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BASIC OBJECTS FOR AN ALGEBRAIC 
HOMOTOPY THEORY 

PAUL CHERENACK 

The purposes of this paper are: 
(A) To show (§§ 1, 3, 5) that some of the usual notions of homotopy theory 

(sums, quotients, suspensions, loop functors) exist in the category è/2? of 
affine ^-schemes where the affine rings are countably generated. 

(B) By example to demonstrate some of the more geometric relations 
between two objects of kfâ and their quotient or to study the algebraic 
suspension of one of them. See §§ 2.1, 2.2, 2.3, 3. 

(C) To prove (§4) that the algebraic suspension (in R/Ê?) of the ^-sphere 
is homeomorphic to the n + 1 sphere for the usual topologies. 

(D) To show that the algebraic loop functor is right adjoint to the algebraic 
suspension functor (§5). 

These results can be viewed as a precursor of definitions for an algebraic 
homotopy theory from a "geometric" point of view (rather than a more 
algebraic standpoint employing Galois theory [5]). 

1. Basic categorical properties of ^-schemes corresponding to count-
ably generated ^-algebras. Let *$ be the category of countably generated 
^-algebras, where k is a field and 0 is not an object of fé\ The comma category 
fâ/k can be formed. This is the category whose objects are e: A —•> k (evalua­
tion maps in C) and morphisms. 

(A^k)^(B^ k) 

are maps / : A —> B such that e' of = e. 
(A) *$ /k has a zero object 

as every ^-algebra map k —•> k is the identity. 

LEMMA 1. Every sub-k-algebra of a countably generated k-algebra is countably 
generated. 

Proof, If A is a countably generated ^-algebra, it has a countable base and so 
does any subalgebra. This subalgebra must, then, be countably generated. 
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156 PAUL CHERENACK 

(B) *$/k has equalizers. If 

are two maps in të/k, one checks that 

Equalizer (/, g) = A' —> k, 

where A' = {% Ç A \f(x) = g(x)} and 

, 4 ' - > £ =A'->A^>L 

A' is a countably generated &-algebra, by Lemma 1. 
(C) *&/k has coequalizers. If 

f 
(A^k)^(BXK) 

are two maps, 

Coequalizer (/, g) = B' —> &, 

where 5 ' = B/(f(x) — g(x)) ((f(x) — g(x)) is the ideal in B generated by 
all /(x) — g(x), x £ A) and B' —> & is induced from 

as &o/ = a = frog. I?' is countably generated as the image of a countably 
generated ^-algebra. 

(D) ^l~k has products. Let 

A^k, B^k 
be in *£/k. One sees that 

A XB^-*Xk Xk 
isin & (A X B is generated by A X 0 and 0 X B). Let 

yl7rJ5 = Equalizer (a X 6, SiOpio(a X b)), 

where pi : k X k —> k, s± : k -^ k X k are defined by pi(x, y) = xt Si(x) = 
(x, x). Then, 

^ T T ^ C ^ XBaXb,kXkHk 

is the product of a and b in ^ / & . 
(E) *£/k has sums. Let 

^ a 7 T> ^ 7 

A ->k,B->k 

be in ^ / & . These induce a map 4̂ 0k B -^ k which is the sum of a and b. 
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HOMOTOPY THEORY 157 

Let Spec: *$/k —» Spec kfê be the anti-equivalence of categories which 
associates to each ^-algebra A and evaluation e: A —> k a scheme Spec A 
and base point P = Spec k C Spec A. 

We write Spec k/@ = k/@. From the above relations we obtain: 

PROPOSITION 1. k/&, the category of "countable" affine k-schemes, has 
(a) a zero object, 
(b) equalizers and coequalizers, 
(c) products and sums, 
(d) kernels and cokernels, 
(e) pullbacks and pushouts. 

(d) and (e) follow from (a), (b) and (c). 

PROPOSITION 2. k/& is normal for closed immersions but not conormal. 

f 
Proof. *% is surjectively conormal. If A —» B is a surjection, / is coequalizer 

of maps e, i : k + kerf—^ A, where i is the inclusion and e(kerf) = 0. të/k 
is not normal. Otherwise, fë/k is abelian and, hence, sums equal products, 
which is impossible. A more illuminating proof is as follows. Let 

(A ^ k) 4 (B A k) 
be a monomorphism in fë/k. If ^f/& were normal (and, hence, fë/k abelian), 
t h e n / = ker(cok/ ). In terms of ^ , cokf = B/(f(x) — a(x)). 

ker(cok/) = ker(J5 -> B/(/(*) - a(*))). 

which is not necessarily A. 

COROLLARY. Iff is a closed immerison in k/&, ker(cok/) = / . 

2.1. Examples of categorical constructions in k/&. Quotients of the 
line by 2 points. Let X be the X-axis, and 1, 0 G X. The rings of X, 0, 1 are 
k[X], and k, k, respectively. Suppose that 0 is the basepoint of X and basepoint 
of the reducible algebraic variety {0, 1}. Obviously, X/{0} = X. To determine 
X/{0, 1}, we find the coequalizer of 

where one map is an inclusion and the other assigns the basepoint of X. i and * 
correspond to i*t ** in 

i* 
k[X] ~+k X k 

k 

https://doi.org/10.4153/CJM-1972-014-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-014-6


158 PAUL CHERENACK 

If si*: k —> k X k is defined by s±* (x) = (x, x), ** = si* o u*. 

k[X] U k X k = ife[X] -> *[X]/(X(Z - 1)) 9Ë & X £. 

The last relation follows by the Chinese remainder theorem. 
Suppose that **(/) = **( / ) . Then/ (0) X / ( l ) = / ( 0 ) X / ( 0 ) . 

Thus, Eq(i*, **) = & + (X(X — 1)) (suppressing the evaluation map). 
To obtain the ideal of Eq(i*, **), we define a map 

k[X1,...1Xm,...]->k + ( * ( * - 1)) 
via 

X x - > X ( X - 1), 

X 2 - > X 2 ( X - 1), 

X 3 - * X ( X - l ) 2 , 

XA-^X*(X - 1), etc. 

One obtains equations X3X2 = Xx
3, X4 = X2 + Xx\Xh = Xz + X1\X1 = 

(X2 — X%), etc. If the cardinality of k is bigger than the cardinality of the 
integers Z, then the zeroes of these equations, which we denote F^(Eq(i*, **)), 
correspond to the closed points (maximal ideals) of Spec(£+(X(X — 1))), 
when k is algebraically closed. See [3]. 

PROPOSITION 1. (a) Eq(i*, **) has a function field K. 
(b) A model for K is Y2 = X2(X + 1 ) . This is the cubic with one node 

{k algebraically closed). 
(c) The node is the basepoint. 

Proof, (a) Eq(i*, **) C k(X), which is a field. 
(b) One projects onto Xi, Xz coordinates which satisfy: 

X2Xz = Xx\ 

X2 = Xz + Xi, 

Xz2 + XXXZ = Xx\ 

The tangents at the singular point (0, 0) are Xz = 0, Xz + Xi = 0. Therefore, 
Xz

2 + X1X3 = Xiz is the singular cubic with one node, and is projectively 
equivalent with Y2 = X2 (X + 1). See [6]. 

(c) The basepoint of Eq(i*, **) corresponds to X = 0; i.e., X\ = 0, X2 = 0, 
Xz = 0, . . . . But (Xl9 Xz) = (0, 0) is the node of X3

2 + X±XZ = Xx\ 

One can easily see that if k = R, the equation X3
2 + XiXz = ^ i 3 defines 

the usual picture of a singular cubic with one node. 
It is possible to show that the quotients of a non-singular irreducible 

algebraic curve by finite collections of a finite number of points is again 
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algebraic. Serre [7] contains this result, and also a local statement of the above 
result. The advantage of the above construction is that it is more explicit. 

2.2. Quotients in kfë. Let k be algebraically closed and let card k > 
card Z. Suppose that 

are two based maps in k/@ where P G V, Q G W and *(V) = Q. Then, 

cok/ = Coeq(/, *) = Spec(Eq(/*, **)), 

w* v* 
/*: (k[W]—*k)-*(k[V]—*k), 

**: (k[W] ^-> k) -> ik[V] - ^ k). 

Here, fe[W], k[V] are the elements of *$ corresponding to W and V, and 
** = *̂ o w*, where i* includes k in k[V]. Thus, 

Eq( /* , **) = {x G &[W] | /*(*0 = w*(pc)}. 

LEMMA 1. Eq(/* , **) = k + ker/*. 

Proof. Let x G & + ker /*. Then x = a + 6, where a £ k, b £ ker /*. We 
have/*(x) = a and 2£;*(x) = v*f*(x) = z/*(a) = a. So, x G Eq( /* , **). Let 
x G Eq( /* , **). Then x = a + 6, where a G i , & G ker(w*). We have 
/*(x) = /*(») + /*(£) = « +/*(&) and w*(x) = a. As x equalizes /*, w*, 
/*(6) = 0, b G ker/*. 

/ 
PROPOSITION 1. (a) Let (V,P) -* (W, Q) be a map in k/&. Cok(/) = 

(Spec(& + ker /*) , ker/*) 
(b) / / / is an inclusion, (W/V, V) = Cok/ = (Spec(& + /„) , /„ ) , where Iv 

is the ideal of V. 

Proof, (a) follows from Lemma 1 and remarks on equalizers in *€ in §1. 
(b) One has a ring map 

k[W]£k[W]/I9. 

2.3. Example of categorical constructions in k/G. The quotient of 
the line by the divisor 20. 0 the basepoint of the line, etc. 

* / 2 0 ^ S p e c ( * + (X2)). 

Map Xx -> X\ 

X2-+X\ 

X3 -> X4, etc. 
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A model of the function field of k + (X2) is given by Xi3 = X2
2. This is the 

non-singular cubic with one cusp. 
Similarly, 

&/20 + P = Spec(& + (X + 1) (X2)) 

has a model with equation XX
A = X2

2XZ, Xz — X2 = Xlm 

Often the quotient of algebraic varieties is not an algebraic variety. 

Definition 1. Let K be the function field of an irreducible reduced ^-scheme 
in &. Then K is a countably generated ^-algebra, and each subalgebra is a 
countably generated ^-algebra. Let V(k) denote the ^-points of a closed affine 
^-scheme corresponding to such a subalgebra and let { V(k)}K, or simply { V\K, 
denote the collection of all V(k). We write V > V if there is a birational 
projection V —> V. Minimal models are elements of { V}K not bigger than any 
other element of { V)K by > . 

COROLLARY. The examples of §§ 2.1, 2.3 are minimal models. 

As a consequence of these heuristics, one can propose: 

PROPOSITION 1. Let k be an algebraically closed field and F an algebraic curve 
in k/&. 

(a) F appears at the end of a string of algebraic curves 

TT ïï/7 ÈITT ïïff _^ - ^ T T ?H 77 
111 —> £12 —> IJ-2 — ^ ^ 7 3 —> • • • • —> lln —> " i 

where the at are quotients, the pt are constant maps, and H\ is non-singular, the 
normalization of F. 

(b) If F has one singular point, n = 1. 
(c) F is the coequalizer of maps 

{Pi}, . { P . J - i ï i . 

(d) If F is of genus zero, and a plane curve, 
(deg F - l)(deg F - 2) = ZMn ~ 1), 

where the rt are the multiplicities of the singularities of F. 

The proofs of (a), (b), (c) are to be essentially found in [7] ; (d) is a formula 

in [8]. 

2.4. Examples of categorical constructions in k/@. Higher dimen­
sional quotients. 

PROPOSITION 1. Let 0 be the basepoint of the plane P and the X-axis in the 
plane. Then the quotient of (P, 0) by {X-axis, 0) has minimal model with equation 
XZ = Y2. 

Proof. The ring of the quotient is k + (X). One defines a map 

k[Xu . . . , Xn, . . .] -> k + (X) 
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by 
X1-^X, 
X2^XY, 
X3^XY2, 
Xi-^XY\ttc. 

Then XtX» = Xf. 

PROPOSITION 2. The quotient of (P, 0) by {X-axis U Y-axis, 0) has minimal 
model with equation YZ = Xz. 

Proof. The map 

k[Xu...,Xn,...]-+k + (XY) 
is 

X1->XY, 

X2->X2Y, 
X3-+XY2, 
X 4 - + X 3 F , e t c . 

Then X2X3 = XJ. 

PROPOSITION 3. Let S be the cylinder in 3-space defined by X2 + Y2 = 1 with 
basepoint (1, 0, 0) and let L be the line X = 1, Y — 0 with basepoint (1, 0, 0). 
Then, S/L has a minimal model with equation Z2 + XS(X + 2) = 0 
(with basepoint (0, 0, 0)). 

Proof. The map 

k[Xi Xn,...]-*k+(X-l)C k(X, Y,Z] 

is denned by 
X x ^ X - 1, 

X2-*Z(X - 1), 

X 3 - + F ( X - 1), 

Xi-^Z2(X - 1), etc. 

Then X3
2 + Z i s (X! + 2) = 0. 

Note that in these examples Y is not integral over the ring of the quotient, 
and the quotient can not be shown to be an algebraic variety by the method 
of Serre [7]. 

3. Algebraic Suspensions. One of the main reasons to study quotients in 
k/& is to define suspensions. Let (X, P) be in kfê, and let Si be the circle in &, 
denned by X2 + F2 = 1 with basepoint (0, 1). Then: 

Definition 1. The algebraic suspension of X, written S(X), is the quotient of 
(X, P) X (Si, (0, 1)) b y ( ? X 5 1 W ! X (0, 1), P X (0, 1)). 
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This is the same, categorically, as the definition in the topological case. Thus, 
one expects: 

PROPOSITION 1. The algebraic suspension of two points is the circle. 

Proof. The ring of the suspension is the equalizer E of 

k[Si] ®k ( i X i ) - » k[Si] XkXk, 
** 

where/* (g, a, b,) = (ag, g(f), 1) a, g(0, l ) i ) . 
This is seen to be the ring generated by 

{g ®(a,b)\(ag,g(0, l)a,g(0, l)b) = ( /(0, l ) a , / (0 , l ) a , / (0 , l )a)} . 

If a J* 0, elements/( l , 1) (x) (a, a) are in E. If a ^ 0, b ^ 0, elements of 
Af(o, i) ®A;& are in E. Thus, as M^, D is the maximal ideal in k[Si] at (0, 1), 
E = k + Mi0. i) = k[S{\. 

PROPOSITION 2. The algebraic suspension of the line has a minimal model with 
equation 

Z = Z, 

X 6 + F4 = - 2 F 3 X . 

A graph of this surface can be found in Frost [1, plate IV, fig. 3]. 

Proof. One defines a map 
k[Xu...,Xn,...]->k + ( X - 1)(F) 

via (X' = (X - 1)) 
XX-ÏX'Y, 

X 2 - > X ' 2 F , 
X 3 - ^ X ' F 2 , 

X 4 - + Z ( X ' F ) X , 

X 5 - > Z 2 ( X ' F ) , e t c . 

Then XXX, = X,\ X2X3 = Xx
3, and X2

2 + X3
2 = - 2 X 2 X i , the last 

relation following from X'2 + F2 = — 2X'. Projecting onto (Xi, X2) plane 
and substituting X3 = Xi3 /X2 , one obtains X2

4 + Xi6 = - 2 X 2
3 X i . X4 

is free. 

4. Algebraic suspensions of Sn. 

THEOREM. Let Sn be the w-sphere defined over k. 
(a) The equations of a minimal model of the algebraic suspension S(Sn) of 

Sn are 
X3X4 = Xi3, 

X2 -\- X 3
2 = — 2X3X1, 

X42 + . . . + Xn+A2 = — 2X4X1, 
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in n + 4 space. The basepoint is (0, 0, . . . , 0) and this is clearly a singular 
point. S1 = Si. 

(b) Let k = R. Then S(Sn) is homeomorphic to Sn+1, for the usual topologies. 

Proof, (a) Let k[x, y] and k[xh . . . , xn+i] be the affine rings of S1 and Sn, 
respectively. The ideal of 

(1,0) X S i U S i X (1,0, . . . 0 ) 
in 

k[x, y] (x) k[xi, . . . , xn+i] = k[x, y,xi, . . . , xn+1] 

is ((x — 1) (xi — 1)). Therefore, the ring of the suspension is 

k + ((x - 1) (xi - 1)) C k[x, y, xi, . . . , xn+1]. 

Let x = x — 1 and X\ = x\ — 1. 
One defines a map 

fe[Zi, . . . , Xm, . . . ] - > & + (xxi) 
via 

X i —> XX\. 

X2 —> 3^xxi, 

X 3 —» xxxi, 

X 4 —» 3CiXXi, 

X§ —> X2XX1, 

-̂w+4 * xw-f-ixxi, etc. 

One sees that X3X4 = Xi3, X2
2 + X3

2 = - 2X3X1, and 

X42 + . . . + -XV1-42 = — 2X4X1, 

by inspection. The basepoint of Sn X S± corresponds to x, X\ = 0. Therefore, 
the basepoint of these equations is (0, 0, . . .). 

(b) We prove the case n = 1 first, where intuition is clearer. In this situation 
the equations are 

x 3 x 4 = Xi3, 

X2
2 + X3

2 = - 2X»*!, 
X4

2 + X5
2 = - 2X4Xi. 

For a solution to exist (from the last two equations), X3, X± must have 
opposite signs and X4, Xi must have opposite signs. But then, from the first 
equation, Xi must be positive. Thus, using the last two equations, we obtain 
the conditions 

X ^ 0, 
x3, x, ^ 0. 
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Substituting X4 = Xi 3 /X 3 into the last equation we have 

(a) XJiXf + 2X3) = - X6
2X3

2. 

The second equation can be written 

03) Xf = -XZ{XZ + 2X1). 

These two equations yield 

Xx
2 + 2X3 S 0, 

Xz + 2Xi ^ 0. 

Graphing (a), subject to the above conditions, one obtains a graph 
homeomorphic to a disc with X 3 + 2Xi = 0 on the boundary. Then the graph 
of SOS1) in 4-space, subject to condition (J3), will be two discs joined around 
their boundary where X 3 + 2Xi = 0. A 2-sphere is thus obtained. 

For arbitrary n, one obtains 

(a) XS{XS + 2X3) = - (X3
2X5

2 + . . . + X3
2Xw+4

2) 

and 

08) XJ = - X3(X3 + 2X3), 

together with conditions 

X ^ O , 

Xz, X4 Û 0, 

Xx2 + 2X3 ^ 0, 

X3 + 2Xi ^ 0. 

The projection of (a), subject to X3 + 2XX = 0, is the interior of the region 
bounded by 

Xi»(4 - XO = 4(X5
2 + . . . + Xw+4

2). 

This is seen to be an n + 1 disc, topologically. Therefore, using equation (£), 
one has 5(5^) is homeomorphic to the n + 1 sphere. 

We note that the projection of 5(5^) into the first n + 4 coordinates is a 
homeomorphism. 

5. Algebraic loop functors. Suppose that the suspension functor S (a 
functor because of its categorical construction) has a right adjoint 0 in kfâ'. 
Then, suppose that 

Horn (SX, F) ^ Hom(X, 12(F)), 

as bifunctors in X, F. Let X be an element of k/& consisting of 2 points. Then, 
as sets, 

12(F) 9^ Hom(X, 12(F) g^ H o m ^ 1 , F) 
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(suppressing basepoints). The algebraic loop functor should bave the same 
form as the topological loop functor. For the above to make sense, however, 
Horr^S1, F) must be given the structure of an element in k/@. 

Let X, Y be elements in k/@ whose geometric k points X(k), Y(k) ^ 0. We 
show that Hom(X, Y) can be given the structure of an object in k/@. Each 
element / £ Horn (X, Y) defines a morphism 

f(at) = ( g W , <*<)), 

where the bk
j are the coefficients of the polynomial in at in the j coordinate of 

f(di). Viewing the at as indeterminants and substituting (gj(bk
j, at)) into the 

equations of F, one has 

Hom(£z, Y) ^ {(bk')\F(g(bk>, a,)) = 0, for all F in the ideal of F} 

is an element of k/@ with basepoint the map e:kz —> F which maps kz to the 
basepoint of F. Let 

Z = {(bk>) e Hom(£z, kz)\&(bk>, a)) = P for all (a,) £ X(k)}. 

Z is an element of k/@ with basepoint e. Horn (X, kz) is then the quotient of 
Hom(kz,kz) by Z. Hom(X, F) is the image in k/& of Hom(£z, F) in 

Hom(X, &z). 

THEOREM 1. In kfê, S is the left adjoint to 12. 

Proof. As kfê is normal for closed immersions, one has an exact sequence 

0 ^ 5 i X 5 U C X l - * 5 i X X - > S ( X ) - + 0 . 

Define a map 

a: Hom(S(X), F) -+Hom(X, Horn (Si, F)) 
via 

<*(/)(*) 0 ) =f(s,x), 

where / G Horn (S(X), F) and (5, x) is a representative for an element of 
S(X). Then, 

« ( / ) ( * ) (Q) =f(Q,X) =P, 
a(f)(R)(S1) =f(SuR) = P , 

and as e (as denned above) is the basepoint of Horn (Si, Y), a behaves properly 
with respect to basepoints. Define a map 

0': Hom(X, Horn (Si, Y)) -» Horn (Si X X, Y) 
via 

As 
/3'(/)(Si,i?) =/(i?)(Si) = P , 

0'(/)(C,^)=/(X)(0=JP, 
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j8' induces a map 

/S: Hom(Z, Horn (Si, F)) -> Hom(S(X), F). 

The theorem is then complete, as it is clear that a and /3 are inverse natural 
transformations and that Î2(F) = Horn (Si, F). 
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