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The theory of continued fractions is an extremely useful tool in approximating
irrational numbers by rational numbers. Any number x ∈ R\Q can be uniquely
represented by a continued fraction of the form

x = a0(x) +
1

a1(x) +
1

a2(x) +
1

. . .

= [a0(x); a1(x), a2(x), . . .],

where an(x) ∈ Z, an(x) ≥ 1 for n ≥ 1, is known as the nth partial quotient of x. The
classical theory of continued fractions shows that the convergents of the partial
quotients of x give exactly the best rational approximation of x (see [11, Theorems 16
and 17]. The nth convergent is given by

pn

qn
:= [a0(x); a1(x), . . . , an(x)],

where pn, qn ∈ Z are coprime and qn ≥ 1. The speed of approximation for any irrational
number x is related to the size of the partial quotients by∣∣∣∣∣x −

pn

qn

∣∣∣∣∣ <
1

qn(an+1qn + qn−1)
for all n ∈ N.

Kleinbock and Wadleigh [12] showed that Dirichlet’s theorem is optimal in a precise
sense. For any nonincreasing function ψ : N→ R+, define the set of ψ-Dirichlet
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improvable numbers by

D(ψ) :=
{
x ∈ R :

∃N such that the system |qx − p| < ψ(t), |q| < t
has a nontrivial integer solution for all t > N

}
.

Then, Kleinbock and Wadleigh showed for x ∈ [0, 1) \ Q that:

(i) x ∈ D(ψ) if an+1(x)an(x) ≤ ψ(qn)/4 for all sufficiently large n;
(ii) x � D(ψ) if an+1(x)an(x) > ψ(qn) for infinitely many n.

The metric theory for the set D(ψ) is fully characterised in the papers [2, 8, 9].
My thesis contains results on the metric theory of continued fraction and Lüroth

series expansions. The first result gives metrical properties of the product of par-
tial quotients in the plane. Let Ψ : N→ R+ be a function. Define the set, for
(t1, . . . , tm) ∈ Rm

+ ,

Λ(Ψ) :=
{
(x, y) ∈ [0, 1]2 : max

{ m∏
i=1

ati
n+i(x),

m∏
i=1

ati
n+i(y)

}
≥ Ψ(n) for all n ≥ 1

}
.

For the one-dimensional analogue of this set, the Hausdorff dimension (for m = 2)
was determined in [1] and can also be deduced from [10]. In my thesis, I prove the
following two-dimensional result. Throughout, dimH is the Hausdorff dimension.

THEOREM 1 [5]. Let Ψ be a positive function. Then,

dimH(Λ(Ψ)) =
2 + τ
1 + τ

where log τ = lim sup
n→∞

log logΨ(n)
n

.

For a nondecreasing function ϕ : N→ [2,∞) and � ∈ N, define the set

F�(ϕ) :=
{
x ∈ [0, 1) :

aj(x) · · · aj+�−1(x) ≥ ϕ(n)
ak(x) · · · ak+�−1(x) ≥ ϕ(n) with 1 ≤ j < k ≤ n for i.m. n ∈ N

}
,

where ‘i.m.’ stands for ‘infinitely many’. The set F�(ϕ) arises in the determination of
laws of large numbers for partial quotients. Phillip [13] proved that there is no rea-
sonable function σ : N→ R+ such that (a1(x) + a2(x) + · · · + an(x))/σ(n) converges
almost everywhere as n→ ∞. However, Diamond and Vaaler [6] showed that such a
relation holds if we omit the largest partial quotient. Hu et al. [7] extended this further
by proving the case for the sum of products of two consecutive partial quotients and
omitting the largest product. They proved that almost every x ∈ [0, 1) satisfies

lim
n→∞

1

n log2 n

( n∑
j=1

aj(x)aj+1(x) − max
1≤j≤n

aj(x)aj+1(x)
)
=

1
2 log 2

. (1)

This led Tan et al. in [14] and Tan and Zhou in [15] to find a zero-one law for the
Lebesgue measure of F1(ϕ). We extend this work to F3(ϕ).
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THEOREM 2 [4]. Let ϕ : N→ [2,∞) be nondecreasing. The Lebesgue measure λ of
F3(ϕ) is given by

λ(F3(ϕ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∑
n≥1

n log4 ϕ(n)
ϕ2(n)

+
logϕ(n)
ϕ(n)

< ∞,

1 if
∑
n≥1

n log4 ϕ(n)
ϕ2(n)

+
logϕ(n)
ϕ(n)

= ∞.

I further calculate the Hausdorff dimension for F3(ϕ). Define g3 : R→ R by

g3(s) :=
3s3 − 5s2 + 4s − 1

s2 − s + 1
.

For a function ϕ : N→ R+, let B and b be defined by

log B = lim inf
n→∞

logϕ(n)
n

and log b = lim inf
n→∞

log logϕ(n)
n

. (2)

THEOREM 3 [4]. Let ϕ : N→ [2,∞) be nondecreasing. Then, the Hausdorff dimen-
sion of F3(ϕ) is given by

dimH F3(ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if B = 1,
inf{s ≥ 0 : P(T ,−g3(s) log B − s log |T ′|) ≤ 0} if 1 < B < ∞,
1/(1 + b) if B = ∞,

where P(T , ·) is a pressure function.

The thesis also contains a result on the Lebesgue measure of a set associated with
the Lüroth series expansion of a real number. Every x ∈ (0, 1] has a Lüroth series
expansion

x =
1
d1
+

1
d1(d1 − 1)d2

+
1

d1(d1 − 1)d2(d2 − 1)d3
+ · · ·

with a unique sequence (dn)n≥1 of integers at least 2. Let m ∈ N, t = (t0, . . . , tm−1) ∈ Rm
+

and lim infn→∞Ψ(n) > 1. Define the set

Et(Ψ) :=
{
x ∈ [0, 1) :

m−1∏
i=0

dti
n+i(x) ≥ Ψ(n) for infinitely many n ∈ N

}
,

and the numbers

tmin := min{t0, t1, . . . , tm−1}, tmax := max{t0, t1, . . . , tm−1}

and

�(t) := #{j ∈ {0, . . . , m − 1} : tj = tmax}.
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THEOREM 4 [3]. Let m ∈ N and t ∈ Rm
+ be arbitrary. If lim infn→∞Ψ(n) > 1, then

λ (Et(Ψ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

n=1

(
logΨ(n)

)�(t)−1

Ψ(n)1/tmax
< ∞,

1 if
∞∑

n=1

(
logΨ(n)

)�(t)−1

Ψ(n)1/tmax
= ∞.

(3)

THEOREM 5 [3]. Let B and b be given by (2). For any m ∈ N and t ∈ Rm
+ ,

dimH Et(Ψ) =

⎧⎪⎪⎨⎪⎪⎩
1 if B = 1,
1/(b + 1) if B = ∞.

THEOREM 6 [3]. Suppose m = 2. Let B and b be given by (2) and assume 1 < B < ∞.
For a given t = (t0, t1) ∈ R2

+, define

ft0,t1 (s) :=
s2

t0t1 max{s/t1 + (1 − s)/t0, s/t0}
.

Then, the Hausdorff dimension of Et(Ψ) is the unique solution of
∞∑

d=2

1
ds(d − 1)sB ft0,t1 (s) = 1.
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