis construction
that allows us to reliably construct stable approximately QI fields. Let us rewrite
here the equation in the main text,

T [X2c, X2s] = 1
2π

∫ 2π

0

(
X 2

20 + Y 2
20 + X 2

2c + X 2
2s + Y 2

2c + Y 2
2s

2

)
dϕ−

− λ

2π

[∫ 2π

0

(GW
2c X2c + GW

2s X2s

)
dϕ + Wref

]
, (6.8)

of which we need to take variations. We shall construct the variational considerations
of the discretised form of the problem. We could do it in the continuous case, but
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that would involve integrating by parts, and ultimately, in practice, a discrete version
is really needed.

Let us then focus on writing T in the discrete form, thereon, a vector v =
(a(ϕ), b(ϕ)) is defined as an element of R2N , with (a0, a1, . . . , aN−1, b0, . . . , bN−1),
where the subscripts correspond to the function evaluated at ϕi , the discretised ϕ-
grid. Writing the weight of the discretised integral as W = diag(w,w), where for
the trapezoidal rule, w is defined in (E10), and defining a convenient scalar product
〈a, b〉W = aT Wb, we may then write (6.8) as

2πT [X2c, X2s] = 1
2

〈(
X2c

X2s

)
,

(
X2c

X2s

)〉
W

+
〈(

X20

Y20

)
,

(
X20

Y20

)〉
W

+ 1
2

〈(
Y2c

Y2s

)
,

(
Y2c

Y2s

)〉
W

− λ

[〈(GW
2c

GW
2s

)
,

(
X2c

X2s

)〉
W

+ Wref

]
. (F1)

We must now take variations of these expressions with respect to the second-order
input functions X2c and X2s . For the first term, this is trivial, but for the next two,
we must take the variation through the equations that define first X20 and Y20, and
then Y2c and Y2s . For the former, we need (D3) and for the latter, both that and
(D1). We may summarise these variations as(

δX20

δY20

)
= − L̂

−1
F︸ ︷︷ ︸

X

(
δX2c

δX2s

)
,

(
δY2c

δY2s

)
=
(
Ŷ − ȲL̂

−1
F

)
︸ ︷︷ ︸

Y

(
δX2c

δX2s

)
, (F2)

with all matrices defined in Appendix D.
Expressing all the remaining terms explicitly in terms of the second-order input

functions, the variation δT can be written as

2πδT =
〈
M
(

X2c

X2s

)
− � − λ G,

(
δX2c

δX2s

)〉
W
, (F3)

where

G =
(GW

2c

GW
2s

)
, (F4a)

M =1 + 2W−1XT WX + W−1YT WY, (F4b)

� = [
2W−1XT W − W−1YT WȲ

]
L

−1 f − W−1YT WY0, (F4c)

and it should be clear that M is a matrix of dimensions 2N × 2N , while � is a 2N
vector.

We are then in a position to require the variation (F3) to vanish for all variations,
implying

M
(

X2c

X2s

)
= � + λG. (F5)

Using this in the constraint equation leads to an expression for the Lagrange
multiplier λ,

λ= −Wref +
〈
G,M−1�

〉
W〈

G,M−1G
〉
W

. (F6)
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With that, the required precise form of the second-order shaping is(
Xmhd

2c

Xmhd
2s

)
= M−1 (� + λG) . (F7)

This is the answer we sought.
To gauge the computational complexity involved to reach the necessary shaping in

(F7), we may consider roughly the operations that will be needed. Starting from the
last equation, ( F7), we here will need two linear system solves. These very operations
may be recycled in the calculation of the Lagrange multiplier in (F6). However, we
are hiding equally costly operations in the form of matrix multiplication and inver-
sion (which are numerically of equal complexity (Golub & Van Loan 2013, Chap.
3; Cormen et al. 2022, Chap. 28), which are needed to evaluate both M and �. To
avoid taking explicit inverses especially to avoid numerical instability, the necessary
operation could be broadcasted from right to left, so that operations on vectors are
used at all times. However, in practice, we see that a naïve implementation is well
behaved.

Appendix G. Estimation of critical β

In § 7, we introduced a measure of a critical plasma β that leads to flux surfaces
in the near-axis field construction touching. In this appendix, we present the details
of said calculation and the exact meaning of the elements that go into it.

G.1. Problem set-up
The problem we want to describe is as follows. Consider a plane normal to the

axis at some ϕ value, as we shall describe the problem slice by slice. To first order
in r , the shape of the flux surfaces in such a plane corresponds to ellipses. At
second order, these ellipses are rigidly shifted as well as triangularly shaped. For the
estimation in this appendix, we will simply ignore that triangular shaping and model
the cross-sections as ellipses that are rigidly shifted.

Let us be a bit more precise. The ellipses are defined in the signed Frenet–Serret
frame (where X and Y correspond to Cartesian coordinates aligned with the normal
and binormal directions, respectively) by

X/r = X1c cos χ + X1s sin χ, (G1a)
Y/r = Y1c cos χ + Y1s sin χ. (G1b)

This defines an implicit ellipse, following (Rodríguez 2023, B1)

(1 + σ 2)X 2 − 2XYσ E̊+ E̊2Y 2 = B̄

B0
E̊, (G2)

where E̊= B0d̄2/B̄. Note that this form is analogous to the quasisymmetric case of
Rodríguez (2023), where E̊= (η/κ)2. This is true with the exception of the right-
hand side, due to the variation of the elliptical cross-section with the variation of the
field strength B0 in the current QI case. However, this means that the description of
the ellipses is identical to that there. Namely, we may characterise an ellipse by its
elongation E= tan e, defined as the ratio of major to minor radius, and θ , the angle
that the major axis makes with X . Explicitly,

sin 2e = 2E̊
E̊2 + 1 + σ 2

, tan 2θ = 2σ E̊
E̊2 − (1 + σ 2)

. (G3)
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FIGURE 9. Illustrating diagrams for the estimation of the critical β. (a) Elliptical cross-section
indicating the rotation angle θ and major and minor axes, a and b, respectively. (b) Shift of
ellipses along the direction D and the M-transformed scenario involving circles. The diagram
shows the geometric meaning of d as defined in (G7).

We note that the inversion of the tangent must be carried out with some care to
correctly capture the described physical angle.

Now, we consider these ellipses to be shifted rigidly at second order, by an amount
that we may refer to as

D = r 2

(
X20

Y20

)
, (G4)

in the (X̂, Ŷ) basis. Note that each value of r defines a different ellipse. The goal
of this appendix is to precisely describe when this displacement is such that two
consecutive ellipses touch.

G.2. Making circles
The problem of touching ellipses can be made significantly simpler by appropri-

ately rotating and scaling the plane. First, we shall consider a clockwise rotation by
θ , the angle of the ellipse, (G3), so that all ellipses become ‘aligned’ with the axes.
By align, we mean that the major and minor radii of all ellipses are parallel (or
orthogonal) to the signed Frenet–Serret coordinate system. Then we scale the major
axis direction by its magnitude and similarly for the minor radius so that the result is
a set of displaced circles of different radii. That is, we apply the linear map defined
on this basis by

M =
(

r/a 0
0 r/b

)(
cos θ sin θ

− sin θcos θ

)
, (G5)

to all (X, Y ), so that ellipses are mapped to circles of radius r . Using E= a/b and
the definition of the toroidal flux ψ = Area × B0/2π , so that ab = B̄r 2/B0, then

a/r =
√

B̄

B0
E, b/r =

√
B̄

B0E . (G6)

This transformation may be applied to the shift D, so that we have an effective
distance D̂ = M D (see figure 9).

Through this transformation, we have converted the problem of ellipses into a set
of circles with varying radii displaced along the same direction by different amounts.
The discussion of touching surfaces may thus be reduced to a discussion along this
line.
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G.3. Touching circles

Take the line on the rescaled plane defined by D̂ and define a function f (r) that
gives the distance from the origin to the point of intersection of the circle of radius
r with this line. Thanks to all being nicely stacked circles,

f (r)= r
(
1 − r | D̂|

)
, (G7)

where we have defined the point of intersection in the half-line in which circles are
bunching.

The point at which circles will touch corresponds to ∂r f = 0, which gives

AΔ = 2R| D̂|, (G8)

where A corresponds to the aspect ratio with R the effective major radius defined
in terms of the length of the magnetic axis. Below this aspect ratio, flux surfaces will
intersect and the near-axis construction is invalid.

G.4. Critical β
The question is then how much does this critical aspect ratio change with the

pressure in the problem? We know from the main text,

δD
δβ

= Ŝ
rref
, (G9)

where β = β2r
2
ref, and because it is linear in β, we may write exactly

Dβ = D0 + δD
δβ
δβ, (G10)

where the subscript zero denotes the Shafranov shift at zero plasma beta.
17

Let us now define the critical βΔ as the value of β at which the touching of surfaces
occurs at a reference aspect ratio Aref ≈ 10. Putting (G8) and (G10) together,

A2
ref

!=
(

D̂0 + δD̂
δβ
βΔ

)2

, (G11)

where the hats indicate transformed quantities by the matrix M, (G5). The critical
βΔ then corresponds to the largest negative root of this equation. That is, for every
ϕ, we may define

βΔ(ϕ)= min

⎡
⎣0, β± :

(
δD̂
δβ

)2

β2
± + 2

δD̂
δβ

· D̂0β± +
(

D̂
2

0 − 1
4r 2

ref

)
= 0

⎤
⎦ , (G12)

and β± may be computed explicitly with the quadratic formula. The single scalar βΔ
is then the minimum value of this function in the whole ϕ domain.

17If a known construction has a finite beta β0, then one may simply modify the above with β �→ β − β0. The
problem is linear.
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