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THE NUMBER OF GENERATORS OF A
LINEAR »-GROUP

I. M. ISAACS

Let G be a finite p-group, having a faithful character x of degree f. The
object of this paper is to bound the number, d(G), of generators in a minimal
generating set for G in terms of x and in particular in terms of f. This problem
was raised by D. M. Goldschmidt, and solved by him in the case that G
has nilpotence class 2. (See [1, Lemma 2.8].) We obtain the following results:

THEOREM A. Let x be a faithful character of the p-group, G. Let f = x(1) and
let s be the number of linear constituents of x. Then

@) d(G) = B/p)(f — s) + s. Also,

(b) if p = 3 and G is non-abelian, then d(G) = f — p + 3.

THEOREM B. Let G be a p-group and let x € Irr(G) be faithful. Then

It is shown by examples that the inequalities in Theorem A4 are best possible,
and the one in Theorem B is nearly so.

1. Suppose x is a faithful character of the p-group, G, and that x = ¢ + A,
where X is linear. Let N = Ker ¢ so that Ay is faithful and hence NV is cyclic.
It follows that d(G) = d(G/N) + 1. By repeated application of this argument,
we see that in order to prove Theorem A (a), it suffices to assume that x has
no linear constituents and show that d(G) = 3f/p. Observe that part (b) of
this theorem follows immediately from (a).

We would like to use reasoning similar to this in order to reduce the problem
of bounding d(G) to the situation of Theorem B, namely where x is irreducible.
In general, G is a subdirect product of the irreducible linear groups determined
by the irreducible constituents of a faithful character. Unfortunately, if N,
N, <1 G with Ny N, =1, it does not follow that d(G) = d(G/N1) +
d(G/N.). In order to overcome this difficulty we need to strengthen the
theorem we are trying to prove.

Definition 1. Let G be a p-group and let U € G. Then
de(U) = d(U/(UN 2(G))).
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Instead of assuming that x is faithful on G and bounding d(G), we shall
assume U < G and x is a character of G with xp faithful and we shall bound
de(U). Since d¢(G) = d(G), the new problem includes the old one.

LemmA 2. Let G be a p-group with U C G.
@) If UC HCG,thende(U) £ dy(U) and de(U) = de(H).
M) If VS Uand V < G, then dg(U) = de(V) + dg;v(U/V).

Proof. (a). Since H/H M ®(G) is elementary, ®(H) € ®(G) and
UN ®H) C UN &(G). It follows that dy(U) = de(U). Also, de(U) =
d(U®(G)/®(G)) = dH(G)/2(G)) = de(H).

M). Let A =UNV®G). Then UDADUN ®(G) and de(U) =
d(U/A) + dA/(U N &(G))). Now 4 = V((UN ®(G)) and hence
A/(UN ®(G)) = V/(VN &(G)). Thusd(4 /(U N &(G)) = de(V). Finally,
we have (U/V)N ®G/V) = (UN V®(G))/V = A/V. Therefore,
dev(U/V) =d((U/V)/(4/V)) = d(U/A). The proof is complete.

COROLLARY 3. Let G be a p-group and let U =Ny 22N, 2...2N, =1
where N; < G for 1 =1 < n. Then

dG’(U) = 12::1 dG/Ni(Ni—l/Ni)~

Proof. Repeated application of part (b) of the lemma yields the result.

Next, we wish to establish appropriate bounds when x (1) = p. The following
lemma is well known and is stated here without proof.

LEMMA 4. Let A < G be abelian with G/A cyclic. Let Ag be a generator of
G/A. Then

(@) G’ = {a e € A} and

b) [G'[ |4 NZ(G)| = |4].

If x is a character of a group, G, then det x is the linear character of G
obtained by taking the determinant of any representation of G which affords x.

LEMMA 5. Let G be a p-group with abelian A < G such that G/A 1s cyclic.
Let x € Irr(G) with x(1) = p° and suppose x4 1s faithful. Then

(a) dg(4d) = e+ 1.
Also,

(b) of det x4 = 14, then dg(A) < e, and

(c) if A has exponent < p¢ then dg(4) £ e.

Proof. Let Z = Z(G) M A. By Lemma 4, we have |4 : G’| = |Z|. Since x
is irreducible, we have Z (Ker x)/Ker x is cyclic and thus Z is cyclic since x4
is faithful. If |Z| < p¢, then |4/(4 N &(G))| < |4:G'| £ p¢ and d(4) £ e.
Therefore, (c) follows.

Now xz = p°\ where ) is a faithful character of Z. We have det x, = \**
and hence if det x; = 1, it follows that |Z| < p*, and (b) now follows.
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To prove (a), let C be the cyclic group of automorphisms of 4 induced by
G/A. Since x4 is faithful, C permutes the set of linear constituents of x,
faithfully. This action is transitive, and hence regular and |C| £ x(1). Let
0(a) = H,eca’ for @ € A. Then 8 is an endomorphism of 4 and 6(a) = 0(a?)
for g € G. It follows that G’ C Ker 8 = K. It is clear that 8(4) € Z and
since |4 : K| = |0(4)] and |4 : G| = |Z|, we have |K : G'| = |Z:6(4)| and
A/K = 0(4) is cyclic. If Z = (z), then 6(z) = 3/l and hence |Z:6(4)| <
|C| £ pe It follows that |[K : KN ®(G)| < p® and de(K) < e. Since
dex(A/K) =1, we have d¢(4) = e + 1 and the proof is complete.

LeEmmA 6. Let G be a p-group with x € Irr(G) and x(1) = p. Let U < G and
suppose xu 1s faithful. Then

(@) deg(U) £ 3. Also,

(b) de(U) = 2if U s abelian, det xy = 1y or U has exponent p, and

(¢) de(U) = 114f U is abelian and either det xy = 1y or U has exponent p.

Proof. Use induction on |G|. If there exists H C G with U C H and xg
irreducible, then the result follows since d¢(U) =< dy(U). Supposing, then,
that U C G, we may assume that the restriction of x to every maximal
subgroup containing U is reducible. It follows that x vanishes on G — U®(G)
and hence [xvecey, Xveey] = |G: UP(G)|. If |G: U®(G)| > p, then [xy,
xuv] = p?and xy = pA, where X is a faithful linear character of U. In this case
U is cyclic and d¢(U) = 1.

Under the assumption that U C G, the remaining case is where
|G : U®(G)| = p, G/Uis cyclic, and U is abelian. In this case, Lemma 5 yields
de(U) = 2and de(U) = 1if det xy = 1y or U has period p.

The only remaining case is where U = G. Here x is faithful, and there
exists an abelian subgroup 4 of index p (since x is a monomial character). By
the earlier cases, dg(4) < 2anddq(4) = lif det x4 = 14 or 4 has exponent
p. The result now follows since d¢(G) = d¢(4) + 1.

2. In this section we prove Theorems A and B by working with irreducible
characters, x, of G which are faithful upon restriction to U <1 G. In order to
obtain the desired bound we introduce another parameter and prove a some-
what stronger theorem.

THEOREM 7. Let G be a p-group, x € Irr(G) and U < G with xy faithful.
Let x(1) = f and let v be the number of (not mecessarily distinct) irreducible
constituents of xy. Setb = (f+ (f/p) +2p — 4)/(p — 1). Then:

(@) dg(U) = 0.

(b) If r > 1, then

(r/p) =1
<p P — 2

(c) If det xy = 1y, the inequalities in (a) and (b) may be replaced by strict

inequalities.
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Proof. Use induction on |U| |G|. First note thatif f = 1, then b > 1 and U
is cyclic and the theorem holds. If f = p, then b = 3. In this case the theorem
follows from Lemma 6. We therefore assume that f = p2.

If » = 1, then xy is irreducible and since d¢(U) = dy(U), we are done by
induction if U < G. Assume then, that U = G and let H be a maximal sub-
group of G, chosen so that xg is reducible. Since |H| |G| < |G| |G|, the inductive
hypothesis applies and we conclude that d¢(H) = b — 1 with strict inequality
if det x = 1g. It follows that dg(G) = 1+ de(H) £ b, again with strict
inequality if det x = 14. The theorem is now proved in this case.

Now suppose # = p. Choose a maximal subgroup, H 2 U. If xy is irreduci-
ble, we are done by applying the inductive hypothesis to H. We may assume,
then, that xg = 61 + ... 4+ 6,, where the 8, are conjugate irreducible characters
of H. Since we are assuming 7 = p, we have (0;)y irreducible for all <. On the
other hand, since f = $?, 6:(1) = p and there exists a maximal subgroup,
W, of H with (6;)w reducible. It follows that U & W. Let \ be a linear character
of H with kernel Wandlety = A9and V= UNKery. Then VC UNW C U.
Also, ®(H) € W and ®(H) < G, so that ®(H) C Ker ¢ and consequently,
U/V is elementary abelian. If ¢ is reducible, then W <1 G, W = Ker ¢ and
U/V is cyclic. If ¢ is irreducible, there is a corresponding irreducible character
Y of G/V and ¥y v, is faithful. I't follows from Lemma 6 (¢) thatd¢,»(U/V) =1,
and thus this is true in either case.

Since V C U, the theorem applies to bound d¢ (V). Since xy has at least
p? irreducible constituents, we have dg (V) < b — 2, with strict inequality if
det xy = 1y. Now de(U) = de(V) + dev(U/V) = 1 + de(V) and thus the
theorem holds.

Finally, we assume that » = $? and again choose a maximal H D U. As
before, we may assume that xgy = 61 + ...+ 6,. Let \; = det 8, let ¢ = €
and let V' = UM Ker ¢. If ¢ is reducible then Ker ¢ = Ker A\, U/V is cyclic
and dg,v(U/V) = 1. If ¢ is irreducible, then as before we let ¢ be the corre-
sponding irreducible character of G/V. Since Y (y,v is faithful and U/V is
abelian, Lemma 6(b) yields d¢,v(U/V) = 2. Now det ¢z = IIN; = det xg
and hence if det xy = 1y, it follows thatdet ¢y, = Liy;mandde,»(U/V) <1
by Lemma 6(c).

Now let K; = Ker 6, and let N, = VN N K;. Set Ny = V and note
that NV, = 1 since xy is faithful. By Corollary 3,

3o(V) S @x(V) = 33 dups(Nia/N).

Let 7, be the number of irreducible constituents of (6;)y,—, and observe that
ri = r/p = p. Let 0, be the irreducible character of H/N, corresponding to 6;
for 1 <4 < p. We have 8,(y;—, /vy is faithful and has trivial determinant since
N, 1 €V C Kery € Ker M. It follows by the inductive hypothesis that

D)+ /DY +20— 4 (ry/p) — 1
damwiNi-1/N;) < b— 1 — b —1 — 1.
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Since f = p? and r;/p = r/p? = 1, the quantity on the right is an integer and
we conclude
2 _ 2 _
duni(Ni-1/N;) = (/p) + (i{/f )1+ -4 _ (r;pz 1 1_ 2.

Therefore we have

do(vy < LEUR) + 2 —4p _(/p)=p _,

p—1 p—1
I+ ) —p= /) /o) =1
p—1 p—1 )

Combining this inequality with de,v(U/V) £ 2 and dg,w(U/V) =1 if
det xy = 1y, yields (b) and (c) in this case. The proof of the theorem is now
complete.

Observe that Theorem B is a special case of Theorem 7(a) and has therefore
now been proved. Also note that if f = p, we have

FH U/ +2—4_3

p—1 T
Proof of Theorem A. It has already been noted that it suffices to prove (a),
and that, only when x has no linear constituents. Let xi, x2, - . ., X» be the

distinct irreducible constituents of x and let K; = Ker x; and N, = N}_; K.
Then by Corollary 3,d(G) = Z dg/n; (Vi—1/N;) where Ny = G. By Theorem 7
applied to G/N;, we have d gy, (N i—1/N ;) = 3x:(1)/p. It follows that d(G) <
3x(1)/p as desired.

We end this section with a corollary of Theorem 7. The bound given here
will be shown to be sharp.

COROLLARY 8. Let G be a p-group and let U <1 G be abelian. Suppose x € Irr (G)
with x(1) = f and xy faithful. Then do(U) £ (f— 1)/(p — 1) + L.
Proof. If f = 1, U is cyclic. Otherwise, apply Theorem 7(b) with » = f.

3. In this section we discuss some examples.

THEOREM 9. The bounds given in Theorem A are sharp.

Proof. Let H be the central product of a non-abelian group of order p* with
a cyclic group of order p2. Then d(H) = 3 and H has a faithful irreducible
character of degree p. Now let G be the direct product of (f — s)/p copies
of H and s copies of a cyclic group of order p. Then d(G) = 3(f — s)/p + s
and G has a faithful character of degree f.

The direct product of one copy of H with f — p cyclic groups of order p
shows that the bound in (b) is the best possible.

THEOREM 10. The bound given in Lemma 5(a) is sharp.

Proof. We need an example of a p-group G with 4 < G, A abelian, G/4
cyclic, x € Irr(G), xa faithful, x(1) = p¢ and d¢(4) = e¢ 4+ 1. The example
is as follows.
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LetA = {x1) X (x2) X ... X {x¢+1), where the order, o(x;) = p*. Define an
automorphism, ¢, of 4 by

x =xx 4P forl Si=<e

and %ep1” = Xep1. We claim that o(c) < p° Let Z = (x¢41). Then ¢ acts on
A/Z and this is the situation corresponding to the case ¢ — 1. By induction,
then, " acts trivially on 4/Z. Let 6 = ¢*°7' so that a='a® € Z for all @ € A.

Nowlet 4 = A4/Q(4). Then ¢ acts on A and this too is the situation corre-
sponding to e — 1. Thus @ is trivial on 4 and a=%® € ,;(4) N Z for all a € A4.
If o = ay, then 9» = 1 and y? = y so that ¢ = ay? = @, and o(c) < p°
as claimed.

Let G be the semi-direct product, 4 X| (¢). It is clear that G' = ®(4)
and hence |4 : G'| = p*t1. By Lemma 4, |4 N\ Z(G)| = p*+'. However, since
(o) acts faithfully on 4, we have Z(G) C 4. Since Z C Z(G) and |Z| = p*t,
it follows that Z(G) = Z is cyclic. Therefore, G has a faithful irreducible
character x with x(1) £ |G : 4| £ p°. Finally, since G’ = ®(4), it follows
that dg(4) = d(4) = e+ 1. By Lemma 5(@), x(1) = p° and the proof is
complete.

TueoreM 11. Let E be an elementary abelian p-group of order p*, k = 1.
T'here exists an abelian p-group, U, on which E acts so that

(@) Cy(E) is cyclic
and

(b) d(U/LU, E]) = (p* = 1)/(p — 1) + L.

Before proving Theorem 11, we discuss some consequences. Let G be the semi-
direct product U X| E. Then we have G’ = [U, E] and G/G’' = U/[U,E] X E.
It follows that de(U) =d(U/[U,E]) = p* —1)/(p — 1) + 1 and that
d(G) = de(U) + k. Now Z(G) N\ U = Gy (E) is cyclic, and thus there exists
x € Irr(G) with Gy (E) M Ker x = 1. It follows that xy is faithful. Let
f = x() so that f < |G: U| = p*. On the other hand, Corollary 8 asserts
that dg(U) = (f — 1)/(p — 1) + 1. It follows that f = p*. At this point we
have proved

CoROLLARY 12. The bound of Corollary 8 is sharp.

In the above situation, f = |G : U|and it follows that U is a maximal abelian
subgroup of G. Therefore, Cy(E) = Z(G) and hence yx is faithful. Let b = b(f)
be the bound given in Theorem B. If f = p or p?, we see that d(G) = b.
Although the above group, G, does not prove that the bound, b, is sharp; it
does show that it is not far wrong, since for f > 1 we have d(G) > pb/(p + 1).

Before proving Theorem 11, we need the following counting lemma.

LEMMA 13. Let n and k be positive integers and let N be the number of k-tuples,
(®1y . . ., xz) of integers, 0 < x; < n, such that Zx; = 0 mod n. Then

k
N=ﬂiin);l-+l.
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Proof. We count the k-tuples with 2 x; = 0 mod # according to the number,
r, of entries equal to #. If » = k, there is one such k-tuple. If » < &, the number
of k-tuples with the required property is () F(r) where F(r) is the number of
(B — r)-tuples, (y1, ..., Vi—r), where 0 <y, <% — 1 and Zy; = 0 mod #.

We may identify the #*=" (k — r)-tuples of integers vy;, 0 <y, <n — 1
with the elements of the direct product of 2 — 7 cyclic groups of order .
Under this identification, the tuples, (yi, ..., ¥s—r), with £ y;, = 0 mod =,
correspond to the elements of the kernel of a homomorphism onto the cyclic
group of order n. It follows that F(r) = #*"! and

=1/
N =1+ Z <r>nk—r—1
7=0

= 1+}1((n+ DF - 1),
as desired.

Proof of Theorem 11. We shall construct U as an (additive) subgroup of the
group ring R[E] = A, where R = Z/p*+Z. Now E acts on 4 by right multipli-
cation and C4(E) = R(> ;exx), a cyclic group. Therefore, it suffices to find a
subgroup U € A4 which is invariant under £ (i.e., U must be an ideal) such
that d(U/[U, E]) = (* = 1)/(p — 1) + L.

First we observe that for x € E, we have (x — 1)? = p3 %21 7:(x — 1)? for
suitable 7; € R. This is so because of the polynomial identity X? — (X + 1)?+

1=9p Pl m X where m; = — (%)/p € Z. Substituting x — 1 for X yields
the required result.

Next we establish some notation. Let {xy, . . ., 2z} be a fixed set of generators
for E. Let ¥ = {(m1, ..., m)m; €Z, 0=m; =p—1}. U s = (myq,...,
my) €., we write 2s for > m; and (x — 1)° for (x; — 1)™(xy — 1)™2 ...
(x, — 1)™ € A.

We claim that { (x — 1)°|s € %} is an R-basis for 4. Since |¥| = p* = |E|,
it suffices to show that if X o 7,(x — 1)°* = 0 with »;, € R, then all , = 0.
Suppose, then, that some 7, # 0. By multiplying the dependence by the highest
power of p which fails to annihilate all of the coefficients, we may assume that
pre = 0 for all s € .. Now, among all s €. with 7, % 0, choose one, say
so = (mi,...,my), with > so minimal. Let t = (p — 1 —my,...,p — 1 —
my) € .% and multiply the dependence by (x — 1)% Observe that r,(x — 1)¢
(x — 1)t = 0if s # so. Thisis so because if s % spand 7, # 0, then X5 = > s
and hence some entry (say the 7th) in the k-tuple, s, is strictly larger than the
corresponding entry in s¢. It follows that (x — 1)¥(x — 1)* € (x; — 1)? 4 C pA.
Since pr, = 0, it follows that 7;(x — 1)(x — 1)* = 0. We now have

0=rux—1)%x—1)"=r,@x—1)P"1. .. (x — 1)L

This is a contradiction, since 1 is clearly in the support of (x; — 1)?-1...
(xy — 1)»Tand r, # 0.
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We now use this basis for 4 to construct two subgroups. For s € ¥, let
I(s) = I be the unique integer such that I(p — 1) = s < I+ 1)(p — 1)
and let m (s) = m be the unique integer such thatm(p — 1) < >Xs < (m + 1)
(p — 1). Notethat 0 = I(s) < kand — 1 Em(s) £k — 1. Also I(s) = m(s)
unless > s is a multiple of (p — 1), in which case m(s) = I(s) — 1. Now set

U= {p=1(x — 1)|s € &}
and

V= {pF"Ok — 1y|s € L.

It is clear that U is the direct sum of the cyclic groups generated by the
given set of generators of U and V is the sum of the subgroups of these cyclic
groups generated by the generators of V. It follows that d(U/V) is equal to the
number of the generators of U which do not lie in V. This is exactly the number
of s €% with s =0 mod p — 1. By Lemma 13, we have d(U/V) =
@* -1/ -1+ 1

The proof will be complete when we show [U, E] = V because it then follows
automatically that U is E-invariant. Now if s, s’ € & with Ys = 1 4+ X ¢,
then m(s) = I(s’). If s % (0,0,...,0), we can choose 7, and s’ €. with
x—1)y=(@x—1)@@;—1) and >s =14+ >s'. Thus pr"®(x — 1)* =
¥ (x — 1) (x; — 1). It follows that every generator of 1 is of the form
u(x; — 1) for some generator u of U. (If s = (0, 0,...,0), then pt"®
(x — 1)* = 0.) Therefore, V C [U, E]. The generators u which arise this way
are exactly those which correspond to s’ € . where the ¢th entry of s is
< p — 1. For each such u, we therefore have u(x; — 1) € V.

All that remains now in order to prove that [U, E] C 1 is to show that
PO (x — 1)%(x; — 1) € V whenever the 7th entry of s is equal to p — 1.
Recall that

p—1 )
(= 1)"=19p Z ri(x; — 1)7,
=1
and thus it follows that ’
p—1
=1 —1)=p }__‘i ri(x — 1)7
=

where s; € % and Y s;, =74+ Xs— (p — 1) > >s — (p — 1). Therefore
m(s;) = I(s) — 1 and
p—1

pk—l(s)(x _ l)s(xi _ 1) — E 7’jpk_l<8)+l(x _ 1)6‘1‘ €.

j=1

The proof of the theorem is now complete.
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