
J. Functional Programming 7 (3): 349–354, May 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

349

F U N C T I O N A L P E A R L

On merging and selection

RICHARD S. BIRD
Programming Research Group, Oxford University,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

1 Introduction

Given two ascending lists xs and ys of combined length greater than n , consider

the computation of

merge (xs , ys) !! n

The standard function merge merges two ascending sequences and (!!) denotes list

indexing. With a lazy evaluator the computation takes O(n) steps; with an eager one

it takes O(p + q) steps, where p = length xs and q = length ys . Now in functional

programming it is more efficient to index a tree than a list, so the question arises:

can we find a faster solution if xs and ys are each represented by a tree? Somewhat

surprisingly the answer is yes: if xs and ys are each represented by balanced binary

search trees, then the computation can be reduced to O(log p + log q) steps. This

is despite the fact that there is no known method for merging two binary search

trees in better than linear time. The details, presented below, depend on a subtle

relationship between merging and indexing.

2 Specification

We begin by specifying the problem more precisely. Consider the type

data Tree a = Null |Node Int (Tree a) a (Tree a)

of binary trees under the restriction that each element xt of Tree a satisfies the

following datatype invariants:

1. The sequence flatten xt is ascending, where

flatten Null = []

flatten (Node p xt x yt) = flatten xt ++ [x] ++ flatten yt

In words, xt is a binary search tree.

2. If xt = Node p yt y zt , then p = size yt , where

size Null = 0

size (Node p xt x yt) = size xt + 1 + size yt .

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

350 R. S. Bird

In words, each node is labelled with the size of its left subtree.

In particular, the following equations hold, referred to subsequently by the hint

‘datatype invariant’:

take p (flatten (Node p xt x yt)) = flatten xt

flatten (Node p xt x yt) !! p = x

drop (p + 1) (flatten (Node p xt x yt)) = flatten yt

Now define

select (xt , yt) n = merge (flatten xt , flatten yt) !! n

Our aim is to show that select (xt , yt) n can be computed in O(height xt + height yt)

steps, where height is defined by

height Null = 0

height (Node p xt x yt) = 1 + max (height xt , height yt)

3 Derivation

It is instructive to consider first a simpler problem. Define index by

index xt n = (flatten xt) !! n

To synthesise a more efficient program for index we need the following relationship

between concatenation and indexing:

(xs ++ ys) !! n = xs !! n , if n < p

= ys !! (n − p), otherwise

where p = length xs

It is now an easy task to synthesise the following alternative program for index :

index (Node p xt x yt) n = index xt n , if n < p

= x , if n = p

= index yt (n − p − 1), if n > p

Evaluation of index xt n takes O(height xt) steps. In particular, if xt is balanced,

then the cost is O(log(size xt)) steps.

The efficient program for select is derived in an analogous fashion, and depends

on the relationship between merging and indexing. Suppose xs and ys are two

ascending sequences of combined length greater than n , and let p and q be two

natural numbers satisfying 0 ≤ p < length xs and 0 ≤ q < length ys . The facts we

need are:

1. If n ≤ p + q , then

merge (xs , ys) !! n = merge (xs , take q ys) !! n , if xs !! p ≤ ys !! q

= merge (take p xs , ys) !! n , if ys !! q ≤ xs !! p

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

Functional pearl 351

2. If p + q < n , then

merge (xs , ys) !! n

= merge (drop (p + 1) xs , ys) !! (n − p − 1), if xs !! p ≤ ys !! q

= merge (xs , drop (q + 1) ys) !! (n − q − 1), if ys !! q ≤ xs !! p

Given these facts, the synthesis of the program for select is straightforward. We give

the details for just one case. For brevity, introduce the functions

label (Node p xt x yt) = p

left (Node p xt x yt) = xt

value (Node p xt x yt) = x

right (Node p xt x yt) = yt

Now, with p = label xt and q = label yt we argue:

select (xt , yt) n

= {definition}
merge (flatten xt , flatten yt) !! n

= {property (1), assuming n ≤ p + q and value xt ≤ value yt}
merge (flatten xt , take q (flatten yt)) !! n

= {datatype invariant}
merge (flatten xt , flatten (left yt)) !! n

= {definition of select}
select (xt , left yt) n

In full, the improved program for select is:

select (xt , yt) n = index yt n , if xt = Null

= index xt n , if yt = Null

= select (xt , left yt) n , if n ≤ p + q ∧ x ≤ y

= select (left xt , yt) n , if n ≤ p + q ∧ y ≤ x

= select (right xt , yt) (n − p − 1), if p + q < n ∧ x ≤ y

= select (xt , right yt) (n − q − 1), if p + q < n ∧ y ≤ x

where p = label xt

q = label yt

x = value xt

y = value yt

It is clear that select has the desired time complexity: at each step, one or other of

the two trees is reduced in height by at least one.

4 Merging and indexing

The relationship between merging and indexing on which the fast algorithm for

select depends is none too obvious I would say. Certainly the proof seems quite

tricky.

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

352 R. S. Bird

In what follows it is convenient to imagine that all ascending sequences are

extended on the left by −∞ values, and on the right by ∞ values. Thus, we assume

that

xs !! k = −∞, if k < 0

= ∞, if length xs ≤ k

The following lemma will be useful.

Lemma 1

Let xs and ys be two ascending sequences and n a natural number. Then there exist

unique natural numbers i and j with i + j = n and

xs !! (i − 1) ≤ ys !! j and ys !! (j − 1) < xs !! i

Furthermore, merge (xs , ys) !! n = min (xs !! i , ys !! j).

Proof

The proof is by induction on n . For the base case the unique assignment is (i , j) =

(0, 0). For the induction step, suppose (i , j) are the values associated with case n .

If xs !! i ≤ ys !! j , then (i + 1, j) is the unique assignment in case n + 1, while if

ys !! j < xss !! i , the assignment is (i , j + 1).

With the definition

merge ([], ys) = ys

merge (x : xs , []) = x : xs

merge (x : xs , y : ys) = x : merge (xs , y : ys), if x ≤ y

= y : merge (x : xs , ys), otherwise

of merge it is easy to show, with i and j as given above, that

drop n (merge (xs , ys)) = merge (drop i xs , drop j ys)

Hence we can argue:

merge (xs , ys) !! n

= {since zs !! k = head (drop k zs)}
head (drop n (merge (xs , ys)))

= {above}
head (merge (drop i xs , drop j ys))

= {definition of merge}
min (xs !! i , ys !! j)

Since merge (xs , ys) = merge (ys , xs) the lemma has a dual version in which the roles

of xs and ys are interchanged. Thus, for property (1) it is sufficient to show that if

n ≤ p + q and xs !! p ≤ ys !! q , then

merge (xs , ys) !! n = merge (xs , take q ys) !! n

Let i and j be the numbers associated with xs and ys as specified in the lemma. If

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

Functional pearl 353

q < j , then i = n − j < n − q ≤ p, and so

xs !! i ≤ xs !! p ≤ ys !! q ≤ ys !! (j − 1) (1)

This contradicts the definition of i and j , so j ≤ q . Furthermore, since

xs !! (i − 1) ≤ ys !! j ≤ (take q ys) !! j

(take q ys) !! (j − 1) = ys !! (j − 1) < xs !! i

the numbers i and j are also the numbers associated with xs and take q ys .

We now need a case analysis. In the case j = q we have i ≤ p, and so

merge (xs , ys) !! n

= {lemma, and assumption j = q}
min (xs !! i , ys !! q)

= {since xs !! i ≤ xs !! p ≤ ys !! q}
xs !! i

= {since (take q ys) !! q = ∞}
min (xs !! i , (take q ys) !! q)

= {lemma}
merge (xs , take q ys) !! n

In the case j < q we reason

merge (xs , ys) !! n

= {lemma}
min (xs !! i , ys !! j)

= {assumption j < q}
min (xs !! i , (take q ys) !! j)

= {lemma}
merge (xs , take q ys) !! n

For property (2) it is sufficient to prove that if p + q < n and xs !! p ≤ ys !! q , then

merge (xs , ys) !! n = merge (drop (p + 1) xs , ys) !! (n − p − 1)

Again, let i and j be the numbers associated with xs and ys . If i ≤ p, then

j = n − i ≥ n − p > q and (1) holds, a contradiction. Thus i > p. Since

(drop (p + 1) xs) !! (i − p − 2) ≤ xs !! (i − 1) ≤ ys !! j

ys !! (j − 1) < xs !! i = (drop (p + 1) xs) !! (i − p − 1)

the unique numbers associated with the sequences drop (p +1) xs and ys are i−p−1

and j . Hence

merge (xs , ys) !! n

= {lemma}

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

354 R. S. Bird

min (xs !! i , ys !! j)

= {since i > p}
min ((drop (p + 1) xs) !! (i − p − 1), ys !! j)

= {lemma}
merge (drop (p + 1) xs , ys) !! (n − p − 1)

This concludes the proof.

5 Postscript

The problem treated in this pearl arose out of a tutorial exercise on divide and

conquer set by my colleague, Bill McColl. Students were asked for an algorithm

to find the median element of a set represented by two sorted lists, each of length

n > 0, in O(log n) steps. Equivalently, the problem is to compute merge (xs , ys) !! n

in O(log n) steps, assuming that list indexing takes constant time and xs and ys

are both strictly increasing and have no elements in common. This variation is left

as an exercise. Another variation, also left as an exercise, is to compute the same

expression in the same time, assuming constant-time list indexing and that xs and

ys are infinite ascending lists (not necessarily increasing, nor necessarily disjoint).

Acknowledgement

I would like to thank two anonymous referees for pointing out errors in previous

drafts of this pearl.

https://doi.org/10.1017/S0956796897002736 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002736

