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Abstract  

Gastrointestinal (GI) nematode infections represent a significant health burden globally, 

affecting both humans and livestock. Traditional in vitro models to study host-parasite 

interactions, such as immortalized cell lines, have limitations that hinder the full 

understanding of these complex relationships. Organoid technology has emerged as a 

promising alternative, offering a physiologically relevant platform to study host-nematode 

interactions in vitro. Organoids are three-dimensional (3D) structures comprising 

differentiated cell types that recapitulate features of the corresponding organ. Technological 

advances for growing, maintaining and manipulating organoids have increased their 

applications to model infections, inflammation and cancer. This review discusses recent work 

using GI organoids to advance understanding of nematode-host interactions and modulation 

of GI epithelial cells. Additionally, we review studies that co-cultured GI organoids with 

innate lymphoid cells (ILCs) to study epithelial-immune cell crosstalk in the context of 

nematode infection. By bridging the gap between reductionist cell culture systems and whole-

organism studies, organoids offer a powerful platform for investigating complex host-

nematode interactions, and for developing and screening novel therapeutics. 

Keywords: Organoids, gastrointestinal nematodes, host-parasite interactions, intestinal 

epithelium, immune modulation, stem cells, in vitro models. 
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Introduction 

Gastrointestinal (GI) nematode infections pose a major health burden, affecting over 1.5 

billion people, particularly in tropical and subtropical regions with inadequate sanitation 

(World Health Organisation, 2024). These macroparasites have evolved intricate life cycles 

that enable them to successfully colonize the GI tract of humans and other mammals. 

Prominent human species such as Ascaris lumbricoides, Trichuris trichiura, and Necator 

americanus contribute to malnutrition, stunted growth, and cognitive impairments, especially 

in children (Servián et al., 2024). Similarly, in livestock, GI nematodes cause significant 

economic losses due to reduced weight gain, decreased milk production and increased 

mortality (Vande et al., 2018; Strydom et al., 2023). For example, Haemonchus contortus and 

Ostertagia ostertagi, which infect sheep and cattle, respectively, result in billions of dollars in 

losses annually (Charlier et al., 2020). Additionally, in horses, nematodes such as Strongylus 

vulgaris and Cyathostominae cause severe colic and life-threatening complications (Corning 

et al., 2009).  

GI nematodes are specially adapted to evade host defenses, migrate through tissues 

and establish a niche, often leading to chronic infections (Maizels and Gause, 2023). Given 

the increasing resistance of GI nematodes to anthelmintic drugs, understanding how these 

parasites establish infection and evade host immunity is important for developing more 

sustainable control strategies in both human and veterinary medicine (Hotez and Herricks, 

2015; Vegvari et al., 2021; Charlier et al., 2022; Nielsen, 2022). The intestinal epithelium 

plays a central role in host-parasite interactions by detecting pathogens and orchestrating 

protective mechanisms, leading to increased mucus secretion and enhanced peristalsis - 

collectively known as the ‘weep and sweep’ response (Bąska et al., 2022). Several studies in 

recent years identified epithelial tuft cells, a type of chemosensory secretory cell, as initial 

‘sensors’ of parasite infection in the small intestine (SI) (Gerbe et al., 2016; Howitt et al., 
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2016; von Moltke et al., 2016). Further understanding of GI epithelial cell responses to 

nematode infection, and their interaction with immune cells is important in gaining insight 

into the initiation of host immune responses required for effective parasite control. 

Mucosal tissues of the GI tract initiate innate and adaptive type 2 immune responses 

to nematode infection (Artis and Grencis et al., 2008). Alarmins interleukin (IL)-25 from GI 

tuft cells, thymic stromal lymphopoietin (TSLP) from epithelial cells, and IL-33 from 

epithelial, endothelial and inflammatory immune cells, activate Group 2 innate lymphoid 

cells (ILC2s) (Hardman et al., 2013). Once activated, ILC2s play a crucial role as an early 

source of type-2 cytokines, in particular IL-4 and IL-13 which act in a feed forward loop to 

increase the numbers of tuft and mucous-secreting cells in the GI epithelium (Fallon et al., 

2006; Molofsky and Locksley, 2023). Cytokines from ILC2 cells also act to recruit effector 

cells, including eosinophils, alternatively activated macrophages (AAMs), and IgE- and 

IgG1-producing B cells, to resolve the infection, as well as promote tissue repair (Vivier et 

al., 2018; Hartung and Esser-von Bieren, 2022). In the face of these protective mechanisms, 

nematodes have evolved multiple strategies to manipulate or suppress host immunity, 

enabling them to persist within their host for extended periods (Maizels et al., 2018). Much of 

our knowledge of nematode immunomodulation stems from studying worm excretory-

secretory (ES) products and their effects on mammalian cells using immortalised cell lines or 

in vivo animal models (Maizels et al., 2018). Organoids (“mini-tissues”) provide a new and 

powerful in vitro platform for studying host-pathogen interactions and immunomodulation. 

This review focuses on the application of organoids to advance understanding of host-parasite 

interactions and immunomodulation in the GI tract. 

The need for more physiological model systems 

Traditional cell culture models are widely used due to their ease of maintenance and 

scalability; however, they have significant limitations. Cell lines are often derived from 
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cancerous or immortalized tissues, which compromises their ability to accurately mimic 

native epithelial cells (Aguilar et al., 2021). For example, Caco-2 and HT-29 cell lines are 

derived from human colorectal adenocarcinoma and are used as in vitro models of gut 

epithelium (Haddad et al., 2023). However, they lack proper differentiation and fail to 

replicate the structural and functional complexity needed for studying host-parasite 

interactions. Even when grown in three dimensional (3D) cultures, these cell lines do not 

capture the cellular diversity of the intestinal epithelium, limiting their utility in modelling in 

vivo conditions. 

Primary cell cultures and tissue explants are physiologically relevant alternatives, as 

they maintain native tissue architecture and functionality (Schlaermann et al., 2016). 

However, their limited expansion and requirement to be derived from fresh tissue present 

significant challenges, limiting their application in long-term studies. Animal models, 

particularly rodents, have been instrumental in providing valuable insights into both local and 

systemic host responses to parasitic infections of humans and animals (Mukherjee et al., 

2022). For example, the murine whipworm Trichuris muris is a useful model for the human 

parasite Trichuris trichiura, allowing researchers to study host immunity, parasite biology 

and host genetics in a controlled setting (Klementowicz et al., 2012). However, for many 

parasitic helminth species, no appropriate model system supports parasite development and 

maturation that mimics in vivo infection. Additionally, animal use comes with significant 

challenges, including the need for specialised housing, high maintenance costs, ethical 

concerns, and limited ability to track host-parasite interactions over the course of infection 

(de Graeff et al., 2019). 

Organoid-based models have the potential to overcome these limitations by providing 

a controllable and scalable platform to investigate host-parasite interactions and, for some 

parasites, initial invasion. The development of organoids from tissue stem cells of human, 
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murine, ruminant and other animal species, presents a promising alternative, offering a 

physiologically relevant system for studying important helminth infections, while reducing 

reliance on murine models. There is increasing interest in organoid-based systems as 

alternative models, to bridge the gap between cell culture approaches and whole-organism 

studies.  

Organoid types  

Organoids are self-organising 3D structures developed from tissue stem cells or induced 

pluripotent stem cells. Using culture media containing defined growth factors and nutrients, 

the stem cells differentiate and form 3D structures with similar organization and function to 

the tissue of origin (Sato et al., 2009; Sato and Clevers 2015; Lancaster and Knoblich, 2014). 

Organoids have been grown from a range of tissue stem cells including gut (abomasum in 

ruminants), small intestine, colon, lung, liver, kidney, brain, bile duct, retinal and pancreas 

(Tang et al., 2022; Kawasakiet al., 2022). They can be propagated and passaged as long as 

stem cells are present and can be cryopreserved, enabling the establishment of organoid 

biobanks (Perrone and Zilbauer, 2021).  

Importantly, although organoids typically grow as 3D structures embedded in 

matrices such as Matrigel, they can also be dissociated into single cells or small clusters and 

cultured as 2D monolayers. This process involves plating organoid-derived cells onto coated 

culture plates, where they attach and form confluent monolayers. While these monolayers do 

not replicate the full 3D architecture of the tissue, they retain many aspects of cellular 

differentiation and polarisation (Duque-Correa et al., 2022; White et al., 2024) and offer the 

advantage of more direct access to the apical (luminal) surface (Wang et al., 2017). For 

studying the GI tract, organoids have been developed using stem cells derived from gastric 

(abomasal), duodenal, ileum, jejunum, caecum and colon tissue (Smith et al., 2021; Barker et 

al., 2010; Gonzalez et al., 2013; Jung et al., 2011; Yui et al., 2012), with subsequent 
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differentiation into secretory epithelial cell types (Paneth, tuft, goblet (mucous producing) 

and enteroendocrine cells), and absorptive enterocytes (Fukuda et al., 2014; Sato and Clevers, 

2015). The different cell types can be identified by immunohistochemistry on fixed organoids 

using antibodies to specific marker proteins, such as anti-POU2F3 or anti-DCLK-1 for tuft 

cells, anti-MUC2 for mucous cells and anti-LGR5 for stem cells (Gerbe at al., 2016; Perez et 

al., 2025). Additionally, reporter organoids expressing a fluorescence gene under the control 

of a specific cell marker gene promoter enable analysis and imaging in real-time. Examples 

of 3D GI organoids stained with antibodies or expressing a reporter gene (tuft cell Dclk-1 

promoter driving tdTomato) are shown in Figure 1, and detailed in Perez et al., 2025.  

Considerations for studying nematode-host interactions using organoids 

Developing organoid models to study parasites requires consideration of fundamental aspects 

of host-parasite interactions: what is the natural site of infection within the host, which host 

cell types are primarily targeted and/or modulated by the parasite, are there differences 

between hosts, which parasite life-stage(s) or molecular components are most relevant for 

investigation, how can parasites or parasite molecules be delivered into organoids and how 

can parasite-mediated effects be assayed? We will firstly consider host tissue and cell types 

and in the next section discuss organoid manipulation and monitoring of parasite-mediated 

effects on organoids.  

Infection site tissue type 

GI nematodes occupy various niches within the host, including lumen or submucosa 

depending on the parasite developmental stage and species, where they can induce substantial 

alterations in epithelial cells. While adult worms are confined to the intestinal lumen, 

infective third-stage larvae (L3) of some nematode species actively penetrate the GI epithelial 

barrier, as seen with Heligmosomoides polygyrus, T. trichiura and Strongyloides stercoralis, 

which invade the submucosa. Blood-feeding nematodes, such as H. contortus and human 
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hookworms Ancylostoma duodenale and N. americanus, attach to the intestinal mucosa 

causing mechanical damage and blood loss. An intriguing aspect of some GI nematodes, such 

as Ascaris and hookworms, is the requirement for hepato-tracheal migration of L3 prior to 

maturing in the SI (Read and Skorping, 1995). These diverse interactions highlight the range 

of host-parasite relationships that influence disease pathogenesis and immune responses, and 

the relevance of developing organoids from the appropriate host tissue.   

When studying parasite effects on host organoids, it is important to recognize that 

nematodes exhibit specific tropisms for distinct regions of the GI tract, certain cell types, and 

may remain in the lumen or invade submucosal tissue. A recent study by White et al. (2024) 

established confluent 2D SI monolayers to investigate interactions between Heligmosomoides 

bakeri L4 or adult stages and host duodenal cells. Notably, when the basal side of the 

epithelial cells was exposed to L4 or adult Heligmosomoides bakeri the cellular response was 

greater than when the apical side was exposed, perhaps reflecting differences in expression of 

Pattern Recognition Receptors (PRRs) between the apical and basal surfaces (Price et al, 

2018). Additionally, L4 parasites, which develop submucosally, induced greater upregulation 

of epithelial interferon-stimulated genes and repair genes compared to adult worms, which 

reside in the lumen. These findings underscore the importance of considering the tissue site 

of infection, orientation of epithelial cells, and the relevant nematode developmental stages to 

dissect the dynamics of infection at both the host and parasite levels.  

Parasite immunomodulation in organoids 

While organoids mimic features of the tissue of origin, they lack the complexity of associated 

mesenchymal, stromal or immune cells. Parasite-epithelial-immune cell interactions can be 

examined using co-culture models (see below) or, alternatively, specific cytokines can be 

added to organoid cultures. For example, addition of type-2 cytokines IL-4 and IL-13 to 

murine SI organoids promotes organoid differentiation (budding), specifically expansion of 
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secretory tuft and mucous cell types (see Figure 1B, C and Drurey et al., 2021; Kato-Atar et 

al., 2021). This mimics the in vivo effects of these cytokines on epithelial cells during 

nematode infection and provides a useful platform to examine infection-associated changes 

and parasite-mediated immunomodulation. Using this approach, Drurey et al., (2021) and 

Karo-Atar et al., (2021) demonstrated that H. polygyrus adult ES products suppress IL-4/IL-

13-induced tuft and goblet cell expansion, demonstrating the parasite's ability to dampen host 

innate responses by directly acting on epithelial cells. In contrast to IL-4/IL-13 treatment, GI 

organoids treated with IL-22, which is mainly produced by T helper 1 (Th1), Th17 and group 

3 innate lymphoid cells (ILC3) (Perusina Lanfranca et al., 2016; Keir et al., 2020) results in 

reduced organoid budding, a dark appearance and increased expression of goblet cell marker 

Resistin-like beta molecule (RELM-β) (Lindholm et al., 2022). Interestingly, Lindholm et al. 

(2022) further demonstrated that BMP signalling within intestinal organoids acts as a 

feedback mechanism to limit IL-13-induced tuft cell hyperplasia, highlighting how organoids 

can effectively model cytokine-driven epithelial differentiation and regulatory pathways 

observed in vivo, providing a valid platform to study immunomodulation.  

Organoids to study the establishment of infection 

In vitro culture of parasitic helminths remains a challenge, making it difficult to examine 

helminth development and tissue invasion. Elegant studies from the Duque-Correa group 

(Duque-Correa et al., 2022) established 2D caecal epithelium grown in transwells to study 

nematode larval invasion and development. They showed that T. muris L1 larvae could 

degrade secreted mucus and invade intestinal epithelial cells within murine caecal organoids 

(caecaloids), replicating the early infection processes that occur in vivo and establishing the 

first in vitro system for whipworm infection. This was achieved using 2D epithelial cell 

cultures, derived from 3D organoids and later grown in transwells, where the apical intestinal 

surface was accessible to the larvae. The 2D system overcame the challenge of trying to 
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deliver larvae to the lumen (apical side) of 3D organoids, which is prohibited by the relatively 

large size of most nematode larvae. Further studies using a transgel GI organoid system – 

grown on hydrogel to generate bilaterally accessible organoids - enabled live observation of 

epithelial cell infection by T. muris L1, accompanied by formation of syncytial tunnels as 

occurs in vivo and subsequent epithelial cell apoptosis (Hofer et al., 2024). This demonstrates 

the utility and power of organoids to examine in detail the processes of parasite infection and 

establishment in vitro. 

Organoid technology can also apply to other types of helminths; recently, spheroids, 

3D structures comprising a single cell type rather than differentiated cell types, were 

developed to study growth of liver fluke Fasciola hepatica newly excysted juveniles (NEJ) 

(Vitkauskaite et al., 2025). The spheroid culture was grown from HepG2 liver cells and was 

able to support growth of F. hepatica, with development of gut, muscle and tegumental 

structures, as well as secretion of digestive proteases, similar to fluke development in vivo. 

The NEJ grazed on the peripheral cells, rather than invading the spheroid structure.  

Host differences 

Organoids are generated from single stem cells from specific individuals and retain 

characteristics of the original tissue, such as gene expression profiles and treatment responses 

(Bresnahan et al., 2020). To ensure robust and reproducible results, it is recommended that 

experiments include organoid lines derived from at least three biological replicate tissue 

samples. This practice helps to account for natural biological variability and enhance the 

reliability of the findings. On the other hand, the characteristics maintained in organoids 

provides a valuable platform for determining differences between individuals or animal 

breeds/strains, helping to determine why they respond differently to infections (Grencis, 

2015). This has application in determining mechanisms of resistance or susceptibility, 

relevant to animal selective breeding programmes, vaccine development and personalised 
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medicine (Bose et al., 2021).  

Delivery into organoids 

While 3D organoids provide a more physiological system than cell culture or 2D monolayers, 

their 3D structure can make the delivery and uptake of parasites or their products to the apical 

(luminal) side more challenging. Different approaches have been tested to achieve this and, in 

some studies, where long-term culture is not a requirement, 2D monolayers are appropriate. 

In this section we discuss some of the delivery approaches used, which are summarized in 

Table 1. 

Microinjection 

Microinjection was one of the pioneering techniques applied to organoids, allowing the 

introduction of molecules directly to the apical side of 3D organoids. The first studies to 

focus on host-parasite interactions used microinjection to deliver extracellular vesicles (EVs) 

purified from ES products of adult murine whipworm, T. muris, into murine colonic 

organoids (Eichenberger et al., 2018a). Following injection into the organoid lumen, labelled 

EVs were detected within the cytoplasm of organoid cells. Cellular uptake was observed at 

37
o
C but not at 4

o
C, indicating this is an active process. Similar findings were observed using 

microinjection to deliver EVs from N. brasiliensis adult ES into murine SI organoids 

(Eichenberger et al., 2018b). While effects directly on organoids were not reported in these 

studies, in vivo administration of EVs from N. brasiliensis ES, but not T. muris, protected 

mice from chemically induced colitis, with reductions in pro-inflammatory cytokines IL-6 

and IFN-γ (Eichenberger et al., 2018b). By performing microinjection of EVs from T. muris 

into murine caecaloids followed by RNA sequencing, Duque-Correa et al. (2020) showed that 

anti-inflammatory effects, including down-regulation of Type I interferon signaling, can be 

mediated directly on the caecal epithelium in the absence of immune cell types. The specific 

parasite-derived molecules responsible for these effects are not yet known but may involve 
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proteins and/or small RNAs within EVs.   

Microinjection allows precise targeting of specific regions within the organoid; 

however it has several limitations. The variability in organoid size can lead to inconsistencies 

in injection efficiency, making the technique less reliable. Additionally, microinjection is 

labour-intensive and requires skilled researchers and specialised equipment.  It is also 

impractical to deliver nematodes into the organoid lumen, as the limited luminal volume of 

organoids is insufficient to accommodate most nematode parasites (Duque-Correa et al., 

2020).  

Apical out organoids 

An alternative for delivering parasites or ES products to the apical surface is to invert the 

polarity of 3D organoids using a method developed by Co et al. (2019). This involves 

removing the extracellular matrix (ECM) from the Matrigel (basement membrane extract), 

which is added to stem cells to support organoid formation (Co et al., 2021). Organoids are 

then incubated in low-binding culture plates, which induces a reversal of polarity (apical-out) 

while preserving barrier integrity and key functional characteristics. This technique was 

successfully applied to abomasal and SI organoids from different animal species (Smith et al., 

2021), allowing access to the apical surface for experimental manipulation. However, the 

host-driven mechanisms that govern organoid invagination and polarity reversal remain 

poorly understood and apical-out organoids do not differentiate in the same way as apical-in 

organoids (Paužuolis et al., 2024). Smith at al. (2021) were able to demonstrate infection of 

apical-out organoid cells with the bacterial pathogen Salmonella typhimurium, but this 

method has not yet been explored to study nematode infectivity or development. 

Direct addition of nematode larvae or excretory-secretory (ES) products to 3D organoid 

culture medium  

An alternative to microinjection is the direct addition of nematodes or their secreted products 
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to organoid culture medium. Following incubation, larvae or ES can enter into the organoid 

lumen and/or cells. This strategy was used to introduce infective L3 of the important 

veterinary nematodes Teladorsagia circumcincta and O. ostertagi into ovine or bovine 

abomasal (gastric) organoids, respectively (Smith et al., 2021; Faber et al., 2022). Strikingly, 

the L3 larvae transversed the Matrigel and organoid membrane, from the basal (outer) to 

apical (inner) side into the lumen (Smith et al., 2021; Faber et al., 2022).  Larvae survived in 

the lumen for up to two weeks, were active and invaded organoid cells, but did not develop 

beyond L3 stage (Smith et al., 2021; Faber et al., 2022). This implies that the organoid model 

may not fully replicate the route of invasion and/or the in vivo conditions that support larval 

development. Future work could explore the feasibility of 2D monolayers, as used for T. 

muris (Duque-Correa et al., 2022), to promote larval development. Nonetheless, 3D 

organoids can provide valuable insights into the ability of larvae to interact with and cross 

epithelial barriers. Intriguingly, organoids exposed to O. ostertagi L3 or ES products showed 

a rapid expansion or ‘ballooning’, within 1 hour of treatment, which is thought to result from 

fluid influx into the lumen (Faber et al., 2022).  

The ease of adding soluble substances to organoid culture medium and then 

monitoring effects has encouraged greater use of this approach. Several studies (Drurey et al., 

2021; Karo-Atar et al., 2022; Perez et al., 2025) showed that ES from adult H. polygyrus or 

H. contortus can suppress the expansion of tuft and mucous cells driven by IL-4/IL-13, 

demonstrating a direct effect of ES on epithelial responses. Identifying the molecules and 

mechanisms involved has the potential to lead to new therapeutics to block nematode-

mediated immunosuppression, while conversely, such parasite molecules could be developed 

as “helminth therapy” to suppress GI inflammatory conditions, such as inflammatory bowel 

disease (IBD) or allergies (Ryan et al., 2020). T. spiralis L1 larvae or ES were also shown to 

inhibit pro-inflammatory responses, reducing the pathology induced in SI organoids by 
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porcine epidemic diarrhea virus (Liu et al., 2024).  

These studies also revealed that ES from adult H. polygyrus or H. contortus alone in 

the absence of cytokine treatment had a strong inhibitory effect on SI organoid budding and 

development. Large spheroid organoids devoid of differentiated cells were observed 

following 24h of exposure to ES or L3 larvae, indicating that nematode secreted molecules 

induce de-differentiation of organoids and lead to a fetal-like and/or repair state (Drurey et 

al., 2021; Karo-Atar et al., 2021; Perez et al., 2025). A similar phenotype had previously been 

observed following growth of organoids derived from SI stem cells from H. polygyrus-

infected mice, or after IFN-γ treatment of SI organoids, recapitulating the fetal-like 

granuloma-associated cells occurring in vivo during H. polygyrus infection (Nusse et al., 

2018). Our laboratory found that spheroid formation occurred only with H. contortus ES that 

had been concentrated (through a 3kDa membrane), but not with unconcentrated ES, 

indicating a concentration-dependent effect (Perez et al., 2025), analogous to the localised 

effects in vivo. Spheroid formation in organoids was not observed with ES from adult N. 

brasiliensis, which is cleared rapidly from the murine SI (Karo-Atar et al., 2021), suggesting 

that epithelial de-differentiation may promote nematode survival in the GI tract. This effect is 

different to the organoid swelling observed with O. ostertagi ES or L3 (Faber et al., 2022), 

which happens rapidly (within 1h). For both phenotypes, organoids provide an appropriate in 

vitro system to help understand changes induced in epithelial cells during in vivo infection.    

Organoid transfection with parasite small RNAs 

The above studies demonstrate the utility of organoids in dissecting biological activity of 

nematode ES products on the GI epithelium. Previous characterisation of nematode ES 

identified proteins with immunomodulatory activity (Hewitson et al., 2009; Maizels et al., 

2018), however little is known about the biological effects of nematode secreted small RNAs.  

Small regulatory microRNAs (miRNAs) modulate gene expression post-transcriptionally by 
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binding to the 3’UTR of their target mRNAs, resulting in inhibition of protein translation and 

transcript degradation (Chekulaeva and Filipowicz, 2009). The repertoires of miRNAs 

expressed and secreted by a variety of nematode species have been described (Buck et al., 

2014; Britton et al., 2020). Our laboratory focussed on a single miRNA, miR-5352, which is 

conserved across GI parasitic nematodes, but not present in tissue-dwelling nematodes (Gu et 

al., 2017; Perez et al., 2025). This led our group to hypothesise that miR-5352 may be 

involved in regulating host gene expression in the GI tract, which we tested by transfecting SI 

organoids with a mimic of miR-5352. 

Efficient delivery of the miRNA mimic into the cytoplasm of epithelial cells required 

transfection reagents with high efficiency, low toxicity, and lipid formulations specifically 

designed for small RNA delivery. Organoids were exposed to miRNA mimic, labelled with 

Cy3 fluorescent dye, and transfection reagent (DharmaFECT TM) at 37°C for 1 h before 

being embedded in Matrigel and returned to culture (Perez et al., 2025). This approach 

significantly increased the number of transfected epithelial cells compared to using naked 

miRNA mimics, indicated by Cy3 label inside cells. Importantly, this single GI nematode 

miRNA suppressed differentiation of tuft and mucous cells in the presence of IL-13, similar 

to the effect of H. polygyrus or H. contortus complete ES. Kruppel-like transcription factor 

gene Klf-4 was identified as a key target of nematode miR-5352, and KLF-4 expression was 

significantly reduced in miR-5352 transfected organoids (Perez et al., 2025). KLF-4 promotes 

cell differentiation by inhibiting Wnt signalling, and loss of KLF-4 leads to stem cell 

maintenance (Zhang et al., 2006), thus identifying mechanistically how nematode ES can 

modulate gut cell differentiation. Interestingly, nematode miR-5352 shares its seed sequence 

(key regulatory sequence of miRNAs) with mammalian miR-92a, which also suppresses Klf-

4, suggesting that GI nematodes have hijacked a host regulatory pathway to suppress innate 

cell responses and promote nematode survival. 
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2D monolayers to study host-parasite interactions 

Development of 2D monolayers, derived from 3D organoids, provides an alternative, 

accessible apical surface for studying host-parasite interactions and parasite invasion, as 

demonstrated by the studies of White et al. (2024) using H. bakeri, and Duque-Correa et al. 

(2022) with T. muris L1 larvae. Hellman et al. (2024) utilized equine SI 2D cultures 

(enteroids) stimulated with IL-4 and IL-13 and exposed the apical side to infective larvae of 

Parascaris univalens, Cyathostominae and Strongylus vulgaris. Changes in epithelial cell 

morphology and an increase in MUC2 expression were observed with P. univalens L3, 

indicating a direct effect of larvae on mucous cells. Using human 2D colonic organoids, 

Bellini et al. (2024) reported that Anisakis L3 EVs have tumorigenic and immunomodulatory 

capabilities. Following organoid treatment with EVs there was a reduction in the receptor for 

IL-33, potentially dampening type 2 immunity and inflammatory responses.  

These findings underscore the utility of different organoid technologies and delivery 

routes for advancing understanding of GI nematode infections and modulation of epithelial 

cells. Developments in organoid technology, including co-culture, will continue to improve 

their relevance to infection biology and as platforms to screen and evaluate new therapeutics. 

Immune cell co-culture 

Studying the effects of GI nematode infection on epithelial organoids has advanced our 

understanding of host-pathogen interactions, however it is important to recognize that no 

cellular compartment reacts in isolation in vivo. Thus, to better appreciate the implications of 

GI nematode infection, additional layers of complexity should be incorporated in organoid-

parasite models. Mucosal tissue resident immune cells involved in the mediation of type 2 

immune responses are a relevant compartment to introduce to the culture systems. 

Helminth infection models have been instrumental in the discovery of ILC2s, the 

innate counterparts of adaptive T helper 2 (Th2) cells (Moro et al., 2010). ILC2s were 
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initially discovered in the adipose tissue of the peritoneal cavity of mice. Upon infection with 

N. brasiliensis, ILC2s produced IL-13 which facilitated goblet cell hyperplasia in the SI and 

thus helminth expulsion (Moro et al., 2010). Subsequently, ILC2s were also described in the 

SI tissue where they mediated IL-13–dependent protection against N. brasiliensis (Neill et al., 

2010; Price et al., 2010) and T. muris (Saenz et al., 2010) by inducing the “weep and sweep” 

response. Since their discovery, the roles of intestinal ILC2s in helminth immunity have been 

further characterized. N. brasiliensis infection in the intestine promoted the activation of 

ILC2s through the tuft cell-ILC2 axis (Schneider et al., 2018), where tuft cell-derived IL-25 

activated ILC2 which in turn led to the production of IL-13. Additionally, IL-33 and TSLP 

secreted by epithelial cells upon helminth infection further promoted ILC2 activation and 

induction of a type 2 immune response, necessary for helminth clearance (Hung et al., 2020). 

Besides the intestine, the protective roles of ILC2s against N. brasiliensis larvae extended to 

the lung (Turner et al., 2013). In the lung, ILC2s use IL-9 in an autocrine manner to enhance 

their function and support tissue repair during the recovery phase (Turner et al., 2013). 

Interestingly, helminths were able to interfere with ILC2 activation even when not co-

localized. Upon infection with H. polygyrus, activation of ILC2s in the lung was hindered 

due to the release of immunomodulatory ES products, such as H. polygyrus Alarmin Release 

Inhibitor (HpARI) (Osbourn et al., 2017) and H. polygyrus Binds Alarmin Receptor and 

Inhibits (HpBARI) (Vacca et al., 2020).  

Answering mechanistic questions and dissecting specific immune-epithelial 

interactions has become streamlined in recent years with the establishment of co-culture 

models (Kromann et al., 2024). Murine ILC-organoid co-culture models have been generated 

by isolating ILCs from the lamina propria (Lindemans et al., 2015; Jowett et al.,2022; Read et 

al., 2022; Read et al., 2024; Jowett et al., 2021) or the mesenteric lymph nodes (Waddell et 

al., 2019) using florescence activated cell sorting techniques and co-culturing them with GI 
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organoids. Similarly, human models have been established where intestinal ILC2s were co-

cultured with intestinal organoids (Möller et al., 2023). Additionally, organoid-maturated 

human ILC2s have been successfully co-cultured with lung-derived organoids, showcasing 

the versatility of this model (Jowett et al., 2022). To generate this co-culture, immune cells 

and epithelial organoids are resuspended together in basement membrane cellular extract to 

provide the extracellular matrix cues which enables the two compartments to interact in a 

manner similar to that in vivo (Figure 2). Whilst this system advanced our understanding of 

tissue specific immune-epithelial interactions, only looking at the two compartments in a 

homeostatic setting provides limited applicability and can be enhanced by an additional 

compartment – parasites.  

A tri-culture model involving ILC2s, organoids, and parasites would help elucidate 

how specific parasites or parasite-derived proteins, miRNAs, or EVs (Gu et al., 2017; Buck et 

al., 2014; Soichot et al., 2022; Perez et al., 2025) influence gene expression in epithelial and 

immune cells, and how these changes affect cellular functions, immune responses, and 

overall host–parasite interactions. Moreover, it would allow us to answer questions related to 

the functionality and behaviour of ILC2s under helminth infections in a controlled 

environment. Studies have shown that Proteobacteria, a gut microbiome species (Pu et al., 

2021), or N. brasiliensis (Huang et al., 2018) facilitated the migration of ILC2s from the 

intestine to the lung. In addition to pathogen-derived signals promoting this migration, tissue-

specific imprinting has been implicated in determining the function and fate of post-

migratory gut ILC2s in the lung (Jowett et al., 2022). Additionally, under specific 

microenvironmental conditions, ILC2s displayed a degree of plasticity as they 

transdifferentiated into ILC1s and ILC3s (Bielecki et al., 2021; Qin et al., 2024). Recent 

evidence also shows that ILC3s contribute to protective immunity against helminths by 

promoting tuft cell hyperplasia via RANKL signaling, thereby supporting the ILC2–tuft cell 
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feedback loop (Xu et al., 2025). In future studies, using such a triculture model could enable 

assessment of the impact of parasite and parasite-derived products on epithelial and immune 

cell modulation and functionality, providing valuable insights into host-parasite dynamics. 

Once established and characterized, this tri-culture model could be taken further and 

additional cellular compartments could be incorporated, such as neurons. Neuro-immune 

interactions have been previously described in GI nematode infections and ILC2s co-localize 

with neurons in neuroimmune cell units (Veiga-Fernandes and Artis, 2018). Enteric neurons, 

via their ability to produce neuropeptides such as neuromedin U (Cardoso et al., 2017) and 

vasoactive intestinal peptide (Nussbaum et al., 2013), promoted the activation of ILC2s, and 

production of IL-5, IL-9 and IL-13, which in turn led to helminth expulsion. On the other 

hand, adrenergic neurons produced norepinephrine which inhibited the function of ILC2s, 

hindering helminth expulsion (Moriyama et al., 2018). ILC2s were reported to synthethise the 

neurotransmitter acetylcholine in the presence of IL-33 which was required for an appropriate 

type 2 immune response against N. brasiliensis (Roberts et al., 2021; Chu et al., 2021). 

Interestingly, N. brasiliensis and other mucosal dwelling nematodes synthesise 

acetylcholinesterases, inhibitors of acetylcholine (Sanderson, 1969; Selkirk et al., 2005).  

Taken together, future development and application of tri-culture models 

incorporating epithelial cells, immune cells, and parasites will be essential to advance our 

understanding of host-parasite dynamics and immune interactions in helminth infections.  

Conclusions and Future Directions 

Organoids provide a powerful platform for studying the complex cellular and molecular 

responses of the host epithelium to nematode infections and, conversely, how nematodes 

modulate the host environment. Organoid technology is progressing, and new systems are 

being developed to increase their physiological relevance and longer-term survival, including 

the use of air-liquid interface (ALI) models and tissue engineering combined with 
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microfluidics. In ALI models, cells are exposed to air on the apical side while the basolateral 

side is in contact with culture medium containing differentiation factors. This combination 

enhances cellular differentiation and 3D formation, as observed in human intestinal organoids 

which form a defined crypt-villus-like structure under ALI conditions (Baldassi et al., 2021; 

Ogawa et al., 2025).   Tissue engineering strategies, including ECM-embedded scaffolds, 

bioreactors, and organoids-on-a-chip, have been developed as powerful tools for modelling 

both healthy and diseased organs (Wang et al., 2024) and can support organoid culture and 

better simulate the natural tissue architecture. Dual-access microfluidic systems facilitate 

maintenance of nutrients/removal of waste and dead cells, delivery of cytokines to the basal 

side, and co-culture with additional components such as immune cells, vasculature, and 

microbiome, providing a more physiologically relevant platform (Hofer et al., 2024; Quintard 

et al., 2024). By maintaining organoids in conditions more akin to in vivo conditions, their 

physiological relevance can be enhanced and their lifespan extended, making them attractive 

for drug screening and potentially for maintaining parasite lifecycles, a current challenge for 

most nematode species. 

The majority of organoid–nematode studies to date have focused on murine organoid 

models and model parasite species. Although some studies have begun to use ruminant-

derived organoids (Smith et al., 2021; Faber et al., 2022; Perez et al., 2025) there is a clear 

need to further expand these approaches to include organoids and parasites from a broader 

range of animal species, as well as humans, to enable true translational impact for both 

veterinary and human clinical applications.  

Nematodes can induce changes in organoid phenotype and cellular composition, 

which can be detected using antibodies to cell marker proteins (Drurey et al., 2021; Karo-

Atar et al., 2021) or use of transgenic reporter organoids (Perez et al., 2025). While the latter 

require more initial effort to generate, they facilitate the study and imaging of organoid cells 
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in real-time, without the need for fixation or antibodies, which may not be 

available/applicable for less widely studied host species. Reporter organoids can be generated 

from genetically modified mice (and potentially other animals) (Wadosky et al., 2022; Perez 

et al., 2025), or more rapidly using CRISPR-Cas9 gene knock-in technology. This introduces 

a fluorescent reporter tag to a specific gene of interest by electroporation, and transfected 

organoids are selected based on fluorescence. Different methodologies have been developed 

for CRISPR-Cas9 knock-in (Artegiani et al., 2020), with CRISPR-HOT (homology-

independent organoid transgenesis) shown to be efficient, enabling real-time cell 

identification and lineaging. CRISPR-Cas9 or RNA interference (RNAi) mediated by short 

interfering (si) or short hairpin (sh) RNA can also be used to knockdown genes of interest in 

organoids to examine gene function in a controlled environment. Technologies for organoid 

culture and co-culture, and CRISPR-Cas9 gene editing, are continuing to expand, providing 

increasingly sophisticated methodologies to study host cell responses and modulation by 

parasites and other infectious organisms or disease conditions (Sun et al., 2021; Huber at al., 

2023).  
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Table 1.  Delivery approaches used to study interaction of GI nematodes with epithelial cells.  

Delivery method Parasite stage or component Organoid type References 

Microinjection  T. muris (adult) EVs  Murine colonic 3D organoids  Eichenberger et al., 2018a; Duque-Correa 

et al. 2020  

N. brasiliensis (adult) EVs Murine SI 3D organoids  Eichenberger et al., 2018b 

Direct addition of nematodes T. circumcincta (L3 ) Ovine SI 3D organoids Smith et al., 2021 

O. ostertagi (L3) Bovine gastric 3D organoids Faber et al., 2022 

T. spiralis (L1) Porcine SI 3D organoids Liu et al., 2024 

H. bakeri (L4 and adult) Murine SI 2D cultures  White et al., 2024  

P. univalens, Cyathostominae and S. 

vulgaris (L3) 

Equine SI 2D cultures  Hellman et al., 2024 

Direct addition of nematode  

secreted products 

H. polygyrus (adult) ES Murine SI 3D organoids  Drurey et al., 2021; Karo-Atar et al., 2021 

H. contortus (adult) ES Ovine gastric 3D organoids Perez et al., 2025 

Ovine SI 3D organoids 

Murine SI 3D organoids  

T. spiralis (L1) ES Porcine SI 3D organoids Liu et al., 2024 

Anisakis (L3) EVs Human 2D colonic organoids Bellini et al., 2024 

microRNA-5352 mimic  Ovine gastric 3D organoids Perez et al., 2025 

Ovine SI 3D organoids 

Murine SI 3D organoids  

EVs, Extracellular Vesicles; ES, Excretory-secretory products 
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Figure 1. Differentiation of gastrointestinal organoids and cell type identification. (A) Confocal 

microscopy image showing MUC2⁺ cells in ovine small intestinal (SI) organoids cultured in 

organoid growth medium (OGM) for 4 days. B) Representative images of Dclk1-tdTomato⁺ tuft 

cells (red tdTomato
+
 cells indicated by arrowhead) in murine SI organoids, either untreated or 

treated with IL-13 in OGM for 4 days. C) Representative image of ovine abomasal (gastric) 

organoids cultured in OGM for 4 days, with or without IL-13 treatment. 
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Figure 2. (A) Schematic representation of ILC and organoid co-culture set-up. In brief, small 

intestinal organoids are generated prior to the co-culture establishment. Organoids are split 

approximately 48 hours prior to placing them together with the ILCs. Pan-ILCs (Live, CD45+, Lin- 

(CD3, CD45R, CD11b, TER-119, Ly-G6, CD19, CD5), CD127+)) or specific ILC groups of 

interest are isolated from the lamina propria of RORyt – GFP mice, using fluorescence activated 

cell sorting (FACS). Once isolated, the ILCs are placed together with the organoids, spun down, 

resuspended in Matrigel and placed in a well. Cultures are fed every 2 days until the experimental 

end point. (B) Confocal microscopy image of ILC precursors, stained for the immune marker 

CD45, co-cultured with small intestinal organoids, stained for the epithelial cell adhesion molecule 

(EpCAM) (Jowett et al., 2022).  
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