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Condition C′
∧

of Operator Spaces

Yuanyi Wang

Abstract. In this paper, we study condition C′
∧
, which is a projective tensor product analogue of

condition C′. We show that the ûnite-dimensional OLLP operator spaces have condition C′
∧
and

Mn (n > 2) does not have that property.

1 Introduction

_e theory of operator spaces is very recent. An operator space is a norm closed sub-
space of B(H), the operator algebra of all bounded linear operators on the Hilbert
space H. _e theory of operator spaces is a very important tool in the study of oper-
ator algebras. Since the discovery of an abstract characterization of operator spaces
by Ruan [19], there have been many more applications of operator spaces to other
branches in functional analysis.

In the ûeld of operator algebras, questions revolving around the local propertyhave
been a fruitful and important area of investigation. Archbold and Batty [1] introduced
conditions C and C′ for C*-algebras. Local re�exivity and condition C′′ were intro-
duced by Eòros and Haagerup [5]. Exactness was deûned by Kirchberg [13]. Subse-
quently, he proved that this condition is equivalent to condition C′ [15]. Kirchberg
also introduced the deûnition of LLP and LP for C*-algebra and proved a C*-algebra
Ahas LLP if and only if A⊗maxB = A⊗minB [14]. With the development of the theory
of operator spaces, the various versions of local properties have a similar impact on
the ûeld. Some local properties of operator spaces, such as local re�exivity, exactness,
nuclear, and OLLP, were intensively studied in [4,6–10, 12, 16, 17].

In this paper,we study a new local theory of operator spaces. _e property is called
condition C′

∧
, which is a projective tensor product analogue of condition C′. In Sec-

tion 1,we recall some notation for operator spaces. In Section 2,we give the deûnition
of condition C′

∧
. We show that ûnite-dimensional OLLP operator spaces have condi-

tion C′
∧
and that the operator space Mn (n > 2) does not have condition C′

∧
.

We refer the reader to [11, 18] for the basics on operator spaces. Only the concepts
and results that are essential in the article will be recalled in this section.

Let B(H) be the space of all bounded linear operator on a Hilbert space H. For
each n ∈ N, there is a canonical norm ∥ ⋅ ∥n on Mn(B(H)) given by identifying
Mn(B(H))with B(Hn). We call this family of norms an operator spacematrix norm
on B(H). An operator space is a norm closed subspace of B(H) equipped with the
operator space matrix norm inherited from B(H). _e morphisms in the category
of operator spaces are completely bounded linear maps. Given operator spaces V
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and W , a linear map φ∶V → W is completely bounded if the corresponding linear
maps φn ∶Mn(V) → Mn(W) deûned by φ assigning [φ(x i , j)] to φn([x i , j]) are uni-
formly bounded; i.e., ∥φ∥cb = sup{∥φn∥ ∶ n ∈ N} is ûnite. A map is completely
contractive (resp. completely isometric, or completely quotient) if ∥φ∥cb ≤ 1 (resp. for
each n in N, φn is an isometry or a quotient map). We let CB(V ,W) be the space
of all completely bounded linear maps from V to W . _e dual space V∗ of V has
an operator space structure induced by natural isomorphisms from Mn(V∗) onto
CB(V ,Mn(C)). Let us suppose that we are given operator spaces V and W and a
linearmapping φ∶V →W . _en φ is a complete isometry if and only if φ∗∶W∗ → V∗

is an exact complete quotient mapping. If V andW are complete, then φ∶V → W is
a complete quotient mapping if and only if φ∗ is a complete isometry. In the latter
case, φ∗(W∗) is weak* closed, and φ∗ is a weak* homeomorphism in the topologies
deûned by V andW , respectively.

We use the notation V⊗̌W and V⊗̂W for the injective and projective operator
space tensor products [2, 3]. _e operator space tensor products share many of the
properties of Banach space analogues. For example, we have the natural complete
isometries CB(V ,W∗) = (V⊗̂W)∗, CB(W ,V∗) = (V⊗̂W)∗, and the completely
isometric injection V∗⊗̌W ↪ CB(V ,W).

2 Condition C′
∧

of Operator Spaces

Let V andW be operator spaces. Given a bounded linear function φ on V⊗̂W and
v0 ∈ V , we deûne the bounded linear function v0φ onW by v0φ(w) = φ(v0 ⊗w) for
w ∈W . We deûne a linear map ΦR

V ,W ∶V ⊗W∗∗ → (V⊗̂W)∗∗ by

ΦR
V ,W(v ⊗w∗∗)(φ) = ⟨vφ,w∗∗⟩W∗ ,W∗∗

for v ∈ V , w∗∗ ∈ W∗∗ and φ ∈ (V⊗̂W)∗. It is clear that ΦR
V ,W is weak* continuous

on the second component.
We denote by Φ the natural map form V⊗̂W → V⊗̌W , and by Ψ the natural map

from V∗⊗̂W∗ → (V⊗̌W)∗, which are both completely contractive. _en we have
the following diagram:

V ⊗W∗∗
ΦR

V ,W // (V⊗̂W)∗∗ Φ∗∗

// (V⊗̌W)∗∗ Ψ∗

// (V∗⊗̂W∗)∗

CBσ
F(V∗ ,W∗∗) // CB(V∗ ,W∗∗),

where CBσ
F(V∗ ,W∗∗) denote the space of weak*-continuous completely bounded

linear maps from V∗ to W∗∗ with ûnite ranks. _is diagram is commutative, since
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for any v∗0 ∈ V∗, v ∈ V∗,w∗∗ ∈W∗∗, w∗

0 ∈W∗ and wα → w∗∗ in the weak*-topology,

⟨Ψ∗Φ∗∗ΦR
V ,W(v ⊗w∗∗), v∗0 ⊗w∗

0 ⟩ = ⟨Φ∗∗ΦR
V ,W(v ⊗w∗∗),Ψ(v∗0 ⊗w∗

0 )⟩
= ⟨ v(Φ

∗(v∗0 ⊗w∗

0 )),w∗∗⟩
= lim
α→∞

⟨Φ∗(v∗0 ⊗w∗

0 ), v ⊗wα⟩

= lim
α→∞

⟨v∗0 ⊗w∗

0 , v ⊗wα⟩ = ⟨ ⟨v , v∗0 ⟩w∗∗ ,w∗

0 ⟩ .

_us, the linearmap ΦR
V ,W is injective, and the tensor productV⊗W∗∗ may be given

the operator space structure inherited from the operator space (V⊗̂W)∗∗.

Deûnition 2.1 An operator space V satisûes condition C′
∧
if the linear map

ΦR
V ,W ∶V⊗̂W∗∗ Ð→ (V⊗̂W)∗∗

is isometric for every operator spaceW .

It is equivalent to suppose thatΦR
V ,W is a complete isometry, since, if the linearmap

ΦR
V ,W ∶V⊗̂W∗∗ → (V⊗̂W)∗∗ is isometric for every operator spaceW , it is completely

isometric for every operator spaceW , by the following isometric embedding

Tn(V⊗̂W∗∗) = V⊗̂Tn(W∗∗)↪ (V⊗̂Tn(W))∗∗ = Tn(V⊗̂W)∗∗ .

For operator spaces V andW , we consider the following complete isometry

θ∶ (V⊗̂W)∗ = CB(V ,W∗)Ð→ CB(W∗∗ ,V∗) = (V⊗̂W∗∗)∗ ,

where θ(φ) = φ∗. _en we have φ∗(v ⊗w∗∗) = ⟨φ, v ⊗w∗∗⟩ = ⟨vφ,w∗∗⟩W∗ ,W∗∗ for
any v ∈ V and w∗∗ ∈W∗∗. _us, for any u ∈ V⊗̂W∗∗, φ∗(u) = ⟨ΦR

V ,W(u), φ⟩.

Proposition 2.2 _emap ΦR
V ,W is completely contractive.

Proof Suppose u ∈ Mn(V⊗̂W∗∗), for any φ ∈ Mn((V⊗̂W)∗), and φ is completely
isometric to φ∗ ∈ Mn((V⊗̂W∗∗)∗). _en

∥(ΦR
V ,W)n(u)∥ = sup

∥φ∥cb≤1
∥⟨⟨(ΦR

V ,W)n(u), φ⟩⟩∥ = sup
∥φ∥cb≤1

∥φ∗n(u)∥

≤ sup
∥φ∗∥cb≤1

∥φ∗n(u)∥ = ∥u∥.

_us, ΦR
V ,W is a completely contractivemap.

For giving examples of operator spaces that have condition C′
∧
,we recall an opera-

tor spaceV hasOLLP if given any unitalC*-algebra Awith ideal J ⊆ A and a complete
contraction φ∶V → A/J, for every ûnite-dimensional subspace L of V , there exists a
complete contraction φ̃∶ L → A such that π ○ φ̃ = φ∣L , where π∶A→ A/J is the canon-
ical quotient mapping.

Proposition 2.3 If a ûnite-dimensional operator space has OLLP, then it has condi-
tion C′

∧
.
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Proof Suppose L is a ûnite-dimensional operator space with OLLP; then for any
ε > 0, there exists a completely bounded isomorphism r∶ L → Q, where Q∗ is a oper-
ator subspace ofMn , such that ∥r∥cb∥r−1∥cb < 1+ ε (see [16, theorem 2.5]). We have a
commutative diagram

Tn(W∗∗) Tn(W)∗∗

∥ ∥

Tn⊗̂W∗∗ (Tn⊗̂W)∗∗
×××Ö

×××Ö
Q⊗̂W∗∗ ÐÐÐÐ→ (Q⊗̂W)∗∗ .

_e columns are complete quotient mappings, and the top row is a completely iso-
metric isomorphism. _us, Q⊗̂W∗∗ = (Q⊗̂W)∗∗.

We have a diagram

L⊗̂W∗∗
ΦR

L ,WÐÐÐÐ→ (L⊗̂W)∗∗

r⊗id
×××Ö

Õ×××
(r−1

⊗id)∗∗

Q⊗̂W∗∗
ΦR

Q ,WÐÐÐÐ→ (Q⊗̂W)∗∗ .
_e diagram is commutative, since for any l ∈ L,w∗∗ ∈ W∗∗, φ ∈ (L⊗̂W)∗ and any
wα ∈W such that wα → w∗∗ in the weak* topology,

⟨(r−1 ⊗ id)∗∗ ○ΦR
Q ,W ○ (r ⊗ id)(l ⊗w∗∗), φ⟩

= ⟨ΦR
Q ,W(r(l)⊗w∗∗), (r−1 ⊗ id)∗(φ)⟩

= ⟨ r(l)((r
−1 ⊗ id∗ φ),w∗∗⟩ = lim

α
⟨ r(l)((r

−1 ⊗ id)∗φ),wα⟩

= lim
α

⟨(r−1 ⊗ id)∗φ, r(l)⊗wα⟩ = lim
α

⟨φ, l ⊗wα⟩

= ⟨lφ,w∗∗⟩ = ⟨ΦR
L ,W(l ⊗w∗∗), φ⟩ .

It follows that

∥(ΦR
L ,W)−1∥cb = ∥((r−1 ⊗ id)∗∗ ○ΦR

Q ,W ○ (r ⊗ id))−1∥ cb
= ∥(r−1 ⊗ id) ○ (ΦR

Q ,W)−1 ○ (r ⊗ id)∗∗∥ cb
≤ ∥r−1∥cb∥(ΦR

Q ,W)−1∥ cb∥r∥cb < 1 + ε.

Since ε > 0 is arbitrary, (ΦR
L ,W)−1 is a completely contractive. On the other hand,

sinceΦR
L ,W is completely contractive, (ΦR

L ,W)−1 is a norm-increasing linearmapping.
_us, (ΦR

L ,W)−1 is completely isometric; i.e., L has condition C′
∧
.

For constructing examples of operator spaces that do not have condition C′
∧
, we

need a lemma ûrst.

Lemma 2.4 ([11, corollary 14.5.2]) _ere is a sequence of ûnite groups Gk and homo-
morphisms θk ∶ Fn → Gk such that ker θ1 ⊇ ker θ2 ⊇ ⋅ ⋅ ⋅ and ∩ker θk = {e}.
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We let λk be the regular representation ofGk on theHilbert spaceCd(k) = ℓ2(Gk),
where d(k) is the cardinality of Gk . We let

πk = λk ○ θk ∶ Fn Ð→ Md(k)

be the correspondingunitary representations of Fn , andwe let I stand for the sequence
(d(k)). _ese determine a unitary representation

π∶ Fn Ð→MI =∏
k∈N

Md(k) ⊆ B(⊕Cd(k)),

where π(g) = (πk(g)). We let βN be the spectrum of the C*-algebra ℓ∞(N), and we
ûx an element ω ∈ βN/N, which corresponds to a free ultraûlter onN. We can regard
the elements of ℓ∞(N) as continuous functions on βN, and given a bounded sequence
α = (αk) ∈ ℓ∞(N), we deûne limk→ω αk = α(ω). We let τm be the normalized trace
on Mm . Owing to the fact that τd(k) is a state on Md(k),

∣τd(k)(αk)∣ ≤ ∥αk∥.

We deûne a trace τ0 on MI by letting τ0(α) = limk→ω τd(k)(αk). _e set

Jω = {α ∈MI ∶ τ0(α∗α) = 0}.
is a closed two-sided ideal inMI , and we let π denote the quotient mapping ofMω =
MI/Jω . We can prove that the C*-algebraMω is a Π1 factor [11].

Recall an operator space W is T-locally re�exive if for any L ⊆ Tn , n ∈ N, every
complete contraction φ∶ L∗ →W∗∗ is the pointweak* limit of anet of linearmappings
φα ∶ L∗ →W with ∥φα∥cb ≤ 1. _e following two lemmas are only small modiûcations
of [4, theorem 5.2 and corollary 5.4].

Lemma 2.5 Suppose that W is an operator space. _en the following are equivalent:
(i) W is T-locally re�exive.
(ii) For any L ⊆ Tn , n ∈ N, we have the isometry L∗⊗̂W∗ = (L⊗̌W)∗.
(ii)′ For any L ⊆ Tn , n > 2, we have the isometry L∗⊗̂W∗ = (L⊗̌W)∗.
(iii) For any n ∈ N, we have the isometry Mn⊗̂W∗ = (Tn⊗̌W)∗.
(iii)′ For any n > 2, we have the isometry Mn⊗̂W∗ = (Tn⊗̌W)∗.

Proof (i)⇔(ii)⇔(iii) have been proved in [4, theorem 5.2]. We could also prove
(ii)′⇔(iii)′ by mimicking the proof of (ii)⇔(iii) in [4, theorem 5.2].

(ii)⇒(ii)′: _is is obvious.
(ii)′⇒(ii): For any subspace L ⊆ T2, the mapping L ↪ Tn (n ≥ 3) is a completely

isometric embedding. So T∗

n → L∗ (n ≥ 3) is a complete quotient mapping. We have
the commutative diagram

T∗

n ⊗̂W∗ (Tn⊗̂W)∗
×××Ö

×××Ö
L∗⊗̂W∗ ÐÐÐÐ→ (L⊗̂W)∗ .

_e top row is a completely isometric isomorphism, and the columns are complete
quotient mappings. We have L∗⊗̂W∗ = (L⊗̌W)∗.
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Lemma 2.6 For any n > 2, we have that (Mn⊗̂W)∗∗ = Mn⊗̂W∗∗ ⇔ W∗ is T-
locally re�exive.

Proof Suõciency: _is is from [4, corollary 5.4].
Necessity: Since (Mn⊗̂W)∗∗ = (Tn⊗̌W∗)∗, we have Mn⊗̂W∗∗ = (Tn⊗̌W∗)∗ for

n > 2. By the above lemma, we get that W∗ is T-locally re�exive.

_eorem 2.7 For any n > 2,Mn does not have condition C′∧.

Proof Assume that Mn (n > 2) has condition C′
∧
, i.e.,Mn⊗̂W∗∗ = (Mn⊗̂W)∗∗ for

any operator spaceW and n > 2. We get that W∗ is T-locally re�exive. From Lemma
2.5, for n ∈ N

(Tn⊗̌W∗)∗∗ = (T∗

n ⊗̂W∗∗)∗ = CB(T∗

n ,W∗∗∗) = Tn⊗̌W∗∗∗ .

Let W = MI∗; we have (Tn⊗̌MI)∗∗ = Tn⊗̌M∗∗

I . SinceMAX ℓn1 is the diagonal oper-
ator subspace of Tn , we have the commutative diagram

MAX ℓn1 ⊗̌M∗∗

I ÐÐÐÐ→ (MAX ℓn1 ⊗̌MI)∗∗
×××Ö

×××Ö
Tn⊗̌M∗∗

I (Tn⊗̌MI)∗∗ .

_e columns are completely isometric embeddings, and the bottom row is a com-
pletely isometric isomorphism. _us MAX ℓn1 ⊗̌M∗∗

I = (MAX ℓn1 ⊗̌MI)∗∗. Let π be
the quotient mapping form MI → Mω . _e weak* closure J̄ω of Jω is a closed two-
sided ideal in the vonNeumann algebraM∗∗

I , and thus it has the formM∗∗

I e for some
central projection e in M∗∗

I . Since

M∗∗

ω = (MI/Jω)∗∗ ≅M∗∗

I /J̄ω =M∗∗

I (1 − e),

the complete quotient mapping π∗∗∶M∗∗

I →M∗∗

ω has a completely contractive li�ing
given by the canonical inclusion M∗∗

I (1 − e) ↪ M∗∗

I . It follows from [11, propo-
sition 8.1.5] that id⊗π∗∗∶MAX ℓn1 ⊗̌M∗∗

I → MAX ℓn1 ⊗̌M∗∗

ω is a complete quotient
mapping. Since MAX ℓn1 is ûnite-dimensional, we have ker(id⊗π) = MAX ℓn1 ⊗̌Jω
and ker(id⊗π∗∗) = MAX ℓn1 ⊗̌J̄ω . _erefore, we obtain a complete isometry

(MAX ℓn1 ⊗̌M∗∗

I )/(MAX ℓn1 ⊗̌J̄ω) ≅ MAX ℓn1 ⊗̌M∗∗

ω .

We have the complete isometry MAX ℓn1 ⊗̌M∗∗

I = (MAX ℓn1 ⊗̌MI)∗∗ and thus the
complete isometries

((MAX ℓn1 ⊗̌MI)/(MAX ℓn1 ⊗̌Jω))
∗∗

≅ ((MAX ℓn1 ⊗̌Jω)�)
∗ ≅ (MAX ℓn1 ⊗̌MI)∗∗/(MAX ℓn1 ⊗̌Jω)��

≅ (MAX ℓn1 ⊗̌MI)∗∗/(MAX ℓn1 ⊗̌Jω) ≅ (MAX ℓn1 ⊗̌M∗∗

I )/(MAX ℓn1 ⊗̌J̄ω).
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It follows that the columns in the following diagram are completely isometric in-
jections, and the bottom row is a completely isometric isomorphism:

(MAX ℓn1 ⊗̌MI)/(MAX ℓn1 ⊗̌Jω) ÐÐÐÐ→ MAX ℓn1 ⊗̌Mω
×××Ö

×××Ö
(MAX ℓn1 ⊗̌M∗∗

I )/(MAX ℓn1 ⊗̌J̄ω) ÐÐÐÐ→ MAX ℓn1 ⊗̌M∗∗

ω ,

and thus the top row is a complete isometry. So id⊗π∶MAX ℓn1 ⊗̌MI →MAX ℓn1 ⊗̌Mω
is a complete quotient mapping. We have the commutative diagram

MAX ℓn1 ⊗̌MI ÐÐÐÐ→ MAX ℓn1 ⊗̌Mω

∥ ∥

CB(MIN ℓn
∞
,MI) ÐÐÐÐ→ CB(MIN ℓn

∞
,Mω),

where the columns are complete isometries and the top row is a complete quotient
mapping. It follows that the bottom row is a complete quotient mapping, and thus
given ε > 0, any φ ∈ CB(MIN ℓn

∞
,Mω) has a li�ing ψ with ∥ψ∥cb < ∥φ∥cb + ε, which

is impossible for n > 2 see [11, lemma 14.5.3].
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