Can. J. Math., Vol. XXIV, No. 1, 1972, pp. 155-166

BASIC OBJECTS FOR AN ALGEBRAIC
HOMOTOPY THEORY

PAUL CHERENACK

The purposes of this paper are:

(A) To show (§§ 1, 3, 5) that some of the usual notions of homotopy theory
(sums, quotients, suspensions, loop functors) exist in the category 2/% of
affine k-schemes where the affine rings are countably generated.

(B) By example to demonstrate some of the more geometric relations
between two objects of /% and their quotient or to study the algebraic
suspension of one of them. See §§ 2.1, 2.2, 2.3, 3.

(C) To prove (§4) that the algebraic suspension (in R/%) of the n-sphere
is homeomorphic to the # 4 1 sphere for the usual topologies.

(D) To show that the algebraic loop functor is right adjoint to the algebraic
suspension functor (§5).

These results can be viewed as a precursor of definitions for an algebraic
homotopy theory from a ‘‘geometric’” point of view (rather than a more
algebraic standpoint employing Galois theory [5]).

1. Basic categorical properties of 2-schemes corresponding to count-
ably generated k-algebras. Let % be the category of countably generated
k-algebras, where k is a field and 0 is not an object of €. The comma category
% /k can be formed. This is the category whose objects are e: 4 — & (evalua-
tion maps in C) and morphisms.

usnd S

are maps f : A — B such that¢’of =e,
(A) € /k has a zero object

k Z—d> k,
as every k-algebra map k& — k is the identity.

LEMMA 1. Every sub-k-algebra of a countably generated k-algebra is countably
generated.

Proof. If A is a countably generated k-algebra, it has a countable base and so
does any subalgebra. This subalgebra must, then, be countably generated.
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(B) % /k has equalizers. If

f
mim?wim

are two maps in % /k, one checks that
Equalizer (f,g) = A" >k,
where A’ = {x € A |f(x) = g(x)} and

A"k =4">4%.

A’ is a countably generated k-algebra, by Lemma 1.
(C) € /k has coequalizers. If

are two maps,
Coequalizer (f, g) = B’ —k,

where B’ = B/(f(x) — g(x))((f(x) — g(x)) is the ideal in B generated by
all f(x) — gx), x € 4) and B’ — k is induced from

B—é)k

as bof = a = bog. B’ is countably generated as the image of a countably
generated k-algebra.
(D) % /k has products. Let
A% BL
be in € /k. One sees that

AXxBEXb 1k

isin ¥ (4 X B is generated by 4 X 0 and 0 X B). Let
AnB = Equalizer (¢ X b, syopi10(a X b)),

where p1: k2 X k—k, si: k—k Xk are defined by pi(x,y) = x, si(x) =
(x, x). Then,

ArBC AXBEXE s nbip

is the product of a and b in € /k.
(E) % /k has sums. Let

4% Y

be in % /k. These induce a map A4 ®; B — k which is the sum of a and b.
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Let Spec: % /k — Spec k/9 be the anti-equivalence of categories which
associates to each k-algebra A and evaluation e: 4 — %k a scheme Spec 4
and base point P = Spec £ C Spec 4.

We write Spec /9 = k/%. From the above relations we obtain:
PROPOSITION 1. /9| the category of “countable’ affine k-schemes, has

(a) a zero object,

(b) equalizers and coequalizers,

(c) products and sums,

(d) kernels and cokernels,

(e) pullbacks and pushouts.

(d) and (e) follow from (a), (b) and (c).

PROPOSITION 2. £/9 is normal for closed immersions but not conormal.

Proof. € is surjectively conormal. If 4 = B is a surjection, f is coequalizer
of maps e, 7: k& + ker f — A4, where 7 is the inclusion and e(ker f) = 0. G /k
is not normal. Otherwise, % /k is abelian and, hence, sums equal products,
which is impossible. A more illuminating proof is as follows. Let

sl Bl
be a monomorphism in € /k. If % /k were normal (and, hence, € /k abelian),
then f = ker(cok f ). In terms of %, cok f = B/(f(x) — a(x)).
ker (cok f) = ker(B — B/(f(x) — a(x))).
which is not necessarily 4.

COROLLARY. If f is a closed immerison in k/9 , ker(cok f) = f.

2.1. Examples of categorical constructions in 2/%. Quotients of the
line by 2 points. Let X be the X-axis, and 1, 0 € X. The rings of X,0, 1 are
k[X], and &, k, respectively. Suppose that 0 is the basepoint of X and basepoint
of the reducible algebraic variety {0, 1}. Obviously, X/{0} = X. To determine
X /{0, 1}, we find the coequalizer of

1

(0,1} B X,

where one map is an inclusion and the other assigns the basepoint of X. 7 and *
correspond to ¥, ** in
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If s;*: B — E X kis defined by s* (x) = (x, x), ** = s1* o u*.

FIX) S B X b = RX] > RX)/(X(X — 1)) 22k X k.

The last relation follows by the Chinese remainder theorem.

Suppose that 7*(f) = **(f). Then f(0) X f(1) = f(0) X f(0).

Thus, Eq(#*, x*) = £ 4+ (X (X — 1)) (suppressing the evaluation map).
To obtain the ideal of Eq(¢*, #*), we define a map

EXy ..., Xp ... ]2+ XX —1))
via
X1 — X(X — 1),
X3 — XX — 1),
X;—> XX —1)2
X,—> X3(X — 1), etc.

One obtains equations X3X, = X3, Xy = Xo 4+ X3, X5 = X5+ X3, X, =
(X2 — X3), etc. If the cardinality of % is bigger than the cardinality of the
integers Z, then the zeroes of these equations, which we denote V;(Eq (¢¥, #*)),
correspond to the closed points (maximal ideals) of Spec(k+ (X (X — 1))),
when £ is algebraically closed. See [3].

ProrpositioN 1. (a) Eq(¢*, «*) has a function field K.

(b) A model for K is Y2 = X2(X + 1). This is the cubic with one node
(k algebraically closed).

(c) The node is the basepoint.

Proof. (a) Eq(e*, *) C k(X), which is a field.
(b) One projects onto X, X3 coordinates which satisfy:

XXy = X48,
X2 = X3 + le
X3+ X1 X; = X8

The tangents at the singular point (0, 0) are X3 = 0, X3 + X, = 0. Therefore,
X324+ X1 X3 = X% is the singular cubic with one node, and is projectively
equivalent with Y2 = X2 (X + 1). See [6].

(c) The basepoint of Eq(¢*, #*) corresponds to X = 0;i.e., X; = 0,X, = 0,
Xa = 0, ... . But (Xl, Xg) = (0, 0) is the node Of X32 + X1X3 = X13.

One can easily see that if 2 = R, the equation X;? + X;X; = X3 defines
the usual picture of a singular cubic with one node.

It is possible to show that the quotients of a non-singular irreducible
algebraic curve by finite collections of a finite number of points is again
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algebraic. Serre [7] contains this result, and also a local statement of the above
result. The advantage of the above construction is that it is more explicit.

2.2. Quotients in k/9. Let k& be algebraically closed and let card & >
card Z. Suppose that
v, 2y v, 0)
are two based maps in /9 where P ¢ V, Q € W and %(V) = Q. Then,
cok f = Coeq(f, *) = Spec(Eq(f*, +*)),

£ kW] 2o ) > R[V]— &),

w* o*
#*: (R[W]— k) — (R[V]— k).

Here, k[W], k[V] are the elements of % corresponding to W and V, and

«* = i* o w*, where 7* includes & in £[V]. Thus,
Eq(f*, «*) = {x € R[W] [ f*(x) = w*(x)}.

LeEmMma 1. Eq(f*, **) = k& + ker f*.

Proof. Let x € k + ker f*. Then x = ¢ + b, where a € k, b € ker f*. We
have f*(x) = a and w*(x) = v*/*(x) = v*(a) = a¢. So, x € Eq(f*, «*). Let
x € Eq(f*, #*). Then x = a + b, where a € k, b € ker(w*). We have

f*x) = f*(a) + f*(®) = a + f*(b) and w*(x) = a. As x equalizes f*, w*,
f*¥@®) =0,b € ker f*.

ProrosiTioN 1. (a) Let (V, P) L (W, Q) be a map in k/G. Cok(f) =
(Spec(k + ker f*), ker f*)

(b) If f is an inclusion, (W/V, V) = Cok f = (Spec(k + I,), I,), where I,
s the ideal of V.

Proof. (a) follows from Lemma 1 and remarks on equalizers in % in §1.
(b) One has a ring map

f*
k(W] E[W]/1,.
2.3. Example of categorical constructions in k2/G. The quotient of
the line by the divisor 20. 0 the basepoint of the line, etc.
k/20 = Spec(k + (X?)).

Map X1 — X3,

X2 - X3’

X — X4, etc.

https://doi.org/10.4153/CJM-1972-014-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-014-6

160 PAUL CHERENACK

A model of the function field of £ + (X?) is given by X3 = X, This is the
non-singular cubic with one cusp.
Similarly,
k/20 4+ P = Spec(k + (X + 1)(X?2))

has a model with equation X* = X2X;, X; — X = X,
Often the quotient of algebraic varieties is not an algebraic variety.

Definition 1. Let K be the function field of an irreducible reduced k-scheme
in 9. Then K is a countably generated k-algebra, and each subalgebra is a
countably generated k-algebra. Let V() denote the k-points of a closed affine
k-scheme corresponding to such a subalgebra and let { V (&)}, or simply { V],
denote the collection of all V (k). We write V > V' if there is a birational
projection V' — V’. Minimal models are elements of { V}x not bigger than any
other element of { V}x by >.

CoROLLARY. The examples of §§ 2.1, 2.3 are minimal models.
As a consequence of these heuristics, one can propose:

ProrosiTION 1. Let k be an algebraically closed field and F an algebraic curve
nk/Y.

(@) F appears at the end of a string of algebraic curves

RS2 m%SH,—. .. SHXT,

where the o; are quotients, the p,; are constant maps, and H, is non-singular, the
normalization of F.

(b) If F has one singular point, n = 1.

(c) F 1s the coequalizer of maps

(d) If F is of genus zero, and a plane curve,
(deg F — 1)(deg FF — 2) = 2 uri(ry — 1),
where the v, are the multiplicities of the singularities of F.
The proofs of (a), (b), (c) are to be essentially found in [7]; (d) is a formula
in [8].
2.4, Examples of categorical constructions in /9. Higher dimen-
sional quotients.

ProposITION 1. Let 0 be the basepoint of the plane P and the X-axis in the
plane. Then the quotient of (P, 0) by (X-axis, 0) has minimal model with equation
XZ = Y-

Proof. The ring of the quotient is £ + (X). One defines a map
EXy.... X .. ]—2k+ (X)
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by
Xl-)X,

X, — XY,

X; > X7V,

X, — X7V3, etc.
Then X1X3 = Xzz.

PROPOSITION 2. The quotient of (P, 0) by (X-axis \J Y-axis, 0) has minimal
model with equation YZ = X3.

Proof. The map
EXy..., X0 .. ]2k+ (XY)
is
Xl — XY,
X, — XY,
X;— X7,
X, — X37, etc.

Then X2X3 = X13.

PRroPoOSITION 3. Let S be the cylinder in 3-space defined by X% + Y2 = 1 with
basepoint (1,0,0) and let L be the line X = 1, Y = 0 with basepoint (1,0, 0).
Then, S/L has a wminimal model with equation 2%+ X3(X 4+ 2) =0
(with basepoint (0, 0, 0)).

Proof. The map
Xy ..., Xp. .o+ X —-1)CEkX, Y, 2]
is defined by

X1 - X — ].,
X2 - Z(X - 1),
X3 i Y(X — 1),
Xi— 22(X — 1), etc.

Then X2 + X3(X:1 + 2) = 0.

Note that in these examples Y is not integral over the ring of the quotient,

and the quotient can not be shown to be an algebraic variety by the method
of Serre [7].

3. Algebraic Suspensions. One of the main reasons to study quotients in
k/% is to define suspensions. Let (X, P) be in k/%, and let S, be the circlein Z,
defined by X2 4+ Y2 = 1 with basepoint (0, 1). Then:

Definition 1. The algebraic suspension of X, written .S(X), is the quotient of

https://doi.org/10.4153/CJM-1972-014-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-014-6

162 PAUL CHERENACK

This is the same, categorically, as the definition in the topological case. Thus,
one expects:

ProprosITION 1. The algebraic suspension of two points is the circle.

Proof. The ring of the suspension is the equalizer E of

7
EISi] @k (B X k) = E[S1] X E X E,
**

where f* (g, a,0,) = (ag, g(0, 1) @, g(0, 1)d).
This is seen to be the ring generated by
g ®(a, b)|(ag, £(0, )a, g(0, 1)b) = (f(0, 1)a, £(0, 1)a, f(0, 1)a)}.

If a # 0, elements f(1,1) ® (a, a) are in E. If ¢ # 0, b # 0, elements of
M, 1y @ik are in E. Thus, as M, 1 is the maximal ideal in £[Si] at (0, 1),
E == k + M(oy 1) = k[Sl]

PROPOSITION 2. The algebraic suspension of the line has a minimal model with
equation

Z =27,
X6+ V¢ = —2V5X.
A graph of this surface can be found in Frost [1, plate IV, fig. 3].

Proof. One defines a map

X1y .oty Xpyool] @+ X — 1)(Y)
via (X' = (X — 1))
X, - X'Y,
X, — X'?Y,
X3 — X' YZ,
X, —»ZX'V)X,
Xs > 23(X'Y), etc.

Then X1X5=X42, Xsz =X13, and X22+X32 = —2X2X1, the last

relation following from X’2 + ¥? = —2X’. Projecting onto (Xi, X:) plane
and substituting X; = X:®/X, one obtains X! + X;% = —2X,3X,. X,
is free.

4. Algebraic suspensions of S”.

THEOREM. Let S" be the n-sphere defined over k.
(@) The equations of « minimal model of the algebraic suspension S(S*) of

S” are
X3 X4 = X3,
Xo + X2 = — 2X3X,,
X42 + PERIRS + Xn+42 = - 2X4X1,
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m n + 4 space. The basepoint is (0,0, ...,0) and this is clearly a singular
point. St = Si.
(b) Let k = R. Then S(S") is homeomorphic to S*1, for the usual topologies.

Proof. (a) Let k[x, v] and k[x1, ..., %,1] be the affine rings of S* and S,
respectively. The ideal of

1,0) X S1US: X (1,0,...0)
in
klx, v] @ klx1, ..y Xpr1) = klx, ¥, %1, « .+, Xpya]

is ((x — 1) (x1 — 1)). Therefore, the ring of the suspension is
k + ((x - 1) (xl - 1)) C k[x) Yy X1y 00 ey xn+l]°

Letx =x — land %, = x; — 1.
One defines a map
kX1 ..., Xp, .. ] >k 4+ (&%)

via

X1 — X%,

Xy — yXi1,

X3 — &Xky,

X4 — X1%%1,

X5 — Xokk1,

X1 — Xpp1%%y, etc.
One sees that X3X4 = Xls, X22 + X32 = — 2X3X1, and
X2+ .. X2 = — 2X X,

by inspection. The basepoint of S* X S; corresponds to &, £; = 0. Therefore,
the basepoint of these equations is (0,0, . . .).

(b) We prove the case # = 1 first, where intuition is clearer. In this situation
the equations are

X3X4 = Xla,
X22 + X32 = - 2Xale
‘Xv42 + X52 = - 2X4X1.

For a solution to exist (from the last two equations), X3, X1 must have
opposite signs and X4, X; must have opposite signs. But then, from the first
equation, X; must be positive. Thus, using the last two equations, we obtain
the conditions
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Substituting X4 = X,*/X; into the last equation we have
() X4 (X2 4 2X;) = — X52X,%
The second equation can be written
8) Xy? = — X3(Xs + 2X,).
These two equations yield
X?+2X; 20,
X3+ 2X: 2 0.

Graphing (a), subject to the above conditions, one obtains a graph
homeomorphic to a disc with X3 + 2X; = 0 on the boundary. Then the graph
of S(S?!) in 4-space, subject to condition (8), will be two discs joined around
their boundary where X3 + 2X; = 0. A 2-sphere is thus obtained.

For arbitrary #, one obtains

(a) X14(X12 + 2X3) = — (X32X52 + oo + X32X"+42)
and
®) Xo? = — X3(X;5 + 2X5),
together with conditions
X120,
X3y X4 é 0,
X2+ 2X; =20,
Xs+2X,=0.

The projection of (a), subject to X3 + 2X; = 0, is the interior of the region
bounded by

X13(4 - X]) = 4(X52 + PR + Xn+42).
This is seen to be an z + 1 disc, topologically. Therefore, using equation (8),

one has S(S") is homeomorphic to the # 4 1 sphere.

We note that the projection of S(S*) into the first » + 4 coordinates is a
homeomorphism.

5. Algebraic loop functors. Suppose that the suspension functor S (a
functor because of its categorical construction) has a right adjoint Q in /9.
Then, suppose that

Hom(SX, ¥Y) = Hom (X, Q(Y)),

as bifunctors in X, Y. Let X be an element of /% consisting of 2 points. Then,
as sets,

Q(Y) = Hom (X, (Y) = Hom (S}, ¥)
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(suppressing basepoints). The algebraic loop functor should bave the same
form as the topological loop functor. For the above to make sense, however,
Hom (S?, ¥) must be given the structure of an element in £/%.

Let X, ¥ be elements in #/% whose geometric % points X (k), V' (k) # 0. We
show that Hom (X, ¥) can be given the structure of an object in /% . Each
element f € Hom (X, Y) defines a morphism

fla) = (&0, a:)),

where the by are the coefficients of the polynomial in @, in the j coordinate of
f(a;). Viewing the a; as indeterminants and substituting (¢7(b/, ¢;)) into the
equations of Y, one has

Hom (K%, V) = { (b)|F(g' (b, a;)) = 0, for all F in the ideal of ¥}

is an element of #/9 with basepoint the map e:k* — ¥ which maps %% to the
basepoint of Y. Let

Z = {(b) € Hom(*%, ¥*)|(¢ (b, a)) = P for all (a;) € X (k)}.

Z is an element of k/% with basepoint e. Hom (X, %) is then the quotient of
Hom (K%, k%) by Z. Hom(X, Y) is the image in k/9 of Hom (k% ¥) in
Hom (X, £%).

THEOREM 1. In k/9, S is the left adjoint to Q.
Proof. As k/% is normal for closed immersions, one has an exact sequence
0-5SI XRUQXX—->S5 XX—-SX)—0.
Define a map
a: Hom(S(X), ¥) - Hom (X, Hom(Sy, ¥))
via
a(f) () (s) = f(s, %),
where f € Hom(S(X), ¥) and (s,x) is a representative for an element of
S(X). Then,
a(N)X)(Q) = f(Q, X) = P,
a(f)(R)(S1) = f(Sy, R) = P,
and as ¢ (as defined above) is the basepoint of Hom (S1, V), a behaves properly
with respect to basepoints. Define a map
B’: Hom (X, Hom(S;, Y)) » Hom(S; X X, ¥)
via

B'(f) (s, %) = fx)(s).

B (f)(Su R) = f(R)(S1) = P,
B (NQ X) =fX)(Q) = P,

As
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B’ induces a map
B: Hom (X, Hom(S;, ¥)) —» Hom(S(X), Y).

The theorem is then complete, as it is clear that @ and B8 are inverse natural
transformations and that 2(¥) = Hom (S, Y).
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