
Forum of Mathematics, Sigma (2025), Vol. 13:e81 1–28
doi:10.1017/fms.2025.37

RESEARCH ARTICLE

Limits of nodal surfaces and applications
Ciro Ciliberto 1 and Concettina Galati 2

1Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Roma, 00133, Italy;
E-mail: cilibert@mat.uniroma2.it.
2Dipartimento di Matematica e Informatica, Università della Calabria, via P. Bucci, cubo 31B, Arcavacata di Rende (CS),
87036, Italy; E-mail: concettina.galati@unical.it (corresponding author).

Received: 24 October 2024; Revised: 26 February 2025; Accepted: 23 March 2025

2020 Mathematical Subject Classification: Primary – 14B07; Secondary – 14J17, 14C20

Abstract
Let X → D be a flat family of projective complex 3-folds over a disc D with smooth total space X and smooth
general fibre X𝑡 , and whose special fiber X0 has double normal crossing singularities, in particular, X0 = 𝐴 ∪ 𝐵,
with A, B smooth threefolds intersecting transversally along a smooth surface 𝑅 = 𝐴 ∩ 𝐵. In this paper, we first
study the limit singularities of a 𝛿-nodal surface in the general fibre 𝑆𝑡 ⊂ X𝑡 , when 𝑆𝑡 tends to the central fibre in
such a way its 𝛿 nodes tend to distinct points in R. The result is that the limit surface 𝑆0 is in general the union
𝑆0 = 𝑆𝐴∪𝑆𝐵 , with 𝑆𝐴 ⊂ 𝐴, 𝑆𝐵 ⊂ 𝐵 smooth surfaces, intersecting on R along a 𝛿-nodal curve𝐶 = 𝑆𝐴∩𝑅 = 𝑆𝐵∩𝐵.
Then we prove that, under suitable conditions, a surface 𝑆0 = 𝑆𝐴∪𝑆𝐵 as above indeed deforms to a 𝛿-nodal surface
in the general fibre of X → D. As applications, we prove that there are regular irreducible components of the
Severi variety of degree d surfaces with 𝛿 nodes in P3, for every 𝛿 �

(𝑑−1
2
)

and of the Severi variety of complete
intersection 𝛿-nodal surfaces of type (𝑑, ℎ), with 𝑑 � ℎ − 1 in P4, for every 𝛿 �

(𝑑+3
3
)
−
(𝑑−ℎ+1

3
)
− 1.
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2 C. Ciliberto and C. Galati

1. Introduction

The main object of study in this article is Severi varieties of nodal surfaces on smooth, projective,
complex threefolds. Severi varieties of nodal hypersurfaces on a smooth variety are a well-known
object of study in algebraic geometry that goes back to well more than a century ago. Its importance
is underlined by the relationships with other themes in the area. For example, the recent papers [7, 16]
explore the relation of Severi varieties with the Hodge conjecture.

Our approach to the subject is via degenerations. Degenerations of smooth complex varieties to
complex varieties with simple normal crossings is also a classical object of study. In particular, it has
been widely used by several authors for studying Severi varieties of nodal curves on surfaces. The method
is powerful and enables one to obtain sharp results on the non-emptiness of some Severi varieties of
curves (see, for instance, [3, 5, 6, 10], etc.).

One of the basic ideas in these papers is the well-known and classical fact that the limit of a curve 𝐶𝑡
with a node 𝑝𝑡 on a smooth surface X𝑡 , when X𝑡 degenerates to a reducible surface X0 = 𝐴 ∪ 𝐵, with
A and B smooth and meeting transversally along a smooth curve 𝑅 = 𝐴 ∩ 𝐵, and 𝑝𝑡 going to a point
𝑝0 ∈ 𝑅, is a curve 𝐶0 ⊂ X0 with a tacnode in 𝑝0, which appears scheme theoretically with multiplicity
2. This result is an easy consequence of the study of the versal deformation space of a tacnode, and its
proof is in [2, 17]. This result has been proved also using limit linear systems techniques; see [9]. The
present article intends to extend this result on the limit of a nodal curve to the case of nodal surfaces
in threefolds, and we will take the point of view of [9]. In the sequel, a node of a surface will be an
𝐴1-singularity.

LetX → D be a flat family of projective complex 3-folds over a discDwith smooth total spaceX and
smooth general fibre, and whose special fiber X0 has double normal crossing singularities, in particular,
X0 = 𝐴 ∪ 𝐵, with A, B smooth threefolds intersecting transversally along a smooth surface 𝑅 = 𝐴 ∩ 𝐵.

First of all, we will study in Section 2 the limit singularities of a 𝛿-nodal surface in the general fibre
𝑆𝑡 ⊂ X𝑡 , when 𝑆𝑡 tends to the central fibre in such a way that its 𝛿 nodes tend to distinct points 𝑝1, . . . , 𝑝 𝛿
in R. The result (see Theorem 2.2) is that the limit surface 𝑆0 is in general the union 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵,
with 𝑆𝐴 ⊂ 𝐴, 𝑆𝐵 ⊂ 𝐵 smooth surfaces, that cut out on R the same curve C having nodes at 𝑝1, ..., 𝑝 𝛿
and no further singularities. In this case, we say that 𝑆0 presents a singularity of type 𝑇1 at every point
𝑝𝑖 , 𝑖 = 1, ..., 𝛿. The equations of a 𝑇1 singularity are given in (2.9). Finally, in 2.4, we provide the local
equation of (an example of) a local deformation of a singularity of type 𝑇1 to a node on the general
fibre.

The central part of our paper is Section 3. First of all, we prove in Lemma 3.2 that the only sin-
gularity of a surface 𝑆𝑡 ⊂ X𝑡 to which a singularity of type 𝑇1 of a surface S0 ⊂ X0 may be de-
formed is a node. In §3.2.2, we describe the first-order locally trivial deformations in X0 of surfaces
𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 with 𝑇1 singularities on R and at most nodes elsewhere. In particular, we find suf-
ficient conditions for smoothness of the equisingular deformation locus of 𝑆0 in the relative Hilbert
scheme of X . If these conditions are verified, then the 𝑇1 singularities of 𝑆0 and its nodes can be
smoothed independently inside X0. Next, in §3.2.3, we consider deformations of a surface 𝑆0 ⊂ X0,
with 𝑇1 singularities on R and at most nodes elsewhere, off the central fibre. We prove, in Theo-
rem 3.13, that under suitable conditions, one can deform 𝑆0 off the central fibre X0 to a surface 𝑆𝑡
in the general fibre X𝑡 , with only nodes that are the deformations of the nodes of 𝑆0 and of the 𝑇1
singularites of 𝑆0, and that the space of this deformation is generically smooth of the expected dimen-
sion. Again, generic smoothness means that the nodes of the general surface 𝑆𝑡 can be independently
smoothed.

In Section 4, we give a couple of applications of our general result. Essentially, we consider the
following problem (see Problem 4.3). Let X be a smooth irreducible projective complex threefold. Let L
be a line bundle on X such that the general surface in the linear system |𝐿 | is smooth and irreducible. Let
𝑉𝑋, |𝐿 |𝛿 be the Severi variety of surfaces S in |𝐿 | which are reduced with only 𝛿 nodes as singularities. The
question we consider is as follows: Given X and L as above, which is the maximal value of 𝛿 such that
𝑉𝑋, |𝐿 |𝛿 has a generically smooth component of the expected codimension 𝛿 in |𝐿 |? We give contributions
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to this problem in two cases. The first one is for 𝑋 = P3 and 𝐿 = OP3 (𝑑) (see Theorem 4.6); the second
one is when X is a general hypersurface of degree ℎ � 2 in P4 and 𝐿 = O𝑋 (𝑑) with 𝑑 � ℎ − 1 (see
Theorem 4.9).

To finish this introduction, it is worth mentioning that the basic idea of a singularity of type 𝑇1 being
a limit of a node is already contained, although in a rather obscure form, in B. Segre’s paper [18]. In
this paper, Segre considers, even more generally, the case of higher dimension. As a matter of fact, we
believe that there should be no obstruction in extending our results in higher dimension too. However,
we did not dwell on this here because we thought that the surface in threefold case already shows the
complexity of the situation. We plan to come back on this in the future.

Notation: In what follows, we use standard notation in algebraic geometry. In particular, we will
denote by ∼ the linear equivalence.

2. Limit singularity of a node of a surface in a threefold

2.1. The problem

Let X → D be a flat family of projective complex 3-folds over a disc D with smooth total space X
and smooth general fiber X𝑡 , with 𝑡 ∈ D \ {0}, and whose special fiber X0 has double normal crossing
singularities; in particular, X0 = 𝐴 ∪ 𝐵 has two smooth irreducible components A and B, intersecting
transversally along a smooth surface 𝑅 = 𝐴 ∩ 𝐵.

Let L be a line bundle on X . For each 𝑡 ∈ D, we set L𝑡 = L |X𝑡 . We consider the following question.
Roughly speaking, assume that for 𝑡 ∈ D general, we have a surface 𝑆𝑡 ∈ |L𝑡 | having a double point 𝑝𝑡 .
Assume that 𝑆𝑡 tends to a surface 𝑆0 in X0 with 𝑝𝑡 tending to a point 𝑝0 ∈ 𝑅. The question is: What is
the singularity that 𝑆0 has at 𝑝0? Let us make this setting more precise.

2.2. Set up

Let us fix 𝑝 = 𝑝0 ∈ 𝑅, which is a double point for the central fibre X0, whereas X is smooth at p. Hence,
there are no sections of X → D passing through p. So let us consider a smooth bisection 𝛾′ of X → D

passing through p.

Step 0. Let us look at the following commutative diagram:

Y ��

���
��

��
��

� X ′

��

�� X

��
D

𝜈2 �� D,

where the rightmost square is cartesian and 𝜈2 : 𝑢 ∈ D → 𝑢2 ∈ D. Then X ′ is singular along the
counterimage of R (that by abuse of notation, we still denote by R), which is a locus of double points
for X ′, with tangent cone a quadric cone of rank 3. The morphism Y → X ′ is the desingularization of
X ′ obtained by blowing up X ′ along R.

The induced morphism 𝜋 : Y → X is 2 : 1 outside the central fibre of Y . In particular, for every
𝑡 ≠ 0, there are exactly two fibres Y𝑢1 and Y𝑢2 of Y → D isomorphic to the fibre X𝑡 of X → D via
𝜋, where {𝑢1, 𝑢2} = 𝜈−1

2 (𝑡). The family Y → D has central fibre Y0 = 𝐴 ∪ E ∪ 𝐵, where, by abusing
notation, A and B denote the proper transforms of A and B and E → 𝑅 is a P1-bundle on 𝑅. The
morphism 𝜋 is totally ramified along A and B, and it contracts E to R in X . In particular, 𝐴 ∩ E and
𝐵∩E are two non-intersecting sections of E both isomorphic to R. Denote by F the fibre of E → 𝑅 over
the point 𝑝 ∈ 𝑅 ⊂ X0. One has 𝐹 � P1. Now the counterimage of 𝛾′ on Y is the union of two sections
of Y → D, each intersecting Y0 at a smooth point on F. We let 𝛾 be one of these two sections and q be
the intersection point of 𝛾 and F.
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4 C. Ciliberto and C. Galati

Assume there exists an effective divisor S ⊂ Y , with S ∼ 𝜋∗(L), having double points along 𝛾. Let S
be the image of S in X via the morphism 𝜋. Note that S has points of multiplicity 2 along the bisection
𝛾′. For every 𝑡 ≠ 0, if Y𝑢1 and Y𝑢2 , with 𝑢2

1 = 𝑢2
2 = 𝑡, are the two fibres of Y → D isomorphic to X𝑡 via

𝜋, we have

𝑆𝑡 = 𝑆 ∩ X𝑡 = 𝑆𝑢1 ∪ 𝑆𝑢2 ,

where 𝑆𝑢𝑖 = 𝜋(S𝑢𝑖 ) and S𝑢𝑖 = S ∩ Y𝑢𝑖 , for 𝑖 = 1, 2. If 𝑡 = 0, we have that

𝑆 ∩ X0 = 2𝑆0 = 2(𝑆𝐴 ∪ 𝑆𝐵),

where 𝑆𝐴 = 𝜋(S ∩ 𝐴) ⊂ 𝐴 and 𝑆𝐵 = 𝜋(S ∩ 𝐵) ⊂ 𝐵.
We want to understand 𝑆 |X0 . To do this, we will first understand S |Y0 .

Step 1. Let 𝜋1 : Y1 → Y be the blowing-up of Y along 𝛾 with exceptional divisor Γ. We have a new
family Y1 → D with general fibre the blow up of Y𝑢 � X𝜈2 (𝑢) at its intersection point with 𝛾 (that is
also the point of multiplicity 2 of the surface S𝑢), and central fibre Y1

0 = 𝐴 ∪ E ′ ∪ 𝐵, where E ′ is the
blow-up of E at 𝑞. Still denoting by F the proper transform of F in Y1, we have that the proper transform
S1 of S in Y1 satisfies

S1 ∼ 𝜋∗1 (S) − 2Γ. (2.1)

We deduce that S1 · 𝐹 = −2 and hence 𝐹 ⊂ S1.

Step 2. Let now 𝜋2 : Y2 → Y1 be the blow-up of Y1 along F with new exceptional divisor Θ. We
have the new family Y2 → D, whose general fibre is the same as the general fibre of Y1 → D, and new
central fibre Y2

0 = 𝐴′ ∪ E ′′ ∪ Θ ∪ 𝐵′, where 𝐴′, E ′′ and 𝐵′ are the blow-ups of 𝐴, E ′ and B at 𝐹 ∩ 𝐴,
𝐹 ⊂ E ′ and 𝐵 ∩ 𝐹, respectively. Notice that Θ → 𝐹 is a P2-bundle on F, intersecting 𝐴′ (resp. 𝐵′)
along a surface isomorphic to P2, which is a fibre of Θ → 𝐹, and at the same time is the exceptional
divisor of the blow-up 𝐴′ → 𝐴 at 𝐹 ∩ 𝐴 (resp. of the blow-up 𝐵′ → 𝐵 at 𝐹 ∩ 𝐵). Moreover, the surface
𝐸 := Θ ∩ E ′′ has a P1-bundle structure 𝐸 → 𝐹, and it is the exceptional divisor of E ′′, arising from the
blowing-up of F in E ′.

We claim that 𝐸 
 F0. Indeed, since 𝐹 
 P1 and F is a fibre ofE → 𝑅, we have thatN𝐹 |E 
 OP1⊕OP1 .
This implies that N𝐹 |E′ = OP1 (−1) ⊕ OP1 (−1), and hence, 𝐸 = P(N𝐹 |E′ ) = F0.

If S2 is the proper transform of S1 in Y2, by (2.1), we deduce that

S2 |Θ ∼ 𝜋∗2 (S1) |Θ − 𝑚𝐹Θ|Θ

∼ −2 𝑓Θ + 𝑚𝐹 (𝐴
′ + 𝐵′ + E ′′) |Θ

∼ −2 𝑓Θ + 𝑚𝐹 (2 𝑓Θ + E ′′ |Θ)

∼ (2𝑚𝐹 − 2) 𝑓Θ + 𝑚𝐹 (E ′′ |Θ)

∼ (2𝑚𝐹 − 2) 𝑓Θ + 𝑚𝐹𝐸, (2.2)

where 𝑓Θ denotes the linear equivalence class of a fibre of Θ → 𝐹 and 𝑚𝐹 is the multiplicity of S1 along
𝐹. Notice that S2 |Θ must be an effective divisor because it is the restriction to Θ of an effective divisor
that does not contain Θ. This implies the minimum value of 𝑚𝐹 making S2 |Θ effective is 𝑚𝐹 = 1.

2.3. Description of S |Y0 and of 𝑆 |X0

We assume now 𝑚𝐹 = 1. To better understand S2 |Θ ∼ 𝐸 , we restrict S2 |Θ to E ′′. Let 𝜎 and f, with
𝜎2 = 𝑓 2 = 0, be the generators of the Picard group of 𝐸 = E ′′ ∩ Θ � F0. By restricting (2.2) to E, one
gets
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S2 |𝐸 = S2 |Θ∩E′′ ∼ E ′′
|𝐸 . (2.3)

To compute E ′′
|𝐸

, we use the obvious relation (𝐴′ + 𝐵′ + Θ + E ′′)|𝐸 = 0, which implies the following
identity on E:

2 𝑓 + Θ |𝐸 + E ′′
|𝐸 = 0. (2.4)

Since 𝐸 = E ′′ ∩ Θ, then Θ |𝐸 is the class of Θ2 · E ′′ which is clearly the class of the normal bundle
N𝐸 |E′′ of E in E ′′. Similarly, E ′′

|𝐸
is the class of Θ · E ′′2 = 𝑐1(N𝐸 |Θ). Since 𝐸 = P(N𝐹 |E′ ), denoting by

𝜋𝐸 : 𝐸 → 𝐹 the natural projection morphism, whose fiber is f, and by

𝑒 := Θ|𝐸 = Θ2 · E ′′ = 𝑐1 (N𝐸 |E′′ ),

we have that N𝐸 |E′′ ⊂ 𝜋∗𝐸 (N𝐹 |E′ ) is the tautological fibre bundle of 𝐸 = P(N𝐹 |E′ ). So we get that

𝑓 · 𝑒 = −1 (2.5)

and

𝑒2 − 𝑐1 (𝜋
∗
𝐸 (N𝐹 |E′ )) · 𝑒 + 𝑐2 (𝜋

∗
𝐸 (N𝐹 |E′ )) = 0,

(see [12, p. 606]). Now

𝑐2 (𝜋
∗
𝐸 (N𝐹 |E′ )) = 𝜋∗𝐸 (𝑐2 (N𝐹 |E′ )) = 0,

since N𝐹 |E′ is a vector bundle on F and dim(𝐹) = 1. So

𝑒2 − 𝑐1 (𝜋
∗
𝐸 (N𝐹 |E′ )) · 𝑒 = 𝑒2 − 𝜋∗𝐸 (𝑐1 (N𝐹 |E′ )) · 𝑒 = 𝑒2 − 𝑐1 (N𝐹 |E′ ) 𝑓 · 𝑒 = 𝑒2 + 𝑐1 (N𝐹 |E′ ) = 0.

Thus,

𝑒2 = −𝑐1 (N𝐹 |E′ ) = 2. (2.6)

Set 𝑒 = 𝑎𝜎 + 𝑏 𝑓 . By (2.5) and (2.6), one gets 𝑎 = −1 and

−2𝑏 = (−𝜎 + 𝑏 𝑓 )2 = 𝑒2 = 2, hence 𝑏 = −1.

Thus, we have

Θ |𝐸 = 𝑐1 (𝑁𝐸 |E′′ ) = −𝜎 − 𝑓 .

Hence, by (2.4), we get

E ′′
|𝐸 = 𝑐1 (𝑁𝐸 |Θ) = 𝜎 − 𝑓 . (2.7)

Remark 2.1. From (2.7), it follows that the divisor E (which does not move on E ′′ being there an
exceptional divisor) does not move in Θ either, since N𝐸 |Θ is non-effective. Hence, by (2.2) and 𝑚𝐹 = 1,
we have S2 |𝐸 = 𝐸 .

We are now also able to describe the divisor S2 |𝐴′∩E′′ � S2 |𝐵′∩E′′ . Indeed,

S2 |𝐴′∩E′′ ∼ (𝜋∗2𝜋
∗
1 (S) − 2𝜋∗2 (Γ) − Θ) |𝐴′∩E′′ ∼ 𝜋∗2𝜋

∗
1 (S) |𝐴′∩E′′ − Θ ∩ 𝐴′ ∩ E ′′,
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6 C. Ciliberto and C. Galati

and, since S2 |Θ = 𝐸 by Remark 2.1, it contains the (−1)-curve Θ ∩ 𝐴′ ∩ E ′′ = 𝐸 ∩ 𝐴′ in its base locus
with multiplicity 1. Thus, S2 |𝐴′∩E′′ = D𝐴 ∪ (Θ ∩ 𝐴′ ∩ E ′′), where

D𝐴 ∼ 𝜋∗2 (𝜋
∗
1 (S)) |𝐴′∩E′′ − 2Θ ∩ 𝐴′ ∩ E ′′,

and similarly for S2 |𝐵′∩E′′ .
This analysis implies the following:

Theorem 2.2. Let S ⊂ Y be an effective Cartier divisor as in Step 0. Then the surface S |Y0 is the union
of three surfaces S𝐴 = S ∩ 𝐴,S𝐵 = S ∩ 𝐵 and SE = S ∩ E , where S𝐴 (resp. S𝐵) intersects 𝐴∩ E (resp.
𝐵 ∩ E) along a curve which has a double point at the point 𝐹 ∩ 𝐴 (resp. 𝐹 ∩ 𝐵), these two curves are
isomorphic, and SE is a P1-bundle over any one of them.

Accordingly, 𝑆 |X0 = 2𝑆0, with 𝑆0 ∈ |L0 | and 𝑆0 is the union of two surfaces 𝑆𝐴, 𝑆𝐵, respectively
isomorphic to S𝐴,S𝐵, intersecting along a curve in R that has a double point at p (see Figure 1).

2.3.1. Local equations of 𝑆0
We may assume that X locally around 𝑝 ∈ X0 is embedded in A5 with coordinates (𝑥, 𝑦, 𝑧, 𝑢, 𝑡) with
p corresponding to the origin. We may suppose that X is defined by the equation 𝑥𝑦 = 𝑡 and the map
X → D is given by (𝑥, 𝑦, 𝑧, 𝑢, 𝑡) ↦→ 𝑡. So we will assume that A is defined by the equations 𝑥 = 𝑡 = 0
and B by the equations 𝑦 = 𝑡 = 0, so that R is defined by 𝑥 = 𝑦 = 𝑡 = 0.

The above analysis proves that the surfaces S |𝐴 and S |𝐵 belong to the restriction linear systems of L
to A and B, respectively, and moreover are tangent to R at the point p. Thus, 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 belongs to
the linear system L0 (2, 𝑝) ⊂ |L0 | of surfaces with local equations at p given by{

(𝑎1𝑥 + 𝑏1𝑦) + 𝑓2(𝑥, 𝑦, 𝑧, 𝑢) = 0
𝑥𝑦 = 0, (2.8)

with 𝑓2(𝑥, 𝑦, 𝑧, 𝑢) an analytic function with terms of degree at least 2.

Definition 2.2.1. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 be a surface that is the union of two irreducible components 𝑆𝐴, 𝑆𝐵
intersecting along a curve C. Let 𝑝 ∈ 𝐶. We will say that 𝑆0 has at p a singularity of type 𝑇1 if 𝑆𝐴 and
𝑆𝐵 are smooth at p and C has at p a node.

Figure 1. A 𝑇1-singularity of a surface 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 in X0 = 𝐴 ∪ 𝐵.
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Remark 2.3. If in (2.8), 𝑎1𝑏1 ≠ 0, then 𝑆0 has a 𝑇1 singularity at the origin p, and, up to a linear change
of coordinates, the local equations are given by{

𝑥 + 𝑦 + 𝑓2 (𝑥, 𝑦, 𝑧, 𝑢) = 0, with 𝑓2(0, 0, 𝑧, 𝑢) = 0 having a node at 0,
𝑥𝑦 = 0. (2.9)

In the sequel, we will also refer to L0 (2, 𝑝) as the sublinear system of |L0 | of surfaces with at least a
𝑇1 singularity at 𝑝.
Remark 2.4. We have that L0 (2, 𝑝) ⊂ |L0 | has dimension

dim(L0 (2, 𝑝)) � dim |L0 | − 3.

2.4. Local deformation of a singularity of type 𝑇1 to a node

In §2.3.1, we saw that a singularity of type 𝑇1 appears as a generic limit of a double point of a surface.
In this section, we will show that locally the converse happens, i.e., that locally a singularity of type 𝑇1
can be deformed to a node.

In local coordinates (𝑥, 𝑦, 𝑧, 𝑢, 𝑡), we consider as before the family of 3-folds X𝑡 : 𝑥𝑦 = 𝑡. We further
consider the one parameter family of 3-folds in A4 of local equation at 0 given by

S𝛼 : 𝑥 − 𝑦 − 𝛼(𝑡) − 𝑧2 − 𝑢2 = 0,

where 𝛼(𝑡) is a suitable function of 𝑡 ∈ A1 to be determined, such that 𝛼(0) = 0. We will set
𝑆𝑡 = S𝛼(𝑡) ∩X𝑡 for any 𝑡 ∈ A1. The surface 𝑆0 has a𝑇1 singularity at 0 andS𝛼 is smooth. Our requirement
on the function 𝛼(𝑡) is that for any 𝑡 ≠ 0, there exists a singular point 𝑞(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑢(𝑡)) ∈ 𝑆𝑡 ,
that is, such that

𝑇𝑞 (𝑡) (S𝛼) = 𝑇𝑞 (𝑡) (X𝑡 ).

This is equivalent to asking if there exists 𝑞(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑢(𝑡)) ∈ A4 satisfying

𝑥(𝑡) − 𝑦(𝑡) − 𝛼(𝑡) − 𝑧(𝑡)2 − 𝑢(𝑡)2 = 𝑥(𝑡)𝑦(𝑡) − 𝑡 = 0

and

(𝑥 − 𝑥(𝑡)) − (𝑦 − 𝑦(𝑡)) − 2𝑧(𝑡) (𝑧 − 𝑧(𝑡)) − 2𝑢(𝑡) (𝑢 − 𝑢(𝑡)) = 𝑐(𝑡)
(
𝑦(𝑡) (𝑥 − 𝑥(𝑡)) + 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

)
,

for a non-zero 𝑐(𝑡). This implies

𝑧(𝑡) = 𝑢(𝑡) = 0, 𝑥(𝑡) = −𝑦(𝑡), 𝛼(𝑡) = 2𝑥(𝑡) and 𝑡 = −𝑥(𝑡)2 = −
𝛼(𝑡)2

4
.

Thus, for every 𝑡 ≠ 0, there exist exactly two divisors S𝛼𝑖 , with 𝑖 = 1, 2 and 𝛼𝑖 (𝑡)
2 = −4𝑡 so that

𝑆𝛼𝑖 (𝑡) = S𝛼𝑖 ∩ Y𝑡 :
{
𝑥 = 𝑦 + 𝛼𝑖 (𝑡) + 𝑧2 + 𝑢2

𝑦(𝑦 + 𝛼𝑖 (𝑡) + 𝑧2 + 𝑢2) = 𝑡

is a one-nodal surface, with tangent cone at 𝑞𝑖 (𝑡) = (
𝛼𝑖 (𝑡)

2 ,− 𝛼𝑖 (𝑡)
2 , 0, 0) given by

𝑇𝐶𝑞𝑖 (𝑡) (𝑆𝛼𝑖 (𝑡) ) : 𝑥 − 𝑦 − 𝛼𝑖 (𝑡) = 2
(
𝑦 +

𝛼𝑖 (𝑡)

2

)2
− 𝛼𝑖 (𝑡)𝑧

2 − 𝛼𝑖 (𝑡)𝑢
2 = 0.

Notice that, for every 𝑖 = 1, 2, we have that 𝛼𝑖 (𝑡) is a well-defined continuous function on
D
𝑜
𝜖 = D(0, 𝜖) \ {𝑎 + 𝑖0 | 0 < 𝑎 < 𝜖} (the disk cut along a radius), vanishing at 0 and holomorphic on
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D
𝑜
𝜖 \ 0. Each family S𝛼𝑖 → D𝑜𝜖 , for 𝑖 = 1, 2, is not algebraic, while the complete intersection family of

surfaces

D :
{
(𝑥 − 𝑦 − 𝑢2 − 𝑧2)2 = −4𝑡
𝑥𝑦 = 𝑡.

(2.10)

is algebraic. As usual, we set 𝐷𝑡 = D ∩ X𝑡 . One has 𝐷𝑡 = 𝑆𝛼1 (𝑡) ∪ 𝑆𝛼2 (𝑡) for 𝑡 ≠ 0 and non-reduced
fibre 𝐷0 = 2𝑆0 for 𝑡 = 0.

The locus 𝑥2+ 𝑡 = 𝑥+ 𝑦 = 𝑧 = 𝑢 = 0, whose general point is singular for 𝐷𝑡 , is a bisection of X → A1

passing through (0, 0).

3. Deformations of surfaces with 𝑇1 singularities and nodes

Throughout this section, we will consider X → D a family of projective complex 3-folds over a disc D
as in the previous section, and we let HX |D be its relative Hilbert scheme, whose fiber over 𝑡 ∈ D is the
Hilbert scheme of X𝑡 and it is denoted by HX𝑡 . Moreover, we will consider 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0, with
𝑆𝐴 ⊂ 𝐴 and 𝑆𝐵 ⊂ 𝐵 an effective reduced Cartier divisor.

3.1. Deformations and a smoothness criterion

Definition 3.0.1. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0, with 𝑆𝐴 ⊂ 𝐴 and 𝑆𝐵 ⊂ 𝐵 being an effective reduced Cartier
divisor and let

HX |D

[𝑆0 ]
→ D

be an irreducible component of the relative Hilbert scheme of X containing [𝑆0]. A deformation of 𝑆0
in X not in X0 is the total space 𝑆 ⊂ X of an irreducible local r-multisection 𝛾 of HX |D

[𝑆0 ]
passing through

[𝑆0]. Equivalently, a deformation of 𝑆0 is an effective divisor

𝑆

���
��

��
��

�
� � �� X

��
D

dominating D, whose central fibre is 𝑆 ∩X0 = 𝑟𝑆0 (i.e., the surface 𝑆0 counted with multiplicity r) and
whose general fibre is a reduced surface with r irreducible components 𝑆 ∩ X𝑡 = 𝑆1

𝑡 ∪ · · · ∪ 𝑆𝑟𝑡 , with
[𝑆𝑖𝑡 ] ∈ HX |D

[𝑆0 ]
, for every 𝑖 = 1, . . . , 𝑡. We will also say that every irreducible component 𝑆𝑖𝑡 of 𝑆 ∩ X𝑡 is

a deformation of 𝑆0 or that 𝑆0 is a limit of 𝑆𝑖𝑡 . Let Y be the smooth family of threefolds obtained from
X → D after a base change

Y ��

���
��

��
��

� X ′

��

�� X

��
D

𝜈𝑟 �� D

of order r and after minimally desingularizing the total space of the obtained family. Y has central
fibre Y0 = 𝐴 ∪ E1 ∪ · · · ∪ E𝑟−1 ∪ 𝐵 with normal crossing singularities of multiplicity two, where every
E𝑖 is a P1-bundle over E𝑖−1 ∩ E𝑖 , intersecting E𝑖−1 and E𝑖+1, with E0 = 𝐴 and E𝑟 = 𝐵. We denote by
𝜋 : Y → X the induced morphism. Then the pullback divisor 𝜋∗(𝑆) = S1 ∪ · · · ∪ S𝑟 has r irreducible
distinct components S1, . . . ,S𝑟 , where now every S 𝑖 has irreducible general fibre and has central fibre
given by S 𝑖0 = S 𝑖 ∩ X0 � 𝑆0.
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Proposition 3.1. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0, with 𝑆𝐴 ⊂ 𝐴 and 𝑆𝐵 ⊂ 𝐵, be a reduced effective Cartier
divisor as above. Let p be a point of the intersection curve 𝐶 = 𝑆𝐴 ∩ 𝑆𝐵 ⊂ 𝑅 where 𝑆𝐴 and 𝑆𝐵
intersect transversally (i.e., such that 𝑆𝐴 and 𝑆𝐵 are smooth at p and 𝑇𝑝 (𝑆𝐴) ≠ 𝑇𝑝 (𝑆𝐵)). Then for every
deformation 𝑆 ⊂ X of 𝑆0 not in X0, we have that p is limit only of smooth points of the irreducible
components of the general fibre of S (i.e., in a sufficiently small analytic neighborhood of p in X , all
irreducible components of the general fibre of S are smooth). In particular, if 𝑆𝐴 and 𝑆𝐵 intersect
transversally along C, then 𝑆0 is limit only of smooth surfaces.

Proof. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 and 𝑝 ∈ 𝑅 = 𝑆𝐴 ∩ 𝑆𝐵 as in the statement. Then, there exists an analytic
coordinate system (𝑥, 𝑦, 𝑧, 𝑢, 𝑡) of X at 𝑝 = 0 and such that the local equation of 𝑆0 at p is given by
𝑥𝑦 = 𝑡 = 𝑧 + 𝑓2(𝑥, 𝑦, 𝑧, 𝑢) = 0, where 𝑓2 (𝑥, 𝑦, 𝑧, 𝑢) ∈ (𝑥, 𝑦, 𝑧, 𝑢)2.

Assume that the assertion is not true. Let 𝜋 : Y → X be the morphism defined in Definition 3.0.1,
from which we keep the notation. Then the chain of fibres 𝐹1

𝑝 ∪ · · · ∪𝐹𝑟−1
𝑝 of 𝜋−1 (𝑆0) contracted to p by

𝜋 intersects the singular locus of every divisor S 𝑖 . In particular, there exists an analytic s-multisection 𝛾
of X (with 𝑠 � 𝑟) passing through p, whose general point is a singular point of an irreducible component
of 𝑆∩X𝑡 , with t general. Every analytic s-multisection of X → D at p gives rise to s distinct continuous
sections 𝛾1, . . . , 𝛾𝑠 over D𝑜 = D \ {𝑎 + 𝑖0 | 0 < 𝑎 < 1}, which are holomorphic on D𝑜 \ 0. If t varies in
D
𝑜, then there exists a one-parameter analytic family of irreducible surfaces Z ⊂ 𝑆, singular along 𝛾1,

whose fibre Z𝑡 over 𝑡 ≠ 0 is an irreducible component of 𝑆 ∩X𝑡 and whose fibre over 0 is Z0 = 𝑆0. The
equation of Z𝑡 in A4 with coordinates (𝑥, 𝑦, 𝑧, 𝑢) is given by{

𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) = 0
𝑥𝑦 = 𝑡,

where 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) = 0 is an analytic function in (𝑥, 𝑦, 𝑧, 𝑢), whose coefficients are continuous
functions in the variable 𝑡 ∈ D𝑜 which are holomorphic on D𝑜 \ 0. If

𝛾1 (𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑢(𝑡)),

then by the hypothesis that the general fibre of Z is singular along 𝛾, we have that

𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) = 𝑐(𝑡) (𝑦(𝑡) (𝑥 − 𝑥(𝑡)) + 𝑥(𝑡) (𝑦 − 𝑦(𝑡))) + 𝑔2(𝑥 − 𝑥(𝑡), 𝑦 − 𝑦(𝑡), 𝑧 − 𝑧(𝑡), 𝑢 − 𝑢(𝑡)),

where 𝑔2 (𝑥 − 𝑥(𝑡), 𝑦 − 𝑦(𝑡), 𝑧 − 𝑧(𝑡), 𝑢 − 𝑢(𝑡)) ∈ (𝑥 − 𝑥(𝑡), 𝑦 − 𝑦(𝑡), 𝑧 − 𝑧(𝑡), 𝑢 − 𝑢(𝑡))2.
We moreover have that 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) specializes to 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 0) = 𝑧 + 𝑓2(𝑥, 𝑦, 𝑧, 𝑢)

= 𝑧 − 𝑧(0) + 𝑓2(𝑥 − 𝑥(0), 𝑦 − 𝑦(0), 𝑧 − 𝑧(0), 𝑢 − 𝑢(0)) as t goes to 0. This is not possible. Thus, every
irreducible component of the general fibre of a deformation 𝑆 ⊂ X of 𝑆0 is smooth in a neighborhood
of p. �

3.2. Deformations of 𝑇1 singularities

3.2.1. Deformations not in X0 of surfaces with 𝑇1 singularities
In this section, we prove that the only singularity of a surface in X𝑡 , with 𝑡 ≠ 0, to which a 𝑇1 singularity
of a surface 𝑆0 ⊂ X0 may be deformed is a node.

Lemma 3.2. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 be a reduced effective Cartier divisor, with 𝑆𝐴 ⊂ 𝐴 and 𝑆𝐵 ⊂ 𝐵
as above. Let p be a point of the intersection curve 𝐶 = 𝑆𝐴∩ 𝑆𝐵 ⊂ 𝑅, where 𝑆0 has a 𝑇1 singularity. Let
𝑆 ⊂ X be a deformation of 𝑆0 not in X0. Then there exists a sufficiently small analytic neighborhood of
p in X such that all irreducible components of the general fibre of 𝑆 in that neighborhood are smooth
or are 1-nodal.
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Proof. By Proposition 3.1, if 𝑆 ⊂ X is any deformation of 𝑆0 not in X0, then all irreducible components
of the general fibre of S have, in a sufficiently small neighborhood of p, only isolated singularities. We
want to prove that if the 𝑇1 singularity of 𝑆0 at p is limit of an isolated singularity, then this is a node.
We argue as in the proof of Proposition 3.1.

Let D𝜖 = D(0, 𝜖) ⊂ A1 be the open disc with center at the origin and radius 𝜖 and let
D
𝑜
𝜖 = D(0, 𝜖) \ {𝑎 + 𝑖0 | 0 < 𝑎 < 𝜖}. We denote by 𝑡 = 𝑎 + 𝑖𝑏 the coordinate on D𝜖 and by (𝑥, 𝑦, 𝑧, 𝑢)

the coordinates in A4. In A4 × D𝑜𝜖 , we consider a one parameter family of 3-folds

S𝑡 : 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) = 0, 𝑡 ∈ D𝑜𝜖 ,

where 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 𝑡) is a polynomial in 𝑥, 𝑦, 𝑧, 𝑢 whose coefficients are holomorphic functions onD𝑜𝜖 \0,
continuous in 0, and the one parameter family of 3-folds

X𝑡 : 𝑥𝑦 = 𝑡, 𝑡 ∈ D𝑜𝜖 .

Assume that the surface

𝑆0 = S0 ∩ X0 :
{
𝑝(𝑥, 𝑦, 𝑧, 𝑢; 0) = 𝑥 + 𝑦 + 𝑝2 (𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(3) = 0
𝑥𝑦 = 0 (3.1)

has a 𝑇1 singularity at 0, where 𝑝2 (𝑥, 𝑦, 𝑧, 𝑢) is the homogeneous part of degree 2 of 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 0),
where 𝑜(3) is the sum of terms of degree at least 3 in 𝑝(𝑥, 𝑦, 𝑧, 𝑢; 0), and where, by assumption,
𝑝2 (0, 0, 𝑧, 𝑢) has nonzero discriminant.

Assume that, for 𝑡 ≠ 0, there exists 𝑞(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡); 𝑡) ∈ 𝑆𝑡 = S𝑡 ∩X𝑡 specializing to 0,
as t goes to 0 and such that 𝑆𝑡 has a singular point at 𝑞(𝑡). Thus, S𝑡 is smooth at 𝑞(𝑡) since S0 is smooth
at 𝑞(0) = 0, and we have that

𝑇𝑞 (𝑡) (S𝑡 ) = 𝑇𝑞 (𝑡) (X𝑡 ).

In particular, there exists a function 𝑐(𝑡), which is nonzero if 𝑡 ≠ 0, such that

𝑦(𝑡) (𝑥 − 𝑥(𝑡)) + 𝑥(𝑡) (𝑦 − 𝑦(𝑡)) = 𝑐(𝑡)
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡) (𝑥 − 𝑥(𝑡)) + 𝑐(𝑡)

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡) (𝑦 − 𝑦(𝑡))

+ 𝑐(𝑡)
𝜕𝑝

𝜕𝑧
|𝑞 (𝑡) (𝑧 − 𝑧(𝑡)) + 𝑐(𝑡)

𝜕𝑝

𝜕𝑢
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡)),

from which we deduce that

𝑦(𝑡) = 𝑐(𝑡)
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡) , 𝑥(𝑡) = 𝑐(𝑡)

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡) , (3.2)

𝜕𝑝

𝜕𝑧
|𝑞 (𝑡) = 0 and

𝜕𝑝

𝜕𝑢
|𝑞 (𝑡) = 0. (3.3)

As t goes to 0, 𝑐(0) = 0, since 𝑥(𝑡) ≠ 0 ≠ 𝑦(𝑡) if 𝑡 ≠ 0 but 𝑥(0) = 𝑦(0) = 0 and 𝜕𝑝
𝜕𝑥 |𝑞 (𝑡) ≠ 0 ≠ 𝜕𝑝

𝜕𝑦 |𝑞 (𝑡)
for any t in a neighborhood of 0. We now write down the local equations

X𝑡 : 𝑦(𝑡) (𝑥 − 𝑥(𝑡)) + 𝑥(𝑡) (𝑦 − 𝑦(𝑡)) + (𝑥 − 𝑥(𝑡)) (𝑦 − 𝑦(𝑡)) = 0 (3.4)
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of X𝑡 at 𝑞(𝑡), and the local equation

S𝑡 :
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡) (𝑥 − 𝑥(𝑡)) +

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡) (𝑦 − 𝑦(𝑡)) (3.5)

+
𝜕𝑝

𝜕𝑥𝜕𝑦
|𝑞 (𝑡) (𝑥 − 𝑥(𝑡)) (𝑦 − 𝑦(𝑡)) +

𝜕𝑝

𝜕𝑥𝜕𝑧
|𝑞 (𝑡) (𝑥 − 𝑥(𝑡)) (𝑧 − 𝑧(𝑡))

+
𝜕𝑝

𝜕𝑥𝜕𝑢
|𝑞 (𝑡) (𝑥 − 𝑥(𝑡)) (𝑢 − 𝑢(𝑡)) +

𝜕𝑝

𝜕𝑦𝜕𝑧
|𝑞 (𝑡) (𝑦 − 𝑦(𝑡)) (𝑧 − 𝑧(𝑡))

+
𝜕𝑝

𝜕𝑦𝜕𝑢
|𝑞 (𝑡) (𝑦 − 𝑦(𝑡)) (𝑢 − 𝑢(𝑡)) +

𝜕𝑝

𝜕𝑢𝜕𝑧
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡)) (𝑧 − 𝑧(𝑡))

+
1
2

𝜕𝑝

𝜕𝑥2 |𝑞 (𝑡) (𝑥 − 𝑥(𝑡))2 +
1
2

𝜕𝑝

𝜕𝑦2 |𝑞 (𝑡) (𝑦 − 𝑦(𝑡))2 +
1
2

𝜕𝑝

𝜕𝑢2 |𝑞 (𝑡) (𝑢 − 𝑢(𝑡))2

+
1
2
𝜕𝑝

𝜕𝑧2 |𝑞 (𝑡) (𝑧 − 𝑧(𝑡))2 + 𝑜(3) = 0

of S𝑡 at 𝑞(𝑡), where 𝑜(3) ∈ (𝑥 − 𝑥(𝑡), 𝑦 − 𝑦(𝑡), 𝑧 − 𝑧(𝑡), 𝑢 − 𝑢(𝑡))3. By (3.4), one may write

𝑥 − 𝑥(𝑡) = −
𝑥(𝑡) (𝑦 − 𝑦(𝑡))

𝑦 − 𝑦(𝑡) + 𝑦(𝑡)
. (3.6)

Let d be the maximum degree of 𝑥 − 𝑥(𝑡) in (3.5). By substituting in (3.5), by multiplying by
𝑦𝑑 = (𝑦 − 𝑦(𝑡) + 𝑦(𝑡))𝑑 , and by using that 𝑇𝑞 (𝑡) (S𝑡 ) = 𝑇𝑞 (𝑡) (X𝑡 ) (i.e., 𝑦(𝑡) 𝜕𝑝𝜕𝑦 |𝑞 (𝑡) = 𝑥(𝑡) 𝜕𝑝𝜕𝑥 |𝑞 (𝑡) ) for
any 𝑡 ≠ 0, we find that the local equation of 𝑆𝑡 = S𝑡 ∩ X𝑡 is given by

𝑆𝑡 :
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡)

(
− 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑−1

+
( 𝜕𝑝

𝜕𝑥𝜕𝑦
|𝑞 (𝑡) (𝑦 − 𝑦(𝑡))

) (
− 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑−1

+
( 𝜕𝑝

𝜕𝑥𝜕𝑧
|𝑞 (𝑡) (𝑧 − 𝑧(𝑡))

) (
− 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑−1

+
( 𝜕𝑝

𝜕𝑥𝜕𝑢
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡))

) (
− 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑−1

+
1
2

𝜕𝑝

𝜕𝑥2 |𝑞 (𝑡)

(
− 𝑥(𝑡) (𝑦 − 𝑦(𝑡))

)2 (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑−2

+
𝜕𝑝

𝜕𝑦
|𝑞 (𝑡)

(
𝑦 − 𝑦(𝑡)

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑
+
( 𝜕𝑝

𝜕𝑦𝜕𝑧
|𝑞 (𝑡) (𝑧 − 𝑧(𝑡)) +

𝜕𝑝

𝜕𝑦𝜕𝑢
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡))

) (
𝑦 − 𝑦(𝑡)

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑
+
(1
2

𝜕𝑝

𝜕𝑦2 |𝑞 (𝑡) (𝑦 − 𝑦(𝑡))2 +
𝜕𝑝

𝜕𝑢𝜕𝑧
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡)) (𝑧 − 𝑧(𝑡))

) (
𝑦 − 𝑦(𝑡) + 𝑦(𝑡)

)𝑑
+
(1
2

𝜕𝑝

𝜕𝑢2 |𝑞 (𝑡) (𝑢 − 𝑢(𝑡))2 +
1
2
𝜕𝑝

𝜕𝑧2 |𝑞 (𝑡) (𝑧 − 𝑧(𝑡))2
) (

𝑦 − 𝑦(𝑡) + 𝑦(𝑡)
)𝑑

+ 𝑜(3)

= 𝑦(𝑡)𝑑−2
( 𝜕𝑝
𝜕𝑦

|𝑞 (𝑡) 𝑦(𝑡) −
𝜕𝑝

𝜕𝑥𝜕𝑦
|𝑞 (𝑡)𝑥(𝑡)𝑦(𝑡) +

1
2

𝜕𝑝

𝜕𝑥2 |𝑞 (𝑡)𝑥(𝑡)
2 +

1
2

𝜕𝑝

𝜕𝑦2 |𝑞 (𝑡) 𝑦(𝑡)
2
) (

𝑦 − 𝑦(𝑡)
)2

+ 𝑦(𝑡)𝑑−1
(
𝑦(𝑡)

𝜕𝑝

𝜕𝑦𝜕𝑧
|𝑞 (𝑡) − 𝑥(𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑧
|𝑞 (𝑡)

) (
𝑦 − 𝑦(𝑡)

) (
𝑧 − 𝑧(𝑡)

)
https://doi.org/10.1017/fms.2025.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.37


12 C. Ciliberto and C. Galati

+ 𝑦(𝑡)𝑑−1
(
𝑦(𝑡)

𝜕𝑝

𝜕𝑦𝜕𝑢
|𝑞 (𝑡) − 𝑥(𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑢
|𝑞 (𝑡)

) (
𝑦 − 𝑦(𝑡)

) (
𝑢 − 𝑢(𝑡)

)
+ 𝑦(𝑡)𝑑

(1
2
𝜕𝑝

𝜕𝑧2 |𝑞 (𝑡) (𝑧 − 𝑧(𝑡))2 +
1
2

𝜕𝑝

𝜕𝑢2 |𝑞 (𝑡) (𝑢 − 𝑢(𝑡))2
)

+ 𝑦(𝑡)𝑑
( 𝜕𝑝

𝜕𝑢𝜕𝑧
|𝑞 (𝑡) (𝑢 − 𝑢(𝑡)) (𝑧 − 𝑧(𝑡))

)
+ 𝑜(3) = 0.

Up to the irrelevant factor 𝑦(𝑡)𝑑−2, the Hessian matrix at 𝑞(𝑡) of the above polynomial is

𝐻𝑞 (𝑡) =
���	
𝐴11(𝑡) 𝐴12(𝑡) 𝐴13(𝑡)

𝐴12(𝑡)
𝑦 (𝑡)2

2
𝜕𝑝
𝜕𝑧2 |𝑞 (𝑡)

𝑦 (𝑡)2

2
𝜕𝑝
𝜕𝑧𝜕𝑢 |𝑞 (𝑡)

𝐴13(𝑡)
𝑦 (𝑡)2

2
𝜕𝑝
𝜕𝑧𝜕𝑢 |𝑞 (𝑡)

𝑦 (𝑡)2

2
𝜕𝑝
𝜕𝑢2 |𝑞 (𝑡)


���, (3.7)

where

𝐴11(𝑡) =
𝜕𝑝

𝜕𝑦
|𝑞 (𝑡) 𝑦(𝑡) −

𝜕𝑝

𝜕𝑥𝜕𝑦
|𝑞 (𝑡)𝑥(𝑡)𝑦(𝑡) +

1
2

𝜕𝑝

𝜕𝑥2 |𝑞 (𝑡)𝑥(𝑡)
2 +

1
2

𝜕𝑝

𝜕𝑦2 |𝑞 (𝑡) 𝑦(𝑡)
2,

𝐴12(𝑡) =
𝑦(𝑡)

2

(
𝑦(𝑡)

𝜕𝑝

𝜕𝑦𝜕𝑧
|𝑞 (𝑡) − 𝑥(𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑧
|𝑞 (𝑡)

)
,

𝐴13(𝑡) =
𝑦(𝑡)

2

(
𝑦(𝑡)

𝜕𝑝

𝜕𝑦𝜕𝑢
|𝑞 (𝑡) − 𝑥(𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑢
|𝑞 (𝑡)

)
.

Now 𝑆𝑡 has a node at 𝑞(𝑡) if and only if det(𝐻𝑞 (𝑡) ) ≠ 0. If we substitute the equalities (3.2) in 𝐻𝑞 (𝑡) ,
we see that this matrix has the first column divisible by 𝑐(𝑡) and the second and third columns divisible
by 𝑐(𝑡)2. Let 𝐵𝑞 (𝑡) be the matrix obtained by 𝐻𝑞 (𝑡) by dividing the first column by 𝑐(𝑡) and the second
and third columns by 𝑐(𝑡)2. We have that

𝐵𝑞 (𝑡) =
���	
𝐵11(𝑡) 𝐵12 (𝑡) 𝐵13(𝑡)

𝐵21(𝑡)
1
2 (

𝜕𝑝
𝜕𝑥 |𝑞 (𝑡) )

2 𝜕𝑝
𝜕𝑧2 |𝑞 (𝑡)

1
2 (

𝜕𝑝
𝜕𝑥 |𝑞 (𝑡) )

2 𝜕𝑝
𝜕𝑧𝜕𝑢 |𝑞 (𝑡)

𝐵31(𝑡)
1
2 (

𝜕𝑝
𝜕𝑥 |𝑞 (𝑡) )

2 𝜕𝑝
𝜕𝑧𝜕𝑢 |𝑞 (𝑡)

1
2 (

𝜕𝑝
𝜕𝑥 |𝑞 (𝑡) )

2 𝜕𝑝
𝜕𝑢2 |𝑞 (𝑡)


���, (3.8)

where

𝐵11 (𝑡) =
𝜕𝑝

𝜕𝑦
|𝑞 (𝑡)

𝜕𝑝

𝜕𝑥
|𝑞 (𝑡) + 𝑐(𝑡)

(
−

𝜕𝑝

𝜕𝑥𝜕𝑦
|𝑞 (𝑡)

𝜕𝑝

𝜕𝑥
|𝑞 (𝑡)

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡)

+
1
2

𝜕𝑝

𝜕𝑥2 |𝑞 (𝑡)

( 𝜕𝑝
𝜕𝑦

|𝑞 (𝑡)

)2
+

1
2

𝜕𝑝

𝜕𝑦2 |𝑞 (𝑡)

( 𝜕𝑝
𝜕𝑥

|𝑞 (𝑡)

)2)
,

𝐵21 (𝑡) =
1
2
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡)𝑐(𝑡)

( 𝜕𝑝
𝜕𝑥

|𝑞 (𝑡)
𝜕𝑝

𝜕𝑦𝜕𝑧
|𝑞 (𝑡) −

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑧
|𝑞 (𝑡)

)
,

𝐵31 (𝑡) =
1
2
𝜕𝑝

𝜕𝑥
|𝑞 (𝑡)𝑐(𝑡)

( 𝜕𝑝
𝜕𝑥

|𝑞 (𝑡)
𝜕𝑝

𝜕𝑦𝜕𝑢
|𝑞 (𝑡) −

𝜕𝑝

𝜕𝑦
|𝑞 (𝑡)

𝜕𝑝

𝜕𝑥𝜕𝑢
|𝑞 (𝑡)

)
.

As t goes to 0, 𝑐(𝑡) goes to 0 and the matrix 𝐵𝑞 (𝑡) specializes to the matrix

𝐵0 =
���	
𝜕𝑝
𝜕𝑦 |0

𝜕𝑝
𝜕𝑥 |0 𝐵12(0) 𝐵13(0)

0 1
2 (

𝜕𝑝
𝜕𝑥 |0)

2 𝜕𝑝
𝜕𝑧2 |0

1
2 (

𝜕𝑝
𝜕𝑥 |0)

2 𝜕𝑝
𝜕𝑧𝜕𝑢 |0

0 1
2 (

𝜕𝑝
𝜕𝑥 |0)

2 𝜕𝑝
𝜕𝑧𝜕𝑢 |0

1
2 (

𝜕𝑝
𝜕𝑥 |0)

2 𝜕𝑝
𝜕𝑢2 |0


���. (3.9)
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Using that 𝜕𝑝
𝜕𝑥 |0 = 1 = 𝜕𝑝

𝜕𝑦 |0, we see that det(𝐵0) coincides with the discriminant of the degree 2
homogeneous polynomial 𝑝2 (0, 0, 𝑧, 𝑢), which is nonzero by the hypothesis that 𝑆0 has a 𝑇1 singularity
at 0. We finally deduce that det(𝐵𝑞 (𝑡) ) ≠ 0 ≠ det(𝐻𝑞 (𝑡) ) and thus the surface 𝑆𝑡 has a node at 𝑞(𝑡) for
𝑡 ≠ 0. �

3.2.2. Equisingular deformations of surfaces with 𝑇1 singularities
We go on considering the setting we introduced at the beginning of Section 3. Assume that 𝑆0 =
𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 is a surface with 𝑆𝐴 and 𝑆𝐵 smooth, intersecting transversally along 𝑅 = 𝐴 ∩ 𝐵, except
for 𝛿 distinct points 𝑝1, . . . 𝑝 𝛿 ∈ 𝑆𝐴 ∩ 𝑆𝐵, where 𝑆0 has a singularity of type 𝑇1. We recall the standard
exact sequence

0 �� Θ𝑆0
�� ΘX |𝑆0

𝛼 �� N𝑆0 |X
𝛽 �� 𝑇1

𝑆0
�� 0, (3.10)

where Θ𝑆0 = 𝔥𝔬𝔪(Ω1
𝑆0
,O𝑆0 ) is the tangent sheaf of 𝑆0, ΘX |𝑆0 is the tangent sheaf of X restricted

to 𝑆0, N𝑆0 |X is the normal bundle of 𝑆0 in X , and 𝑇1
𝑆0

is the first cotangent sheaf of 𝑆0 [20, Section
1.1.3]. The latter is supported on the singular locus Sing(𝑆0) = 𝑆𝐴 ∩ 𝑆𝐵. The kernel N ′

𝑆0 |X of 𝛽 is the
so-called equisingular normal sheaf to 𝑆0 in X , whose global sections are the first-order locally trivial
deformations of 𝑆0 in X .

In the sequel, an equisingular (first-order) deformation of 𝑆0 in X will be a (first-order) locally trivial
deformation of 𝑆0 in X .

We will denote by ESX0
[𝑆0 ]

⊆ HX0 ⊂ HX |D the locally closed set of equisingular deformations of 𝑆0

in X0. Similarly, if 𝑝 ∈ 𝑆0 is a point, we will denote by ESX0
[𝑆0 ], 𝑝

⊆ HX0 ⊂ HX |D the locally closed set
of deformations of 𝑆0 in X0, which are equisingular at p.

Lemma 3.3. If ESX |D

[𝑆0 ]
⊆ HX |D is the locally closed set of equisingular deformations of 𝑆0 in X , then

ESX |D

[𝑆0 ]
coincides set-theoretically with ESX0

[𝑆0 ]
⊆ HX0 .

Proof. This is a straightforward consequence of Lemma 3.2. �

If T𝛿 ⊂ HX0 is the Zariski closure of the family of surfaces in X0 with 𝛿 singularities of type 𝑇1,
then every irreducible component of ESX0

[𝑆0 ]
is a Zariski open set in an irreducible component of T𝛿 .

Consider the rational map

𝜑 : HX0 � H𝑅,

where H𝑅 is the Hilbert scheme of R, and 𝜑 maps the general subscheme of X0 to its intersection with R.

Lemma 3.4. Let [𝑆0] ∈ T𝛿 be a point corresponding to a surface 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 as above and suppose
that [𝑆0] is a smooth point of the Hilbert scheme HX0 so that there is a unique component HX0

𝑆0
of HX0

containing 𝑆0. Let C be the curve cut out by 𝑆0 on R. Assume that ℎ1 (N𝐶 |𝑅 ⊗ I{𝑝1 ,..., 𝑝𝛿 } |𝑅) = 0, where
𝑝1, . . . , 𝑝 𝛿 are the nodes of C, which implies that H𝑅 is smooth at the point [𝐶] and that the Severi
variety of curves on R with 𝛿 nodes is smooth at the point [𝐶] of codimension 𝛿 in the unique irreducible
component H𝑅

𝐶 of the Hilbert scheme H𝑅 containing [𝐶]. Suppose moreover that the map

𝜑
|HX0

𝑆0
: HX0

𝑆0
� H𝑅

𝐶 (3.11)

is dominant.
Then there is an irreducible component T of T𝛿 containing 𝑆0 that has codimension at most 𝛿 in HX0

𝑆0
.
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Proof. Let 𝑉 ⊂ H𝑅
𝐶 be the unique irreducible component of the locally closed set of curves on R with

𝛿 nodes that contains the point [𝐶]. Since [𝐶] sits in the image of 𝜑
|HX0

𝑆0
, V intersects the image of

𝜑
|HX0

𝑆0
. Since 𝜑

|HX0
𝑆0

is dominant, the intersection of V with the image of 𝜑
|HX0

𝑆0
is an open dense subset

of V; hence, there is an irreducible component T of T𝛿 containing 𝑆0 such that the map

𝜑 |T : T � 𝑉

is dominant. Let a be the dimension of the general fibre of 𝜑 |T and let b be the dimension of the general
fibre of 𝜑

|HX0
𝑆0

. Of course, 𝑎 � 𝑏. We have

dim(T) = dim(𝑉) + 𝑎, and dim(HX0
𝑆0
) = dim(H𝑅

𝐶 ) + 𝑏.

Hence,

dim(HX0
𝑆0
) − dim(T) = dim(H𝑅

𝐶 ) − dim(𝑉) + 𝑏 − 𝑎 � 𝛿,

and the assertion follows. �

Remark 3.5. Note that in the previous lemma, one has that T has exactly codimension 𝛿 in HX0
𝑆0

if and
only if 𝑎 = 𝑏.

Lemma 3.6. Assume that 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 is a surface with 𝑆𝐴 and 𝑆𝐵 smooth, intersecting
transversally along 𝑅 = 𝐴 ∩ 𝐵, except for 𝛿 points 𝑝1, . . . , 𝑝 𝛿 ∈ 𝑆𝐴 ∩ 𝑆𝐵, where 𝑆0 has a singularity
of type 𝑇1. Then the equisingular first-order infinitesimal deformations of 𝑆0 in X coincide with the
equisingular first-order infinitesimal deformations of 𝑆0 in X0. More precisely, we have that

𝐻0(𝑆0,N ′
𝑆0 |X ) ⊆ 𝐻0(𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0), (3.12)

where 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0 is the ideal sheaf of {𝑝1, . . . , 𝑝 𝛿} in X0.

Proof. Let 𝑝 = 𝑝𝑖 , for 𝑖 = 1, ..., 𝛿, be a point where 𝑆0 has a 𝑇1 singularity. Consider the localized exact
sequence

0 �� N ′
𝑆0 |X , 𝑝

�� N𝑆0 |X , 𝑝
�� 𝑇1
𝑆0 , 𝑝

�� 0. (3.13)

Let (𝑥, 𝑦, 𝑧, 𝑢, 𝑡) be an analytic coordinate system of X centered at p such that X is given by 𝑥𝑦 = 𝑡 and
such that we have the following identifications:

◦ the local ringO𝑆0 , 𝑝 = OX , 𝑝/I𝑆0 |X , 𝑝 of 𝑆0 at p is identified withC[𝑥, 𝑦, 𝑧, 𝑢]/(ℎ1, ℎ2), localized at the
origin, where ℎ1 (𝑥, 𝑦, 𝑧, 𝑢) = 𝑥+ 𝑦+ℎ12 (𝑥, 𝑦, 𝑧, 𝑢), ℎ12 (𝑥, 𝑦, 𝑧, 𝑢) ∈ (𝑥, 𝑦, 𝑧, 𝑢)2 and ℎ12(0, 0, 𝑧, 𝑢) = 0
having a node at 0 = 𝑝, and ℎ2 (𝑥, 𝑦, 𝑧, 𝑢) = 𝑥𝑦;

◦ the O𝑆0 , 𝑝-module N𝑆0 |X , 𝑝 is identified with the free OX , 𝑝-module 𝔥𝔬𝔪OX , 𝑝
(I𝑆0 |X , 𝑝 ,O𝑆0 , 𝑝),

generated by the morphisms ℎ∗1 and ℎ∗2, defined by

ℎ∗𝑖 (𝑠1(𝑥, 𝑦, 𝑧, 𝑢)ℎ1(𝑥, 𝑦, 𝑧, 𝑢) + 𝑠2(𝑥, 𝑦, 𝑧, 𝑢)ℎ2(𝑥, 𝑦, 𝑧, 𝑢)) = 𝑠𝑖 (𝑥, 𝑦, 𝑧, 𝑢), for 𝑖 = 1, 2

and, finally,

◦ the O𝑆0 , 𝑝-module

(ΘX |𝑆0 ) 𝑝 
 ΘX , 𝑝 ⊗ O𝑆0 , 𝑝


 〈𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧, 𝜕/𝜕𝑢, 𝜕/𝜕𝑡〉O𝑆0 , 𝑝
/〈𝜕/𝜕𝑡 − 𝑥𝜕/𝜕𝑦 − 𝑦𝜕/𝜕𝑥〉

is identified with the free OX , 𝑝-module generated by the derivatives 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧, 𝜕/𝜕𝑢.
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With these identifications, the localization 𝛼𝑝 : (ΘX |𝑆0 ) 𝑝 → N𝑆0 |X , 𝑝 of the sheaf map 𝛼 from (3.10)
is defined by

𝛼𝑝 (𝜕/𝜕𝑥) =
(
𝑠 = 𝑠1ℎ1 + 𝑠2ℎ2 � 𝜕𝑠/𝜕𝑥 =O𝑆0 , 𝑝

𝑠1𝜕ℎ1/𝜕𝑥 + 𝑠2𝜕ℎ2/𝜕𝑥
)

= (1 + 𝜕ℎ12/𝜕𝑥)ℎ
∗
1 + 𝑦ℎ∗2,

𝛼𝑝 (𝜕/𝜕𝑦) = (1 + 𝜕ℎ12/𝜕𝑦)ℎ
∗
1 + 𝑥ℎ∗2,

𝛼𝑝 (𝜕/𝜕𝑧) = (𝜕ℎ12/𝜕𝑧)ℎ
∗
1 and

𝛼𝑝 (𝜕/𝜕𝑢) = (𝜕ℎ12/𝜕𝑢)ℎ
∗
1.

By definition of N ′
𝑆0 |X , a local section s of N ′

𝑆0 |X , 𝑝 is such that there exists a local section v of ΘX |𝑆0 𝑝
with

𝑣 = 𝑣𝑥 (𝑥, 𝑦, 𝑧, 𝑢)𝜕/𝜕𝑥 + 𝑣𝑦 (𝑥, 𝑦, 𝑧, 𝑢)𝜕/𝜕𝑦 + 𝑣𝑧 (𝑥, 𝑦, 𝑧, 𝑢)𝜕/𝜕𝑧 + 𝑣𝑢 (𝑥, 𝑦, 𝑧, 𝑢)𝜕/𝜕𝑢,

such that 𝑠 = 𝛼𝑝 (𝑣). Hence, locally at p, first-order equisingular deformations of 𝑆0 in X have equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥 + 𝑦 + ℎ12 (𝑥, 𝑦, 𝑧, 𝑢) + 𝜖

(
𝑣𝑥 (1 + 𝜕ℎ12/𝜕𝑥) + 𝑣𝑦 (1 + 𝜕ℎ12/𝜕𝑦)

+ 𝑣𝑧 (𝜕ℎ12/𝜕𝑧) + 𝑣𝑢 (𝜕ℎ12/𝜕𝑢)
)
= 0

𝑥𝑦 + 𝜖 (𝑦𝑣𝑥 + 𝑥𝑣𝑦) = 0.

(3.14)

The first equation above gives a first-order infinitesimal deformation of the Cartier divisor cutting 𝑆0 on
X0, while the second equation gives a first-order infinitesimal deformation of X0 in X . More precisely,
by the exact sequence

0 �� ΘX0
�� ΘX |X0

�� NX0 |X � OX0
�� 𝑇1

X0
� O𝑅

�� 0,

one sees that 𝑥𝑦 + 𝜖 (𝑦𝑣𝑥 + 𝑥𝑣𝑦) = 0 is the local equation at p of a first-order equisingular deformation
of X0 in X . But 𝐻0(X0,N ′

X0 |X ) = 𝐻0(X0, I𝑅 |X0) = 0. It follows that the polynomial 𝑦𝑣𝑥 (𝑥, 𝑦, 𝑧, 𝑢) +
𝑥𝑣𝑦 (𝑥, 𝑦, 𝑧, 𝑢) in the second equation of (3.14) must be identically zero, proving the first assertion of
the lemma. In particular, by expanding 𝑣𝑥 and 𝑣𝑦 in Taylor series, we see that

𝑣𝑥 (0) = 𝑣𝑦 (0) = 0.

Looking at the first equation of (3.14), we have that 𝜕ℎ12
𝜕𝑧 (0) = 𝜕ℎ12

𝜕𝑢 (0) = 0 since ℎ12 (𝑥, 𝑦, 𝑧, 𝑢) ∈

(𝑥, 𝑦, 𝑧, 𝑢)2. This shows the inclusion (3.12). �

Remark 3.7. The argument in the proof of Lemma 3.6 proves more than stated. In fact, it proves that
if 𝑆0 is any surface in X0 with 𝛿 singularities of type 𝑇1 at 𝑝1, . . . , 𝑝 𝛿 (and may be other singularities
which we do not care about), the first-order infinitesimal deformations of 𝑆0 in X which are equisingular
at 𝑝1, . . . , 𝑝 𝛿 are a linear subspace of 𝐻0(𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0).

Corollary 3.7.1. Same hypotheses as in Lemma 3.4. Assume moreover that

𝐻1 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = 0 (3.15)

or, equivalently, that

𝐻1(𝑆0,N𝑆0 |X0) = 0 and ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = ℎ0 (𝑆0,N𝑆0 |X0) − 𝛿 (3.16)
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(assuring that the Hilbert scheme HX0 is smooth at [𝑆0]). Then the schemes ESX0
[𝑆0 ]

and T𝛿 are smooth
at [𝑆0] of dimension ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0)), with tangent space 𝑇[𝑆0 ] (ES

X0
[𝑆0 ]

) 
 𝑇[𝑆0 ] (T𝛿) 


𝐻0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0)) 
 𝐻0(𝑆0,N ′
𝑆0 |X ).

Proof. Consider the exact sequence

0 �� N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0
�� N𝑆0 |X0

�� N𝑆0 |X0 ⊗ O{𝑝1 ,..., 𝑝𝛿 }
�� 0, (3.17)

from which one deduces that ℎ1 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = 0 if and only if ℎ1 (𝑆0,N𝑆0 |X0) = 0 and

ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = ℎ0 (𝑆0,N𝑆0 |X0) − 𝛿.

Assume that ℎ1 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = 0. Thus, [𝑆0] is a smooth point of HX0 . In particular,
there exists a unique component HX0

𝑆0
of HX0 containing [𝑆0] and having dimension ℎ0 (𝑆0,N𝑆0 |X0) at

[𝑆0]. Now, by Lemma 3.4, one has that

ℎ0 (𝑆0,N𝑆0 |X0) − 𝛿 = dim(HX0
𝑆0
) − 𝛿 � dim[𝑆0 ] (ES

X0
[𝑆0 ]

)) � dim(𝑇[𝑆0 ] (ES
X0
[𝑆0 ]

)).

However, by (3.12), one has that

dim(𝑇[𝑆0 ] (ES
X0
[𝑆0 ]

)) � ℎ0 (𝑆0,N ′
𝑆0 |X ) � ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = ℎ0 (𝑆0,N𝑆0 |X0) − 𝛿.

The corollary follows. �

We note the following:

Lemma 3.8. Let [𝑆0] ∈ HX |D be any point corresponding to a reduced effective Cartier divisor
𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0. Assume that 𝐻1 (𝑆0,N𝑆0 |X0) = 0. Then the space of first-order infinitesimal
deformations of 𝑆0 in X is given by

𝐻0(𝑆0,N𝑆0 |X ) 
 𝐻0(𝑆0,N𝑆0 |X0) ⊕ 𝐻0(𝑆0,O𝑆0 ),

and

𝐻1(𝑆0,N𝑆0 |X ) 
 𝐻1(𝑆0,O𝑆0 )

is an obstruction space for OHX |D , [𝑆0 ] .

Proof. By the hypothesis, we have Ext1 (O𝑆0 ,N𝑆0 |X0) 
 𝐻1(𝑆0,N𝑆0 |X0) = 0, and by the exact sequence

0 �� N𝑆0 |X0
�� N𝑆0 |X

�� NX0 |X |𝑆0 = O𝑆0
�� 0, (3.18)

we have that

N𝑆0 |X 
 N𝑆0 |X0 ⊕ O𝑆0 .

The statement then follows by standard deformation theory. �

Corollary 3.8.1. Let [𝑆0] ∈ HX |D be a point corresponding to a reduced effective Cartier divisor
𝑆0 = 𝑆𝐴∪𝑆𝐵 ⊂ X0. Assume that [𝑆0] belongs to an irreducible componentH ofHX |D that dominatesD.
Suppose that 𝐻1(𝑆0,N𝑆0 |X0) = 0. Then [𝑆0] is a smooth point for HX |D and dim(H) = dim(HX0

[𝑆0 ]
) +1.

Proof. One has dim(H) � dim(HX0
[𝑆0 ]

) + 1 = ℎ0 (𝑆0,N𝑆0 |X0) + 1. However, dim(H) � ℎ0 (𝑆0,N𝑆0 |X ) =

ℎ0 (𝑆0,N𝑆0 |X0) + 1 by Lemma 3.8. The assertion follows. �
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Corollary 3.8.2. In the same setting as in Lemma 3.6 and same hypotheses as in Lemma 3.4, suppose that
(3.15) (or equivalently (3.16)) holds, assuring that T𝛿 is smooth at [𝑆0] of dimension ℎ0 (𝑆0,N𝑆0 |X0 ⊗

𝐼{𝑝1 ,..., 𝑝𝛿 } |X0) = ℎ0(𝑆0,N𝑆0 |X0) − 𝛿. Then for every positive integer 𝑟 < 𝛿, the variety T𝑟 is nonempty
and [𝑆0] ∈ T𝑟 . More precisely, in an analytic neighborhood of [𝑆0], T𝑟 consists of

(𝛿
𝑟

)
smooth analytic

branches each of dimension ℎ0(𝑆0,N𝑆0 |X0) − 𝑟 that intersect at [𝑆0] along a smooth analytic branch
of T𝛿 .

Informally speaking, this is saying that the 𝛿 singularities of type 𝑇1 of 𝑆0 can be independently
smoothed inside X0.

Proof. We first prove the assertion for 𝑟 = 1. Let T be the closure of the subset of the Hilbert scheme
HX0
𝑆0

consisting of all surfaces 𝑆′0 such that the intersection curve of 𝑆′0 with 𝑅 = 𝐴 ∩ 𝐵 is singular with
at most nodes. Observe that [𝑆0] ∈ T.

We claim that any irreducible component of T that contains [𝑆0] has exactly codimension 1 in HX0
𝑆0

.
Indeed, let T′ be such a component. Consider the dominant map 𝜑

|HX0
𝑆0

as in (3.11), which is defined at

a general point of T′.
By our hypotheses, the general element in H𝑅

𝐶 is a smooth curve; hence, T′ has codimension at least
1 in HX0

𝑆0
. Let T be the image of the restriction of 𝜑

|HX0
𝑆0

to T′. Then T has codimension 1 in H𝑅
𝐶 .

Let 𝛼 be the dimension of the general fibre of 𝜑
|HX0

𝑆0
and let 𝛽 be the dimension of the general fibre

of the restriction of 𝜑
|HX0

𝑆0
to T′. One has 𝛼 � 𝛽. Then

dim(HX0
𝑆0
) = dim(H𝑅

𝐶 ) + 𝛼

and

dim(T′) = dim(T ) + 𝛽 = dim(H𝑅
𝐶 ) − 1 + 𝛽 � dim(H𝑅

𝐶 ) − 1 + 𝛼 = dim(HX0
𝑆0
) − 1.

Since dim(T′) < dim(HX0
𝑆0
), we have dim(T′) = dim(HX0

𝑆0
) − 1 and 𝛼 = 𝛽, as claimed.

Now, we consider a suitably small analytic open neighborhood U of [𝑆0] in T. Every surface 𝑆′0 such
that [𝑆′0] ∈ 𝑈 has at most 𝛿 singularities of type 𝑇1.

Consider the variety 𝐼 ⊂ 𝑈 × 𝑅 consisting of all pairs ([𝑆′0], 𝑞) with q a 𝑇1 singularity of 𝑆′0. Let
𝜋1 : 𝐼 → 𝑈 and 𝜋2 : 𝐼 → 𝑅 be the two projections. The former one has finite fibres, implying that
every irreducible component of I has dimension dim(HX0

𝑆0
) − 1. As for the latter, it is dominant because

we assume the hypotheses of Lemma 3.4. Moreover, if 𝑞 ∈ 𝑅 is a point, the fibre 𝜋−1
2 (𝑞) is the locally

closed set of surfaces 𝑆′0 in HX0
𝑆0

having a 𝑇1 singularity in q.
Let 𝑉𝑖 be a sufficiently small analytic neighborhood of 𝑝𝑖 in R for 𝑖 = 1, . . . , 𝛿. By the above

considerations, 𝜋1 (𝜋
−1
2 (𝑉𝑖)) ⊆ 𝑈 is an analytic open set that parametrizes deformations of 𝑆0 which

are analytically equisingular at 𝑝𝑖 . Hence, by Remark 3.7, the tangent space to 𝜋1 (𝜋
−1
2 (𝑉𝑖)) at [𝑆0] is

contained in 𝐻0(𝑆,N𝑆0 |X0 ⊗ 𝐼𝑝𝑖 |X0) and

dim[𝑆0 ] (H
X0
𝑆0
) − 1 = dim[𝑆0 ] (𝜋1 (𝜋

−1
2 (𝑉𝑖))) � ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼𝑝𝑖 |X0).

If (3.15) holds, then ℎ1 (𝑆0,N𝑆0 |X0 ⊗ 𝐼𝑝𝑖 |X0) = 0 for all 𝑖 = 1, . . . , 𝛿, and one has

ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼𝑝𝑖 |X0) = ℎ0 (𝑆0,N𝑆0 |X0) − 1 = dim[𝑆0 ] (H
X0
𝑆0
) − 1.

Thus, 𝜋1 (𝜋
−1
2 (𝑉𝑖)), that is an open analytic subset of ESX0

[𝑆0 ], 𝑝𝑖
, is an analytic branch of U of dimension

ℎ0 (𝑆0,N𝑆0 |X0) − 1, smooth at [𝑆0].
Next, we prove that the general element [𝑆′0] in 𝜋1 (𝜋

−1
2 (𝑉𝑖)) has a unique 𝑇1 singularity. We argue for

the case 𝑖 = 1, and the proof is analogous in the other cases. Suppose this is not the case, and that 𝑆′0 has
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s singularities 𝑞1, . . . , 𝑞𝑠 of type 𝑇1 with 𝑠 > 1. When 𝑆′0 specializes to 𝑆0, 𝑞1, . . . , 𝑞𝑠 specialize, say,
to 𝑝1, . . . , 𝑝𝑠 . By the same argument as above, the tangent space to 𝜋1 (𝜋

−1
2 (𝑉1)) at [𝑆′0] is contained in

𝐻0 (𝑆′0,N𝑆′0 |X0 ⊗ 𝐼{𝑞1 ,...,𝑞𝑠 } |X0) and, under the hypothesis (3.15), one has

ℎ0 (𝑆′0,N𝑆′0 |X0 ⊗ 𝐼{𝑞1 ,...,𝑞𝑠 } |X0 ) � ℎ0 (𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝1 ,..., 𝑝𝑠 } |X0 ) = ℎ0 (𝑆0,N𝑆0 |X0 ) − 𝑠 < ℎ0 (𝑆0,N𝑆0 |X0 ) − 1

and this is a contradiction. This proves the assertion for 𝑟 = 1.
Consider now the case 𝛿 > 𝑟 > 1. Fix 𝑝𝑖1 , . . . , 𝑝𝑖𝑟 distinct points among 𝑝1, . . . , 𝑝 𝛿 . The intersection

𝔗𝑖1 ,...,𝑖𝑟 :=
𝑟⋂
𝑗=1

𝜋1 (𝜋
−1
2 (𝑉𝑖 𝑗 )),

that is an analytic open subset of ESX0
[𝑆0 ], 𝑝𝑖1 ,..., 𝑝𝑖𝑟

, is an analytic variety in HX0
𝑆0

parametrizing deforma-
tions of 𝑆0 that are analytic equisingular at the points 𝑝𝑖1 , . . . , 𝑝𝑖𝑟 . With the same argument as above,
one sees that, under the hypothesis (3.15), 𝔗𝑖1 ,...,𝑖𝑟 is smooth of codimension r in HX0

𝑆0
, with tangent

space at [𝑆0] given by 𝐻0(𝑆0,N𝑆0 |X0 ⊗ 𝐼{𝑝𝑖1 ,..., 𝑝𝑖𝑟 } |X0).
Moreover, again by the same argument as above, the general element 𝑆′0 in 𝔗𝑖1 ,...,𝑖𝑟 has exactly r

singularities of type 𝑇1 at points specializing to 𝑝𝑖1 , . . . , 𝑝𝑖𝑟 when 𝑆′0 specializes to 𝑆0. So 𝔗𝑖1 ,...,𝑖𝑟 is a
smooth analytic branch of T𝑟 containing [𝑆0], and this ends the proof of the corollary. �

Let now T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 ⊆ HX0 be the Zariski closure of the family of surfaces 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 in X0 with
𝛿𝐴 nodes on A and 𝛿𝐵 nodes on B off R and 𝛿𝑅 singularities of type 𝑇1 on R.

Corollary 3.8.3. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 be a reduced effective Cartier divisor such that 𝑆𝐴 and 𝑆𝐵 have,
respectively, 𝛿𝐴 and 𝛿𝐵 nodes 𝑝𝐴,1, . . . , 𝑝𝐴,𝛿𝐴 and 𝑝𝐵,1, . . . , 𝑝𝐵,𝛿𝐵 off R, are elsewhere smooth and
intersect transversally along a curve𝐶 = 𝑆𝐴∩𝑆𝐵, except for 𝛿𝑅 distinct points 𝑝𝑅,1, . . . , 𝑝𝑅,𝛿𝑅 ∈ 𝐶 ⊂ 𝑅

where 𝑆0 has singularities of type 𝑇1. Let ESX0
[𝑆0 ]

be the locally closed set of equisingular deformations
of 𝑆0 in X0. Consider the ideal sheaf 𝐼ℨ |X0 in X0 of the 0-dimensional reduced scheme ℨ of lenght
𝛿 = 𝛿𝐴 + 𝛿𝐵 + 𝛿𝑅 given by

ℨ =
𝛿𝐴∑
𝑖=1

𝑝𝐴,𝑖 +
𝛿𝐵∑
𝑖=1

𝑝𝐵,𝑖 +
𝛿𝑅∑
𝑖=1

𝑝𝑅,𝑖 .

Then

𝑇[𝑆0 ] (ES
X0
[𝑆0 ]

) ⊆ 𝐻0(𝑆0,N𝑆0 |X0 ⊗ Iℨ |X0). (3.19)

If

ℎ1 (𝑆0,N𝑆0 |X0 ⊗ Iℨ |X0) = ℎ1 (𝐶,N𝐶 |𝑅 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |𝑅) = 0 (3.20)

and the map

𝜑
|HX0

𝑆0
: HX0

𝑆0
� H𝑅

𝐶

defined as in Lemma 3.4 is dominant, then the equality holds in (3.19), and the locally closed set ESX0
[𝑆0 ]

of locally trivial deformations of 𝑆0 in X0 is smooth at [𝑆0] of dimension ℎ0(𝑆0,N𝑆0 |X0 ⊗ 𝐼ℨ |X0) =
ℎ0 (𝑆0,N𝑆0 |X0)−𝛿. In particular, there exists only one irreducible component T ⊂ T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 containing
the point [𝑆0] (which is smooth at [𝑆0] and contains ESX0

[𝑆0 ]
as a Zariski open set). Moreover, under

these hypotheses, the singularities of 𝑆0 may be smoothed independently in X0. More precisely, for
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every 𝛿′𝐴 � 𝛿𝐴, 𝛿′𝐵 � 𝛿𝐵 and 𝛿′𝑅 � 𝛿𝑅, we have that T𝛿′
𝐴
, 𝛿′𝐵 , 𝛿

′
𝑅

is nonempty and [𝑆0] ∈ T𝛿′
𝐴
, 𝛿′𝐵 , 𝛿

′
𝑅

. In
an analytic neighborhood of [𝑆0], T𝛿′

𝐴
, 𝛿′𝐵 , 𝛿

′
𝑅

consists of(
𝛿𝑅
𝛿′𝑅

) (
𝛿𝐴
𝛿′𝐴

) (
𝛿𝐵
𝛿′𝐵

)
smooth analytic branches of dimension ℎ0 (𝑆0,N𝑆0 |X0) − 𝛿′, where 𝛿′ = 𝛿′𝐴 + 𝛿′𝐵 + 𝛿′𝑅, that intersect
at [𝑆0] along a smooth analytic branch of T ⊂ T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 , corresponding to deformations of [𝑆0]
preserving 𝛿′𝑅 points of type 𝑇1 and 𝛿′𝐴 nodes on A and 𝛿′𝐵 nodes on B.

Proof. Let 𝑆0 be a surface as in the statement. The inclusion (3.19) follows from Lemma 3.6, Remark 3.7
and well-known deformation theory of nodal surfaces (see [11, §2.3]). It can be proved by using (3.10).
In particular, if one localizes (3.10) at a node p of 𝑆0, then 𝐻0 (𝑆0, 𝑇

1
𝑆0 , 𝑝

) � C can be identified with the
tangent space to the versal deformation space of a node.

Now we want to prove that, under the hypotheses of the corollary, the locally closed set ESX0
[𝑆0 ]

is
smooth at [𝑆0] of codimension 𝛿 in the Hilbert scheme HX0

𝑆0
.

Let 𝐶 ⊂ 𝑅 be the 𝛿𝑅-nodal curve cut out by 𝑆0 on R. By the hypothesis (3.20), one has that
ℎ1 (𝐶,N𝐶 |𝑅 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |𝑅) = 0. This implies that [𝐶] is a smooth point of the locally closed
Severi variety V𝛿 of 𝛿-nodal curves in H𝑅

𝐶 . Let V be the unique irreducible component of V𝛿 containing
[𝐶]. Now, as we saw in Lemma 3.4, 𝜑−1

|HX0
𝑆0

(𝑉) has at least one irreducible component of codimension

at most 𝛿𝑅 in HX0
𝑆0

. However, by Lemma 3.6, we have that

𝑇[𝑆0 ] (𝜑
−1
|HX0

𝑆0

(𝑉)) ⊆ 𝐻0(𝑆0,N𝑆0 |X0 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |X0),

and by (3.20), we have ℎ0 (𝑆0,N𝑆0 |X0 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |X0) = dim(HX0
𝑆0
) − 𝛿𝑅. Thus, 𝜑−1

|HX0
𝑆0

(𝑉) is

smooth at [𝑆0] of codimension 𝛿𝑅. We observe that 𝜑−1
|HX0

𝑆0

(𝑉) is an analytic open set of the variety

ESX0
[𝑆0 ], 𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅

of deformations of 𝑆0 in X0 that are locally trivial at every 𝑇1 singularity 𝑝𝑅,𝑖 , and
we just proved that

𝑇[𝑆0 ] (ES
X0
[𝑆0 ], 𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅

) = 𝑇[𝑆0 ] (𝜑
−1
|HX0

𝑆0

(𝑉)) = 𝐻0(𝑆0,N𝑆0 |X0 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |X0).

We morever observe that the general element [𝑆′0] of 𝜑−1
|HX0

𝑆0

(𝑉) corresponds to a surface 𝑆′0 = 𝑆′𝐴∪𝑆′𝐵,

where 𝑆′𝐴 and 𝑆′𝐵 intersect transversally along a curve𝐶 ′ on R, except for 𝛿𝑅 points 𝑝′
𝑅,1, . . . , 𝑝

′
𝑅,𝛿𝑅

∈ 𝐶 ′,
which are singularities of type 𝑇1 of 𝑆′0, and specialize to 𝑝𝑅,1, . . . , 𝑝𝑅,𝛿𝑅 as 𝑆′0 specializies to 𝑆0.

We claim that 𝑆′𝐴 and 𝑆′𝐵 are smooth outside R. Indeed, since [𝑆0] belongs to 𝜑−1
|HX0

𝑆0

(𝑉), the surface

𝑆′0 may have at most 𝛿′𝐴 � 𝛿𝐴 nodes 𝑝𝐴,1, . . . , 𝑝𝐴,𝛿′
𝐴

on A and 𝛿′𝐵 � 𝛿𝐵 nodes 𝑝𝐵,1, . . . , 𝑝𝐵,𝛿′𝐵 on B,
deformations of 𝛿′𝐴 nodes of 𝑆0 on A and 𝛿′𝐵 nodes of 𝑆0 on B. If this happens, denoting by ℨ′ the scheme
of singular points of 𝑆′0, then 𝑇[𝑆′0 ]

(ESX0
[𝑆0 ], 𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅

) = 𝑇[𝑆′0 ]
𝜑−1
|HX0

𝑆0

(𝑉) ⊆ 𝐻0(𝑆′0,N𝑆′0 |X0 ⊗ 𝐼ℨ′ |X0).

But, once again by (3.20) and by semicontinuity, one has that ℎ0 (𝑆′0,N𝑆′0 |X0 ⊗ 𝐼ℨ′ |X0) = 𝐻0(𝑆′0,N𝑆′0 |X0)−

𝛿𝑅 − 𝛿′𝐴 − 𝛿′𝐵 . It follows that 𝛿′𝐴 = 𝛿′𝐵 = 0 (i.e., 𝑆′𝐴 and 𝑆′𝐵 are smooth off R and 𝜑−1
|HX0

𝑆0

(𝑉) is a locally

closed set in one irreducible component T ⊂ T𝛿𝑅 , smooth at [𝑆0]). We just proved that, under our
hypotheses, one may deform 𝑆0 in X0 by smoothing all nodes of 𝑆0 and by preserving all𝑇1 singularities.

Let now ℨ𝐴 and ℨ𝐵 be, respectively, the scheme of nodes of 𝑆0 on A and B. Let ESX0
[𝑆0 ],ℨ𝐴,ℨ𝐵

be the
scheme of deformations of 𝑆0 which are locally trivial at every node of 𝑆0. By standard deformation
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theory of nodal surfaces, one has that, under the hypothesis ℎ1 (𝑆0,N𝑆0 |X0 ⊗ Iℨ𝐴∪ℨ𝐵 |X0) = 0 (that holds
by (3.20)), ESX0

[𝑆0 ],ℨ𝐴,ℨ𝐵
is smooth of codimension 𝛿𝐴 + 𝛿𝐵 in HX0

𝑆0
at [𝑆0], and moreover,

𝑇[𝑆0 ] (ES
X0
[𝑆0 ],ℨ𝐴,ℨ𝐵

) = 𝐻0(𝑆0,N𝑆0 |X0 ⊗ Iℨ𝐴∪ℨ𝐵 |X0).

With a similar argument as above, one sees that the general element [𝑆0] of ESX0
[𝑆0 ],ℨ𝐴,ℨ𝐵

corresponds
to a surface 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵, with 𝑆𝐴 and 𝑆𝐵 intersecting transversally along a smooth curve 𝐶̃ ⊂ 𝑅 and
having, respectively, 𝛿𝐴 and 𝛿𝐵 nodes as singularities. In particular, ESX0

[𝑆0 ],ℨ𝐴,ℨ𝐵
is a locally closed set

in an irreducible component T̃ of T𝛿𝐴, 𝛿𝐵 ,0, of which [𝑆0] is a smooth point.
Now the equisingular deformation locus ESX0

[𝑆0 ]
of 𝑆0 in X0 is the intersection of the loci

ESX0
[𝑆0 ], 𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅

and ESX0
[𝑆0 ],ℨ𝐴,ℨ𝐵

. Hence, ESX0
[𝑆0 ]

has codimension at most 𝛿 in HX0
𝑆0

because [𝑆0]

is a smooth point of HX0
𝑆0

.
However, one has

𝑇[𝑆0 ] (ES
X0
[𝑆0 ]

) = 𝑇[𝑆0 ] (ES
X0
[𝑆0 ], 𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅

) ∩ 𝑇[𝑆0 ] (ES
X0
[𝑆0 ],ℨ𝐴,ℨ𝐵

)

= 𝐻0(𝑆0,N𝑆0 |X0 ⊗ I{𝑝𝑅,1 ,..., 𝑝𝑅,𝛿𝑅 } |X0) ∩ 𝐻0 (𝑆0,N𝑆0 |X0 ⊗ Iℨ𝐴∪ℨ𝐵 |X0)

= 𝐻0(𝑆0,N𝑆0 |X0 ⊗ Iℨ |X0).

By (3.20), we have

ℎ0 (𝑆0,N𝑆0 |X0 ⊗ Iℨ |X0) = ℎ0(𝑆0,N𝑆0 |X0) − 𝛿.

This proves that ESX0
[𝑆0 ]

is smooth at [𝑆0] of codimension exactly 𝛿 in HX0
𝑆0

, as wanted. This proves the
first part of the corollary.

The second part is proved with analogous arguments as the ones used in the proof of
Corollary 3.8.2. �

Proposition 3.9. Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 be a reduced effective Cartier divisor as in the statement of
Corollary 3.8.3. Assume that [𝑆0] belongs to an irreducible component H of HX |D that dominates D
and that (3.20) holds.

Let ESX
[𝑆0 ],ℨ𝐴,ℨ𝐵

be the locus in HX of deformations of 𝑆0 which are equisingular at every node of
𝑆0. Then ESX

[𝑆0 ],ℨ𝐴,ℨ𝐵
is generically smooth of codimension 𝛿𝐴 + 𝛿𝐵 in H, and it contains ESX0

[𝑆0 ],ℨ𝐴,ℨ𝐵

as a subscheme of codimension 1.
In simple words, [𝑆0] can be deformed out of X0 preserving the 𝛿𝐴 + 𝛿𝐵 nodes.

Proof. From the hypotheses, it follows that 𝐻1(𝑆0,N𝑆0 |X0) = 0. Then, by Corollary 3.8.1, HX |D is
smooth at [𝑆0] with dimension ℎ0 (𝑆0,N𝑆0 |X0) + 1 = dim(HX0

𝑆0
) + 1. By standard deformation theory,

there is an analytic neighborhood U of [𝑆0] in H and a versal morphism

𝑓 : 𝑈 −→
∏

𝑝∈ℨ𝐴+ℨ𝐵

Δ 𝑝 ,

where Δ 𝑝 is the versal deformation space of a node, and therefore, it has dimension 1. Let𝑈 ′ = 𝑈∩HX0
𝑆0

.
Then f restricts to

𝑔 : 𝑈 ′ −→
∏

𝑝∈ℨ𝐴+ℨ𝐵

Δ 𝑝 .
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The differential of g at [𝑆0] is

𝐻0 (𝑆0,N𝑆0 |X0) →
∏

𝑝∈ℨ𝐴+ℨ𝐵

𝑇1
𝑆0 , 𝑝
� C𝛿𝐴+𝛿𝐵 ,

and this map is surjective since its kernel is 𝐻0 (𝑆0,N𝑆0 |X0 ⊗Iℨ𝐴∪ℨ𝐵 |X0), which has codimension 𝛿𝐴+𝛿𝐵
in 𝐻0 (𝑆0,N𝑆0 |X0) by (3.20). Hence, g has maximal rank at [𝑆0] and therefore also f is of maximal rank
at [𝑆0]. Hence, 𝑓 −1(0) and 𝑔−1(0) are analytic subvarieties of U and 𝑈 ′, respectively, smooth at [𝑆0]
and of codimension 𝛿𝐴 + 𝛿𝐵 in U and 𝑈 ′, respectively. By versality, 𝑓 −1(0) (resp. 𝑔−1(0)) coincides
with ESX

[𝑆0 ],ℨ𝐴,ℨ𝐵
(resp. ESX0

[𝑆0 ],ℨ𝐴,ℨ𝐵
). The statement follows. �

3.2.3. Global deformations of surfaces with 𝑇1 singularities to nodal surfaces
In this section, we will assume the following setup. We have the family 𝜋 : X → D as usual with its
relative Hilbert scheme HX |D, whose fibre over 𝑡 ∈ D is the Hilbert scheme of HX𝑡 of X𝑡 .

Let VX |D

𝛿 be the Zariski closure in HX |D of the relative Severi variety WX \X0 |D\0
𝛿 ⊂ HX \X0 |D\0 of

𝛿-nodal surfaces. We want to provide sufficient conditions for VX |D

𝛿 to be nonempty.
We will suppose that we have a line bundle L on X with the following properties:

(1) ℎ0(X𝑡 ,L𝑡 ) is a constant 𝑟 + 1 in t and greater or equal than 4. In particular, every surface 𝑆0 in |L0 |
belongs to an irreducible component H of the relative Hilbert scheme HX |D that dominates D;

(2) |L0 | is base point free, so that we can assume that |L𝑡 | is base point free for all 𝑡 ∈ D;
(3) if 𝑝𝑡 ∈ X𝑡 is a general point, then the general surface in |L𝑡 | with a singular point at 𝑝𝑡 is singular

only at finitely many points, for the general 𝑡 ∈ D.

In this setting, we can consider the rank r projective bundle 𝜋̄ : P(𝜋∗(L)) → D. A point in
P := P(𝜋∗ (L)) that maps to 𝑡 ∈ D is a nonzero section of 𝐻0(X𝑡 ,L𝑡 ) up to a constant. In particular, if
𝑡 ≠ 0, a point in P corresponds to a surface in |L𝑡 |. Consider the open Zariski subset P′ := 𝜋̄−1 (D \ {0}),
which, by the above considerations, can be regarded as a subvariety of the relative Hilbert scheme of
surfaces in X . By a standard parameter count, one sees that there is a subscheme Z of pure codimension
1 in P′ whose points correspond to sections vanishing along singular surfaces. We will denote by 𝑍̄ the
closure of Z in P that has also codimension 1.

Proposition 3.10. Set up as above with the following further condition: the subspace of sections of
𝐻0 (X0,L0) that vanish on 𝑅 = 𝐴∩ 𝐵, with A and B the irreducible components of X0, has codimension
strictly larger than 1 in 𝐻0 (X0,L0).

Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 be a surface corresponding to a section of L0. We suppose that:

(a) 𝑆𝐴 and 𝑆𝐵 are smooth and intersect transversally along a curve 𝐶 = 𝑆𝐴 ∩ 𝑆𝐵, except for a point
𝑝 = 𝑝1 ∈ 𝐶 ⊂ 𝑅 where 𝑆0 has a singularity of type 𝑇1 and the hypotheses of Lemma 3.4 hold for
𝛿 = 1;

(b) the sublinear system L0 (2, 𝑝) of |L0 | of surfaces with at least a 𝑇1 singularity at p has codimension
3 in |L0 |;

(c) (3.15) (for 𝛿 = 1) holds for 𝑆0.

Then:

(i) T1 is smooth at [𝑆0] of codimension 1 in H0;
(ii) 𝑆0 can be deformed to a 1-nodal surface 𝑆𝑡 ⊂ X𝑡 ;

(iii) if T ⊆ T1 is the unique irreducible component containing [𝑆0], then there exists a reduced,
irreducible component V ⊂ VX |D

1 of dimension dim(H) − 1 whose central fibre V0 contains T as
an irreducible component.

Before giving the proof of the proposition, we make a preliminary lemma. For this, we need some
notation. Let 𝐼 ⊂ |L0 | × 𝑅, with 𝑅 = 𝐴 ∩ 𝐵 be the locally closed subset consisting of pairs (𝑆0, 𝑝) such
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that 𝑆0 cuts out on R a curve singular at p. We will consider the two projections 𝜋1 : 𝐼 → |L0 | and
𝜋2 : 𝐼 → 𝑅. Note that if 𝑝 ∈ 𝑅, then 𝜋−1

2 (𝑝) can be identified with L0(2, 𝑝).
Lemma 3.11. (i) There is at most one irreducible component 𝐼 ′ of I such that the restriction of 𝜋2 to 𝐼 ′

is dominant to R via 𝜋2.
(ii) If 𝐼 ′ exists, and if its general element (𝑆0, 𝑝) is such that 𝑆0 cuts out on R a curve with finitely

many singular points, then L0 (2, 𝑝) has codimension 3 in |L0 |. Moreover, dim(𝐼 ′) = dim(|L0 |) − 1,
and its image in |L0 | via 𝜋1 has codimension 1 in |L0 |.

(iii) If there is a pair (𝑆0, 𝑝) in I such that 𝑆0 cuts out on R a curve with finitely many singular points
and if L0 (2, 𝑝) has codimension 3 in |L0 |, then (𝑆0, 𝑝) belongs to an irreducible component 𝐼 ′ of I
dominating R via 𝜋2. For this component, one has dim(𝐼 ′) = dim(|L0 |) − 1, and its image in |L0 | via
𝜋1 has codimension 1 in |L0 |.
Proof. (i) Let 𝐼 ′ be an irreducible component of I such that 𝐼 ′ is dominant to R via 𝜋2. If 𝑝 ∈ 𝑅 is a
general point, we know that 𝜋−1

2 (𝑝) can be identified with L0(2, 𝑝), and L0 (2, 𝑝) is a projective space
with dimension s independent on the general point p. This clearly implies that 𝐼 ′ is unique.

(ii) Suppose the dominating component 𝐼 ′ exists. With the same notation as above, we have dim(𝐼 ′) =
dim(𝑅) + 𝑠 = 𝑠 + 2. However, by Remark 2.4, 𝑠 � dim(|L0 |) − 3; hence, dim(𝐼 ′) � dim(|L0 |) − 1. By
the hypotheses, the map 𝜋1, restricted to 𝐼 ′, is generically finite onto the image, and this image cannot
be dense in |L0 | by Bertini’s theorem. Hence, dim(𝐼 ′) � dim(|L0 |) − 1, so the equality holds, and this
implies that 𝑠 = dim(|L0 |) − 3, as wanted.

(iii) Keep the same notation as above. The dimension of the fibre of 𝜋2 over a general point of R is
𝑟 � dim(|L0 |) − 3 = L0 (2, 𝑝) � 0. Moreover, there is an open dense subset U of R, containing p, such
that for all 𝑞 ∈ 𝑈, one has that L0 (2, 𝑝) has dimension 𝑠 = dim(|L0 |) − 3. Hence, there is a component
𝐼 ′ of I dominating R via 𝜋2. �

We can now give the following:

Proof of Proposition 3.10. We notice that by Corollary 3.8.1, [𝑆0] is a smooth point for HX |D. Part (i)
follows by Corollary 3.7.1.

Let us prove part (ii). For this, we go back to the notation introduced before the statement of
Proposition 3.10. Consider then the intersection 𝑍̄0 of 𝑍̄ with 𝜋̄−1(0) � |L0 |, such that any of its
irreducible components has codimension 1 in |L0 |. By the hypotheses we made, if 𝑍̄ ′

0 is any irreducible
component of 𝑍̄0, its general element does not contain R; hence, it is a surface 𝑆′0 ∈ |L0 | that intersects
R along a curve 𝐶 ′. By Proposition 3.1, the curve 𝐶 ′ is singular.
Claim 3.12. There is an irreducible component 𝑍̄ ′

0 of 𝑍̄0, such that for 𝑆′0 ∈ 𝑍̄ ′
0 general, 𝑆′0 intersects

R in a curve 𝐶 ′ that is singular at a general point 𝑝′ of R. Moreover, 𝑆′0 is limit of reduced singular
surfaces 𝑆𝑡 ∈ |L𝑡 |.
Proof of the Claim 3.12. This will be a consequence of the following fact that we are going to prove:
given a general point 𝑝′ ∈ 𝑅, there is some 𝑆′0 ∈ 𝑍̄0 such that the curve 𝐶 ′ cut out by 𝑆′0 on R is singular
at 𝑝′. Indeed, given 𝑝′ ∈ 𝑅 general, take a smooth bisection 𝛾′ of X → D that passes through 𝑝′. As
in §2.1, we can consider the family Y → D obtained by desingularising the variety X ′ → D gotten
via 2-fold base change 𝜈2 : D → D. The variety Y → D has a section 𝛾 that is mapped to 𝛾′ via the
map 𝜋 : Y → X . We consider 𝜋∗(L). Our assumption (3) implies that there are nonzero sections of
𝜋∗(L), on Y \Y0, vanishing with multiplicity at least 2 along 𝛾. The assertion is now a consequence of
Theorem 2.2. �

By the hypothesis (b) and by Lemma 3.11(iii), the pair (𝑆0, 𝑝) belongs to the unique irreducible
component 𝐼 ′ of I dominating R via 𝜋2, and 𝐼 ′ has dimension equal to dim(|L0 |) − 1. Consider now the
subset 𝐼 ′′ ⊆ 𝐼 of the pairs (𝑆′0, 𝑝

′) with 𝑆′0 ∈ 𝑍̄ ′
0, where 𝑍̄ ′

0 is as in Claim 3.12. We notice that 𝐼 ′′ also
dominates R via 𝜋2. So by Lemma 3.11(i), 𝐼 ′′ coincides with 𝐼 ′. This implies that 𝑍̄ ′

0 = 𝜋1 (𝐼
′); hence,

𝑆0 ∈ 𝑍̄ ′
0 and therefore, the general surface 𝑆′0 ∈ 𝑍̄ ′

0 has a unique 𝑇1 singularity. By Lemma 3.2, the
assertion (ii) follows.
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To prove (iii), we remark first of all that (ii) implies that VX |D

1 is nonempty and there is an irreducible
component V of VX |D

1 that dominates D and contains [𝑆0]. The general point in V corresponds to a
surface 𝑆𝑡 with 𝑡 ≠ 0, with a unique node at a general point 𝑝𝑡 ∈ X𝑡 . Moreover, since [𝑆0] is a smooth
point of H, we have that [𝑆𝑡 ] is a smooth point of H, and by the hypothesis (c) and by semicontinuity,
we have that ℎ1 (𝑆𝑡 ,N𝑆𝑡 |X𝑡 ⊗ 𝐼𝑝𝑡 ) = 0. This yields that V ∩H𝑡 is smooth of dimension dim(H𝑡 ) − 1.
Hence, V has dimension dim(H) − 1. To prove that V is reduced, it suffices to prove that V is smooth at
[𝑆𝑡 ]. To see this, consider the exact sequence

0 → N ′
𝑆𝑡 |X → N𝑆𝑡 |X → 𝑇1

𝑆𝑡
→ 0,

where 𝑇1
𝑆𝑡

is supported on 𝑝𝑡 with stalk C, and 𝐻0(𝑆𝑡 ,N ′
𝑆𝑡 |X ) is the Zariski tangent space to V at [𝑆𝑡 ].

The map

𝐻0(𝑆𝑡 ,N𝑆𝑡 |X ) → 𝑇1
𝑆𝑡

= C

is surjective because 𝑆𝑡 is smoothable inside H, by the hypothesis (2) at the beginning of this section.
Hence, ℎ0 (𝑆𝑡 ,N ′

𝑆𝑡 |X ) = ℎ0 (𝑆𝑡 ,N𝑆𝑡 |X ) − 1 = dim(H) − 1, as wanted. �

We can now prove the main result of this section extending Proposition 3.10 to the case 𝛿 > 1:

Theorem 3.13. Set up as in Proposition 3.10. In particular, we have the following condition: the
subspace of sections of 𝐻0 (X0,L0) that vanish on 𝑅 = 𝐴∩ 𝐵, with A and B the irreducible components
of X0, has codimension strictly larger than 1 in 𝐻0(X0,L0).

Let 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 ⊂ X0 be a surface corresponding to a section of L0. We suppose that:

(a) 𝑆𝐴 and 𝑆𝐵 have, respectively, 𝛿𝐴 and 𝛿𝐵 nodes 𝑝𝐴,1, . . . , 𝑝𝐴,𝛿𝐴 and 𝑝𝐵,1, . . . , 𝑝𝐵,𝛿𝐵 off R are
elsewhere smooth and intersect transversally along a curve 𝐶 = 𝑆𝐴 ∩ 𝑆𝐵, except for 𝛿𝑅 distinct
points 𝑝𝑅,1, . . . , 𝑝𝑅,𝛿𝑅 ∈ 𝐶 ⊂ 𝑅, where 𝑆0 has singularities of type 𝑇1 and that the hypotheses of
Lemma 3.4 hold;

(b) the sublinear system L0 (2, 𝑝𝑖) of |L0 | of surfaces with at least a𝑇1 singularity at 𝑝𝑖 has codimension
3 in |L0 |, for every 1 � 𝑖 � 𝛿;

(c) if ℨ is the 0-dimensional scheme of length 𝛿 = 𝛿𝐴 + 𝛿𝐵 + 𝛿𝑅 given by

ℨ =
𝛿𝐴∑
𝑖=1

𝑝𝐴,𝑖 +
𝛿𝐵∑
𝑖=1

𝑝𝐵,𝑖 +
𝛿𝑅∑
𝑖=1

𝑝𝑅,𝑖 ,

then 𝐻1 (𝑆0,N𝑆0 |X0 ⊗ 𝐼ℨ |X0) = 0 (where 𝐼ℨ |X0 is the ideal sheaf of the scheme ℨ in X0).

Then:

(i) S can be deformed to a 𝛿-nodal surface 𝑆𝑡 ⊂ X𝑡 ;
(ii) if T ⊆ T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 is the unique irreducible component containing [𝑆], then there exists an irre-

ducible component V ⊂ VX |D

𝛿 of dimension dim(H) − 𝛿 whose central fibre V0 contains T as an
irreducible component.

Proof. Again, by Corollary 3.8.1, [𝑆0] is a smooth point for HX |D. Moreover, by Corollary 3.8.3,
T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 is smooth at [𝑆0].

We denote by T the unique irreducible component of T𝛿𝐴, 𝛿𝐵 , 𝛿𝑅 containing [𝑆0], which is smooth
at [𝑆0]. Furthermore, we set ℨ = ℨ𝐴 +ℨ𝐵 +ℨ𝑅, where ℨ𝐴 is the scheme of nodes of 𝑆0 on 𝐴, ℨ𝐵 is the
scheme of nodes of 𝑆0 on 𝐵, and ℨ𝑅 is the scheme of 𝑇1-singularities of 𝑆0.

Again by Corollary 3.8.3, in an analytic neighborhood of [𝑆], T consists of an analytic branch T
that is the transverse intersection of 𝛿 smooth analytic branches of dimension ℎ0 (𝑆0,N𝑆0 |X0) − 1, each
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branch corresponding to the locus of deformations of 𝑆0 that are equisingular at a given point in ℨ; that
is, we have that

T =
⋂
𝑝∈ℨ

ESX0
[𝑆0 ], 𝑝

.

The general element 𝑆′0 of ESX0
[𝑆0 ], 𝑝

is a surface inX0 that has a unique singularity analytically equivalent
to the singularity of 𝑆0 at p (i.e., a node if 𝑝 ∈ ℨ𝐴 + ℨ𝐵, a 𝑇1 singularity otherwise).

By Proposition 3.9, for every 𝑝 ∈ ℨ𝐴 + ℨ𝐵, ESX0
[𝑆0 ], 𝑝

is contained in ESX
[𝑆0 ], 𝑝

as a subvariety of
codimension 1, and ESX

[𝑆0 ], 𝑝
is an analytic branch of the Severi variety VX |D

1 .
If 𝑝 ∈ ℨ𝑅, then by the hypothesis (b), for general element 𝑆′0 of ESX0

[𝑆0 ], 𝑝
, the condition (b) of

Proposition 3.10 holds. Then, by Proposition 3.10, ESX0
[𝑆0 ], 𝑝

is contained, as a subvariety of codimension
1, in an analytic branch T𝑝 of VX |D

1 having codimension 1 in H, which is smooth at the general point
corresponding to a 1-nodal surface.

Now, the intersection

T ′ =
⋂
𝑝∈ℨ𝑅

T𝑝 ∩
⋂

𝑝∈ℨ𝐴+ℨ𝐵

ESX
[𝑆0 ], 𝑝

has codimension at most 𝛿 in H, and it contains the smooth analytic branch T of T, which has
codimension 𝛿+1 in H. The general element of T ′ corresponds to a surface 𝑆, not contained in X0, with
at least 𝛿 singularities, precisely 𝛿𝐴 (resp. 𝛿𝐵) singularities in neighborhoods of the nodes 𝑝 ∈ ℨ𝐴 (resp.
𝑝 ∈ ℨ𝐵) and 𝛿𝑅 singularities in neighborhoods of the 𝑇1 singularities 𝑝 ∈ ℨ𝑅. Taking into account
Lemma 3.2, we deduce that 𝑆 has 𝛿 nodes and no further singularities. This proves (i).

If 𝑆 ⊂ X𝑡 and it has nodes at 𝑞1, ..., 𝑞 𝛿 , by semicontinuity, we have that 𝐻0(𝑆,N𝑆̃ |X𝑡
⊗ 𝐼{𝑞̃1 ,...,𝑞̃𝛿 } |X𝑡 )

has dimension dim(H𝑡 ) − 𝛿. Thus, T ′ is an analytic branch containing the point [𝑆] in an irreducible
component V ⊂ VX |D

𝛿 of dimension dim(H) − 𝛿 whose central fibre V0 contains T as an irreducible
component. This proves (ii). �

4. Applications

4.1. Severi varieties

Let X be a smooth irreducible projective complex threefold. Let L be a line bundle on X such that
the general surface in the linear system |𝐿 | is smooth and irreducible. We denote by 𝑉𝑋, |𝐿 |𝛿 the Severi
variety, that is the locally closed subscheme in |𝐿 | parametrizing surfaces S in |𝐿 | which are reduced
and with only 𝛿 nodes as singularities. If [𝑆] ∈ 𝑉𝑋, |𝐿 |𝛿 , then the Zariski tangent space to 𝑉𝑋, |𝐿 |𝛿 at [𝑆]
coincides with

𝑇[𝑆 ] (𝑉
𝑋, |𝐿 |
𝛿 ) 
 𝐻0 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆),

where N is the reduced scheme of nodes of S. In particular, dim(𝑉𝑋, |𝐿 |𝛿 ) � ℎ0(𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆).

Moreover, by standard deformation theory, 𝐻1(𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆) is an obstruction space for O
𝑉

𝑋, |𝐿 |
𝛿 , [𝑆 ]

,

and thus,

ℎ0 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆) − ℎ1 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆) � dim(𝑉𝑋, |𝐿 |𝛿 ) � ℎ0 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆).

If ℎ1 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆) = 0, then 𝑉𝑋, |𝐿 |𝛿 is smooth at [𝑆] of dimension

ℎ0 (𝑆,O𝑆 (𝐿) ⊗ 𝐼𝑁 |𝑆) = dim(|𝐿 |) − 𝛿.
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In this case, one says that [𝑆] is a regular point of the dim(𝑉𝑋, |𝐿 |𝛿 ). An irreducible component V of
dim(𝑉𝑋, |𝐿 |𝛿 ) is said to be regular if it is regular at its general point.

Remark 4.1. Suppose V is a regular irreducible component of dim(𝑉𝑋, |𝐿 |𝛿 ). By standard deformation
theory already used in Section 3, the nodes of the surface corresponding to any smooth point in V can be
independently smoothed. This implies that there are regular components of dim(𝑉𝑋, |𝐿 |𝛿′ ) for any 𝛿′ < 𝛿.

One can consider the following two questions.
Problem 4.2. Given X and L as above, which is the maximal value of 𝛿 such that the Severi variety
𝑉𝑋, |𝐿 |𝛿 is nonempty?
Problem 4.3. Given X and L as above, which is the maximal value of 𝛿 such that the Severi variety
𝑉𝑋, |𝐿 |𝛿 has a regular component?

As for Problem 4.2, this is a classical and difficult question, for which there are several contributions,
too many to be quoted here. Probably the most efficient one is given by the Miyaoka’s bound [15,
Formulae (2) and (8)]. In particular, the problem has been completely solved for 𝑋 = P3 and 𝐿 = OP3 (𝑑)
with 𝑑 � 6 (see, for example, [14] and references therein). However, in this section, we will not consider
Problem 4.2, but we will give some contribution to Problem 4.3.
Remark 4.4. One could be tempted to believe that the maximal 𝛿 for which the Severi variety is
nonempty is bounded above by the dimension of |𝐿 |. This is not true. In fact, there are classical
examples, for 𝑋 = P3 and 𝐿 = OP3 (𝑑) for suitable d, for which 𝑉𝑋, |𝐿 |𝛿 is nonempty and 𝛿 is greater than
the dimension of |𝐿 | (cf. [1], [19]). In these cases, every component of the Severi variety is not regular.
Remark 4.5. Referring to Problem 4.3, it is rather natural to conjecture that the 𝛿 which answers the
question should be bounded below by 𝛿0 = [

dim( |𝐿 |)
4 ]. The reason for such a conjecture is the following:

choose 𝑝1, . . . , 𝑝 𝛿0 general points on X. Since a double point imposes at most four conditions to |𝐿 |,
certainly there are surfaces which are singular at every 𝑝𝑖 . If the general such surface has only nodes
at 𝑝1, . . . , 𝑝 𝛿0 and no other singularities, then it belongs to a regular component of the Severi variety.
However, this heuristic argument is very difficult to be made rigorous in general.

4.2. The case of P3

In this section, we give a contribution to Problem 4.3, in the case 𝑋 = P3 and 𝐿 = OP3 (𝑑). More
precisely, we will prove the following:

Theorem 4.6. There is an irreducible, regular component of 𝑉P
3 , |O

P3 (𝑑) |

𝛿 , for any 𝛿 �
(𝑑−1

2
)
.

Proof. In view of Remark 4.1, it is sufficent to consider only the case 𝛿 =
(𝑑−1

2
)
.

Let X ′ = P3 × D → D be a trivial family. Let us consider X → X ′ the blow-up of a point q in the
central fibre P3 over 0 ∈ D. Let X → D be the new family. The fibre over 𝑡 ∈ D \ {0} of this family is
X𝑡 � P3. The central fibre X0 consists of two components 𝐴 ∪ 𝐵, where 𝑓 : 𝐴 → P3 is the blow-up of
P

3 at q, whereas 𝐵 � P3 is the exceptional divisor in X , and 𝐴 ∩ 𝐵 = 𝑅 � P2 is the exceptional divisor
in A and a plane in B.

On X ′, there is a line bundle L′, which is the pull-back via the first projection, of OP3 (𝑑). We
pull this back to X and denote it L. Now we consider on X the line bundle L ⊗ OX ((1 − 𝑑)𝐵). Its
restriction to the general fibre X𝑡 is given by (L ⊗ OX ((1 − 𝑑)𝐵)) |X𝑡 
 OP3 (𝑑). As for the restriction
of L ⊗ OX ((1 − 𝑑)𝐵) to X0, we observe that (L ⊗ OX ((1 − 𝑑)𝐵)) |𝐴 
 O𝐴(𝑑) ⊗ O𝐴(−(𝑑 − 1)𝑅),
where O𝐴(𝑑) 
 𝑓 ∗(OP3 (𝑑)), whereas (L ⊗OX ((1− 𝑑)𝐵)) |𝐵 
 OP3 (𝑑 − 1) and, finally, the restriction
of L ⊗ OX ((1 − 𝑑)𝐵) to R is OP2 (𝑑 − 1). One easily checks that the line bundle L ⊗ OX ((1 − 𝑑)𝐵)
verifies the hypotheses (1), (2) and (3) at the beginning of Section 3.2.3.

We now consider on R a curve C which consists of the union of 𝑑 − 1 general lines. It has 𝛿 =
(𝑑−1

2
)

nodes as singularities. By standard application of Bertini’s theorem, there exists a smooth surface 𝑆𝐵
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in B of degree 𝑑 − 1 cutting out on R the curve C. Similarly, there exists a smooth surface 𝑆𝐴 ∈

|O𝐴(𝑑) ⊗O𝐴(−(𝑑 − 1)𝑅) | restricting to C on R. To see this, let (𝑥, 𝑦, 𝑧) be an affine coordinates system
on P3 centered at q. If 𝜙1(𝑥, 𝑦, 𝑧) = 0 is the equation of C in the plane at infinity, and 𝜙2(𝑥, 𝑦, 𝑧) is a
general homogeneous polynomial of degree d in (𝑥, 𝑦, 𝑧), then the projective closure 𝑆𝐵 of the degree
d affine surface with equation 𝜙1(𝑥, 𝑦, 𝑧) + 𝜙2(𝑥, 𝑦, 𝑧) = 0 has a point of multiplicity 𝑑 − 1 at q and no
other singularities, and its minimal resolution obtained by blowing up q is the required surface.

Now 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 is a Cartier divisor in X0 belonging to the linear system |L ⊗ OX ((1 − 𝑑)𝐵) |.
Moreover, 𝑆0 verifies all hypotheses of Theorem 3.13. In particular, if ℨ is the reduced scheme of
the nodes of C, then ℨ imposes independent conditions to |L ⊗ OX ((1 − 𝑑)𝐵) |𝑅 | = |OP2 (𝑑 − 1) |, and
therefore to |L⊗OX ((1−𝑑)𝐵) |, because the Severi varieties of nodal curves in the plane are well known
to be regular. By applying Theorem 3.13, one may deform 𝑆0 to a surface 𝑆𝑡 ⊂ X𝑡 with 𝛿 nodes and no
further singularities, which are deformations of the 𝛿 singularities of type 𝑇1 of 𝑆0. Finally, the nodes
of 𝑆𝑡 impose independent conditions to surfaces of degree d on X𝑡 
 P3. Hence, [𝑆𝑡 ] ∈ 𝑉

P
3 , |O

P3 (𝑑) |

𝛿
belongs to a regular component of the Severi variety. �

Remark 4.7. Taking into account Remark 4.5, we believe that the previous result is far from being
sharp, not even asymptotically. Indeed, we may expect that the bound on 𝛿 for the existence of regular
components of the Severi variety of nodal surfaces of degree d in P3 could asymptotically go as 𝛿 ∼ 𝑑3

24 .
See also [14, Corollary 4.1] and related references for a very large upper bound of the number of nodes
𝛿 of a surface in P3 in a regular component of the Severi variety (if nonempty). Moreover, our results
could in principle be improved by imposing to 𝑆0 nodes off R, but we do not dwell on this here.

Remark 4.8. The known results about Problem 4.3 are very few. For example, in [13], one proves that if
𝑉
P

3 , |O
P3 (𝑑) |

𝛿 is nonempty, then every component of it is regular for 𝑑 � 7 and for 𝑑 � 8 and 𝛿 � 4𝑑 − 5,
and this last bound is sharp (the case 𝑑 � 7 was already proved in [8]). Nonemptiness results for 𝑑 � 7
are also well known (see, for example, [14, p. 120]). In particular, our Theorem 4.6 is, at the best of our
knowledge, new as soon as 𝑑 � 8.

4.3. Complete intersections in P4

In this section, we want to provide a partial answer to Problem 4.3 in the case of complete intersections
in P4.

Let X be a general hypersurface of degree ℎ � 2 in P4. We consider on X the linear system |O𝑋 (𝑑) |.
Our aim is to construct regular components of 𝑉𝑋, |O𝑋 (𝑑) |

𝛿 with suitable 𝛿.

Theorem 4.9. Let 𝑑 � ℎ − 1 be an integer. There are regular components of 𝑉𝑋, |O𝑋 (𝑑) |
𝛿 for

𝛿 �
(
𝑑 + 3

3

)
−

(
𝑑 − ℎ + 1

3

)
− 1.

Proof. As usual, to prove the theorem, it suffices to do the case

𝛿 =

(
𝑑 + 3

3

)
−

(
𝑑 − ℎ + 1

3

)
− 1.

Let Y be a general hypersurface of P4 of degree ℎ− 1 and H be a general hyperplane, cutting Y along
a surface R, which is a general surface of degree ℎ − 1 in 𝐻 
 P3. Let X be a general hypersurface of
degree h and let us consider the pencil generated by X and 𝑌 ∪ 𝐻. Specifically, if X has equation 𝑓 = 0,
Y has equation 𝑔 = 0 and H has equation ℓ = 0, we will consider the hypersurface X ′′ in P4 × A1, with
equation {𝑡 𝑓 + 𝑔ℓ = 0, with 𝑡 ∈ A1}. Via the second projection X ′′ → A1, this becomes a flat family of
3-folds, with smooth general fibre X ′′

𝑡 , corresponding to a general hypersurface of degree h in P4, and
whose fibre over 0 is X ′′

0 = 𝑌 ∪ 𝐻 ⊂ P4. We are interested in the singularities of X ′′ in a neighborhood
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of the central fibre (i.e., we are interested in what happens if t belongs to a discD, centered at the origin).
Thus, we consider the family

X ′ = {𝑡 𝑓 + 𝑔ℓ = 0, with 𝑡 ∈ D} → D.

It is immediate to see that the singular locus of X ′ coincides with the curve 𝐷 : 𝑡 = 𝑓 = 𝑔 = ℓ = 0 ⊂ X ′
0,

which is isomorphic to a smooth complete intersection curve of type (1, ℎ − 1, ℎ) in P4 cut out on
𝑅 = 𝑌 ∩ 𝐻 by X. Moreover, X ′ has double points along D with tangent cone a quadric of rank 4. We
resolve these singularities by blowing up X ′ along D. One obtains a new family X̃ → D with the same
general fibre as X ′ → D and whose central fibre consists of three components 𝑌 and 𝐻̃, the blow-ups of
Y and H along D and the exceptional divisor Θ̃ that is a P1 × P1 bundle over D. Now we can contract Θ̃
by contracting one of the two rulings of the P1 × P1 bundle. We choose to do this in the direction of Y.
We obtain a new family of 3-folds X → D, with X smooth, with fiber X𝑡 = X ′

𝑡 over 𝑡 ≠ 0, and whose
central fiber X0 = 𝐴∪ 𝐵, where now 𝐵 = 𝐻 
 P3 and 𝐴 = Bl𝐷 (𝑌 ) is the blowing up of Y along D and A
and B intersect transversally along a surface isomorphic to R, which we still denote by 𝑅 = 𝐴 ∩ 𝐵. The
exceptional divisor Θ in 𝐴 = Bl𝐷 (𝑌 ) is a P1-bundle on 𝐷 ⊂ 𝑅, intersecting R along D. In particular,
Θ 
 P(N𝐷 |𝑌 ).

Notice that one has a natural morphism X̃ → P4. This factors through a morphism 𝜙 : X → P4. The
action of 𝜙 on X0 is as follows: it maps B isomorphically to H, and it maps A to Y by contracting the
exceptional divisor Θ. Let us now set L𝑑 = 𝜙∗(OP4 (𝑑)) and assume that 𝑑 � ℎ − 1.

Recall that R is a general surface of degree ℎ − 1 in P3, with ℎ � 2. By [4], 𝑉𝑅, |O𝑅 (𝑑) |
𝛿 is nonempty

and contains a regular component V for

𝛿 = dim(|O𝑅 (𝑑) |) =

(
𝑑 + 3

3

)
−

(
𝑑 − ℎ + 1

3

)
− 1.

So we can choose a general curve C in V, that is a complete intersection of type (ℎ − 1, 𝑑) on R with 𝛿
nodes. Using Bertini’s theorem, we can assume that there is a divisor 𝑆0 ∈ L𝑑 |X0 that cuts out C on R
and 𝑆0 = 𝑆𝐴 ∪ 𝑆𝐵 (the notation is obvious), with 𝑆𝐴 and 𝑆𝐵 smooth.

Now 𝑆0 verifies all hypotheses of Theorem 3.13. In particular, if ℨ is the reduced scheme of nodes
of C, then ℨ imposes independent conditions to L𝑑 |X0 because the component V of the Severi variety
is regular. By applying Theorem 3.13, one may deform 𝑆0 to a surface 𝑆𝑡 ⊂ X𝑡 with 𝛿 nodes and no
further singularities, which are deformations of the 𝛿 singularities of type 𝑇1 of 𝑆0. Finally, the nodes
of 𝑆𝑡 impose independent conditions to surfaces in |O𝑋𝑡 (𝑑) |. Hence, [𝑆𝑡 ] ∈ 𝑉

X𝑡 , |OX𝑡 (𝑑) |

𝛿 belongs to a
regular component of the Severi variety, as wanted. �
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