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ABSTRACT. Information on snow-cover stability is important for predicting avalanche danger.
Traditionally, stability evaluation is based on manual observations of snow stratigraphy and stability
tests, which are time-consuming. The SnowMicroPen (SMP) is a high-resolution, constant-speed
penetrometer to measure penetration resistance. We have analysed the resistance signal to derive snow
stability. The proposed stability algorithm was developed by comparing 68 SMP force–distance profiles
with the corresponding manual profiles, including stability tests. The algorithm identifies a set of four
potentially weak layers by taking into account changes in structure and rupture strength of
microstructural elements that make up snow layers as derived from the SMP signal. In 90% of the
cases, one of the four potentially weak layers proposed by the algorithm coincided with the failure layer
observed in the stability test. To select the critical layer from the four potential weaknesses was more
difficult. With fully automatic picking of the critical layer, agreement with the failure layer observed in
the stability test was reached in 60% of the cases. To derive a stability classification, we analysed weak-
layer as well as slab properties. These predictor variables allow the SMP signal to be classified into two
stability classes, poor and fair-to-good, with an accuracy of �75% when compared with observed
stability. The SMP, in combination with the proposed algorithm, shows high potential for providing
snow-cover stability information at high resolution in time and space.

INTRODUCTION

Prerequisites for the release of a dry-snow slab avalanche are
a weak layer below one or more slab layers. The slab layers
consist of cohesive, well-bonded snow with densities of
�200 kgm–3 and typical thicknesses of�0.5m (McClung and
Schaerer, 2006). Dry-snow slab avalanches can be triggered
by continuous loading during snowfall as well as by localized
rapid near-surface loading by, for example, skiers. However,
layers deeper than 1m are rarely skier-triggered (Schweizer
and others, 2003). Slab-avalanche release depends on weak-
layer and slab properties, and their interaction. Habermann
and others (2008) showed that hard layers impede failure
initiation by skiers, but pointed out that they may favour
fracture propagation. Weak layers underneath the slab
typically consist of poorly bonded snow, such as depth hoar,
surface hoar and faceted crystals. These grain types are
formed under kinetic growth conditions and can reach grain
sizes up to a few millimetres. Layers consisting of these large
grains form fewer bonds per unit volume than layers of well-
bonded grain types, such as small rounded grains. Due to
their anisotropic structure, layers of poorly bonded grain
types are weaker in shear than in compression (Akitaya,
1974, p. 39–40; McClung and Schaerer, 2006, p. 77).

Avalanche forecasting is based on information about the
snow cover and its evolution in time. Snowpack-instability
data are key elements in predicting avalanche danger. So far
this information has been mainly derived from manual
observations and stability tests. About 10 years ago, a high-
resolution constant-speed penetrometer was developed to
enable quick snowpack resistance probing (Schneebeli and
Johnson, 1998). The method requires no digging and is
comparable to the rammsonde, but unlike the rammsonde
provides objective high-resolution data. It is possible to use

the data to derive snow properties, based on a micro-
mechanical model developed by Johnson and Schneebeli
(1999). Previous studies analysed properties of specific weak
layers, such as surface hoar layers, in space and time using
various statistical methods (Birkeland and others, 2004;
Kronholm and others, 2004; Lutz and others, 2007;
Schweizer and Kronholm, 2007).

Pielmeier and others (2006) and Pielmeier and Schwei-
zer (2007) related snow-layer properties derived from the
SMP (SnowMicroPen, or snow micro-penometer) signal to
snow-cover stability. They found that the failure-layer
hardness and the differences in hardness between the
failure layer and the adjacent layer, as well as the structural
size, were indicators of instability. However, their approach
requires foreknowledge of the location of the failure layer.

Satyawali and others (2009) related the mean, the
standard deviation and the coefficient of variation of the
SMP penetration resistance to the major grain types. With
the help of some additional expert rules they suggested a
method of relating SMP signal to grain types.

Floyer and Jamieson (2008) and Van Herwijnen and
others (in press) used various signal-processing methods to
identify known weak layers in penetrometer signals.
Additionally, Floyer and Jamieson (2008) suggested a
framework for the automatic detection of weak layers.

Weak-layer detection in manual observations seems
similarly difficult. Schweizer and Jamieson (2007) related
manually observed failure-layer properties to observed
instability and developed a threshold-sum approach to
classify failure layers, based on structural properties. When
they used the method for failure-layer detection, i.e.
identifying the principal weakness in a given snow stratig-
raphy, the accuracy was only 53%, exemplifying the
difficulty of failure-layer detection.
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Winkler and Schweizer (in press) compared different
stability tests with regard to stability classification. They
found that stability tests performed adjacent to each other
revealed the same failure layer in only �60% of cases and
pointed out the challenge of automatically detecting poten-
tial failure layers within a snow cover.

Currently, no method exists which automatically identi-
fies the most critical layer to be skier-triggered and estimates
the corresponding degree of instability. We analysed 68 SMP
profiles measured next to manual profiles and stability tests
to develop a method that solves this problem step by step.

DATA
The proposed stability algorithm was developed with a
dataset consisting of 68 SMP profiles from the eastern Swiss
Alps that were measured close to (<0.5m from) a manual
snow profile completed with a stability test. Stability tests
used were the rutschblock test (in 58 cases) (Föhn, 1987a)
and the compression test (in 10 cases) (Jamieson, 1999).

In the following, the weak-layer properties and failure
depth derived from the manually observed profiles are
described. In �49% of the 68 observed profiles the primary
grain types in the failure layer were faceted crystals. In
another 20 profiles, the failure layer primarily consisted of
either depth hoar (16%), rounded facets (10%) or buried
surface hoar (4%). In the remaining failure layers (21%) melt
forms, graupel and mixtures of rounded grains and decom-
posed and fragmented precipitation particles were observed.
The failure depth ranged from 5 to 58 cm, with a median
value of 33 cm.

For the validation of the proposed SMP stability index, the
profiles were grouped into two stability classes based on the
rutschblock score. Scores �3 indicated ‘poor’ stability (N =
28), and scores �4 indicated ‘fair-to-good’ stability (N = 40).
Compression test scores were converted into comparable
rutschblock scores according to Schweizer and Jamieson
(2003).

METHODS

Snow micro-penetrometer
The SMP consists of a probe which is driven by a motor with
a constant speed of 20mm s–1 into the snow cover
(Schneebeli and Johnson, 1998). The movable cone-shaped
tip, with a diameter of 5mm and an included angle of 608,
transfers changes in penetration resistance to a piezoelectric
sensor. The force sensor measures penetration resistance
(range 0–42N) every 4 mm, which corresponds to a data-
sampling rate of 5 kHz. As most of the penetration resistance
is due to the contact of the upper part of the cone (not the
tip) with the ice matrix, it is assumed that the layer resolution
of the SMP corresponds to the height of a truncated cone
with a lateral area that is two-thirds of the lateral surface
area of the whole cone, that is 1.8mm. This resolution seems
sufficient, as snow layers thinner than �1mm have not been
observed in surface or thin sections (Matzl, 2006). A
thickness of �1mm seems to be a lower bound caused by
the sedimentation processes typical for snow.

Common practice while analysing SMP profiles in order
to derive weak-layer properties is a visual inspection of the
signal. Changes in penetration resistance are attributed to
layer boundaries. A change in signal variance is also an

indicator of changing snow types (Schneebeli and others,
1999). In combination with the manual profile and a
stability test, experienced users can identify weak layers
manually in the SMP profile. The boundaries of a snow
layer in the SMP profile are not discrete, as suggested in
manually observed profiles; instead a transition zone
between two layers exists, i.e. the hardness changes
gradually between two layers of different hardness. The
transition zone is partly an artefact of the measuring device,
since the measuring cone-shaped tip has a finite length
(4.33mm). Transition zones between layers with large
differences in penetration resistance are of the order of
the layer resolution, but can be larger within softer snow.
These transition zones have to be taken into account when
analysing the force–distance signal (Fig. 1).

Manual identification of weak layers is partly subjective,
time-consuming and the weak layer has to be known. An
automatic identification of the weak layer would substan-
tially improve the applicability of the SMP.

Since the SMP is used under field conditions, the operator
has to follow several procedures to ensure reliable SMP data
acquisition. For instance, to avoid measurement errors due to
variable SMP penetration speed, the operator has to hold the
motor casing steady to prevent the device from lifting due to
the reaction force of the SMP against the snow. Furthermore,
the sensor is often subject to large temperature changes
during the measurement. These temperature changes affect
the casing surrounding the piezoelectric sensor, which results
in a deformation of the piezo-crystal which may cause signal
drift (Fig. 1). To minimize these effects, the SMP should be
cooled before each measurement.

SMP microstructural model
Snow consists of sintered ice particles, and the strength of
snow increases during the sintering process due to bond
growth (Kaempfer and Schneebeli, 2007). The porosity of
snow layers that are part of a dry-snow slab exceeds 70%.
This high porosity allows the SMP to measure the deform-
ation and failure of microstructural elements that can be used
for a quantitative analysis of the SMP penetration profile.

To derive structural information, failures of individual
microstructural elements need to be identified in the SMP
signal. The SMP measures a force–distance profile. This
force measurement in low-density snow (50–300 kgm–3) is
caused by the rupture and deflection of the microstructural
elements, i.e. the rupture of bonds (Johnson and Schnee-
beli, 1999). In high-density snow (>300 kgm–3), addition-
ally, the friction between the ice and the sensor tip needs to
be taken into account. A schematic SMP signal for two
different snow types is shown in Figure 2. A microstructural
element will rupture within a typical length of dimension
Ln, and will induce a peak force in the SMP signal, Fmax

(Fig. 2c). The rupture force, fr, is defined as the difference
between the peak force, Fmax, and the corresponding
minima, Fmin.

We used a signal-analysis routine described by Kronholm
(2004), but with a negative threshold value, tfail =
–4.5Nmm–1. We found this value to be more appropriate
than the value originally used by Kronholm (2004) (tfail =
–2.0Nmm–1), since a steeper threshold reduces the noise in
the calculated rupture forces so that only relevant ruptures
are detected. Furthermore, a different threshold value will
only change the absolute values of different snow types and
not the relative values relevant to this study.
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SMP signal quality
The SMP signal can be affected by mechanical (frozen
sensor) or electronic (temperature gradient) problems. The
SMP signals used in this study were visually inspected to
identify affected signals. Before the sensor tip touches the
snow surface, the tip travels through the air while measuring.
The signal measured in air should only be affected by
vibrations from the motor and can be used as a baseline
signal to identify erroneous signals. A typical air signal
oscillates around zero with a maximum amplitude of
�0.02N, depending on the specific SMP. If the sensor is
frozen, the amplitude is much smaller. Within the snow
cover, an erroneous signal due to a frozen tip can be
identified by a near-linear increase in penetration resistance.
Erroneous SMP signals identified in this way were excluded
from this study. Measurements which showed a negative or
positive drift in the air signal were also excluded. This drift is
typically due to electronic problems such as a damaged
cable (stray capacitance), or when the sensor is affected by a
large temperature gradient.

SMP signal interpretation
Johnson and Schneebeli (1999, fig. 4) compared SMP signals
for different snow types and found that some snow types
have unique SMP signals related to their microstructures.
They showed that a wind slab has a ten times larger rupture
force than snow consisting of depth hoar. The high rupture
forces can be explained by the strongly sintered ice
structure, i.e. a well-bonded structure. A weak layer can
often be described as a region of poorly bonded grains, i.e.
has few bonds per unit volume.

We interpret the SMP signal to distinguish between well-
bonded and poorly bonded snow layers as a measure of
snow slab instability. For a layer of well-bonded snow the

rupture force, as well as the number of peaks, is expected to
be large. Generally, a layer of poorly bonded snow can be
identified by small rupture forces and a small number of
peaks. However, in low-density snow the differences in
rupture force and number of peaks between two types of
snow are often not as distinct as in the examples described
by Johnson and Schneebeli (1999). As small differences in
the rupture force or the number of peaks between different
layers may be crucial for weak-layer identification, the
signal analysis is delicate, making the task of weak-layer
detection challenging.

Fig. 2. (a) Schematic of poorly bonded (top) and well-bonded
(bottom) snow layers and (b) the corresponding schematic SMP
signals. (c) Definition of the microstructural parameters, rupture
force, fr, element length, Ln, and peak force, Fmax, and the
corresponding minimum, Fmin. The number of peaks, npeaks,
corresponds to the number of ruptures per unit length.

Fig. 1. (a) SMP signal on a logarithmic force scale (13 April 2005, eastern Swiss Alps). Dashed black lines indicate region of weak layer
identified manually by visual inspection of the signal. Dashed grey curve shows the signal drift. Dashed circle indicates region of
measurement errors (spikes) due to lifting of the SMP. Light grey solid line shows the average over 1mm of signal. (b) Zoom to the region of
the weak layer. Light grey solid curve shows the average over 1mm of signal. Dashed black lines (465–475mm) show manually chosen
upper and lower boundaries of the weak layer.
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MODEL DEVELOPMENT AND TESTING
The proposed algorithm estimates stability by a stepwise
sequential analysis of microstructural parameters derived
from the SMP signal. First, the four weakest transitions
between layers are identified. Second, for each of the four
weakest transitions, the corresponding weak layer is defined.
Third, by taking into account the layer structure, the weak
layer that is most likely to fail is selected from the four
potential weak layers. Finally, based on an analysis of weak-
layer and slab properties, SMP signals are classified into two
stability classes of ‘’poor’ and ‘fair-to-good’. This procedure
is based on four assumptions:

1. Themicrostructural element length, Ln, is larger for poorly
bonded snow than it is for well-bonded snow (Johnson
and Schneebeli, 1999). As a consequence, the number of
ruptures, npeaks, per unit length is much smaller for poorly
bonded snow than for well-bonded snow.

2. Aweak layer can often be described as a region of poorly
bonded grains, i.e. weaker bonds per unit volume. The
rupture force, fr, in a layer of poorly bonded grains is
lower than the rupture force in a layer of well-bonded
grains (Johnson and Schneebeli, 1999).

3. Large discontinuities in structure (hardness and grain
size) between layers indicate weak areas or interfaces
(Schweizer and Jamieson, 2003).

4. Weak layers buried deep within the snow cover are less
prone to skier triggering, because the additional skier-
induced stress strongly decreases with increasing depth
(Föhn, 1987b; Schweizer and Camponovo, 2001).

As the first step, the SMP signal is averaged over 250
measurements, i.e. �1mm, and the parameters peak force,
Fmax, and rupture force, fr, are averaged over each
millimetre.

Detection of weak transitions
Following assumptions 1 and 2 above, a parameter, �, is
defined:

� ¼
�f r npeaks

A
, ð1Þ

where �fr is the rupture force averaged over 1mm of the SMP
signal, npeaks is the number of peaks over 1mm and A is the
lateral surface area of the sensor tip (�39mm2).

Parameter � is smaller for poorly bonded than for well-
bonded grain types (see assumptions 1 and 2 above).
However, the minimum values of � were not related to
the observed locations of the weak layer. Furthermore, the
location of the maximum element length is also often not
related to the observed weak-layer location. This is partly
because (a) soft snow, such as new snow, has a large element
length and (b) slab layers that consist of soft snow often
cannot be skier-triggered.

Following assumption 3, above, i.e. large discontinuities
in properties between layers indicate a weakness, the
gradient of � is calculated over the whole signal. The
gradient of �, which can be interpreted as a boundary
property, is only relevant for instability when the peak force
is also small and indicates low strength. Therefore, the
gradient of � is scaled by the ratio of the peak force, Fmax, to
the lateral surface area, A, of the sensor tip:

B ¼ Ar�

Fmax
: ð2Þ

As Fmax is typically smaller for poorly bonded layers than for
well-bonded layers, sections of the SMP signal with Fmax >
0.5N were not considered for further analysis.

In early winter, thick depth-hoar layers may form at the
base of the snowpack. These may persist for the whole
winter, but can usually not be triggered by skiers when they
are buried deeper than �1m. However, in the SMP signal
they are often identified as a weak transition, because � is
much smaller for larger grains than for smaller grains. To
avoid this, parameter B was additionally weighted by a
depth-dependent factor, w, derived from the frequency
distribution of slab thickness. This factor corresponds to
the Weibull density distribution:

wðzÞ ¼ f z,�,�ð Þ ¼ �

�
z��1 e�

z
�ð Þ� , ð3Þ

where z is the slab thickness, and � and � are the
coefficients of the Weibull density distribution: � = 2.5,
� = 500. This was fitted to the frequency distribution of
thicknesses of snow slabs above the failure surface from 512
stability tests performed in Switzerland and Canada (up-
dated from Schweizer and Jamieson, 2003) (Fig. 3). Without
the weighting factor, w, the snow surface is, in most cases,
identified as the weakest transition (air/snow).

Combining Equations (2) and (3) yields the final par-
ameter, �, in seeking potential weaknesses in a SMP profile:

� ¼ A r �

Fmax
wðzÞ: ð4Þ

Parameter � can be negative for transitions between poorly
bonded layers and well-bonded layers, and positive for
bonded/poorly bonded transitions, i.e. a potential weak
transition (WT) is located where � reaches either a
maximum or a minimum value (Fig. 4b). For further analysis,
the two primary (minimum and maximum) and the two
secondary extreme values, that were closer to the surface
than the primary ones, were used. The analysis indicates (see
below) that in most of the analysed profiles one of these four
transitions was related to the observed failure depth found
with a stability test. Transitions buried deeper than the two
primary ones were not related to the observed failure depth
derived from stability tests.

Fig. 3. Frequency distribution of slab thickness from 512 stability
tests performed in the Swiss Alps and the Columbia Mountains of
western Canada, and the fitted Weibull distribution (solid curve).
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Definition of weak-layer boundaries
Parameter� identifies the four potential weak transitions, i.e.
poorly bonded regions. Colbeck and others (1990) defined a
layer as a stratum which is different in at least one respect
(hardness, grain size, shape) from the strata above and below.
To define the upper and lower boundaries of the potential
weak layer, the minimum force, FWL, within 1 cm above and
below the weak transition (WT) is identified. If FWL is found
above the weak transition, WT is defined as the lower layer
boundary, otherwise it is defined as the upper layer bound-
ary. To define the other layer boundary the coefficient of
variation (CV) is calculated. The local CV is defined as the
standard deviation divided by the mean over 1mm of
penetration force signal. It is assumed that a layer boundary is
located where the gradient of the CV is >0.1. The locations
where this threshold is exceeded correspond to the upper
and lower boundary, respectively. However, these upper and
lower boundaries often fall within the transition zone.
Therefore the final upper and lower boundaries are assumed
to be located in the middle, between the boundaries and the
position of the minimum force, FWL. The value of 0.1 was
derived empirically by comparing the gradient of the CV to
the observed manual profiles and their layering.

Selection of critical weak layer
To decide which of the four potential weaknesses is most
likely to be skier-triggered, parameter � calculated with the
rupture force and number of peaks averaged over the
thickness of the weak layer divided by depth-dependent
factor, w(z), is used:

P ¼ �

wðzÞ : ð5Þ

Parameter P is smallest for poorly bonded layers at the depth
where the Weibull distribution of slab thickness (Equa-
tion (3); Fig. 3) has its maximum, i.e. in the range 30–50 cm.
The weak layer that shows the lowest value of P is selected
as the critical weak layer.

Figure 4a–f summarizes the above procedure to identify
the critical weak layer in a SMP signal for the example
given in Figure 1. First, the SMP signal is averaged over 250
measurements, i.e. over 1mm (Fig. 4a). Four extreme values
of parameter � are identified (Fig. 4b). Transition 2 (Fig. 4b)
was the observed weak layer in the rutschblock test (depth
zWL = 465mm). Figure 4c–f shows the region of the weak
layer for the penetration resistance, F, parameter �, the
rupture force, fr, and the number of ruptures, npeaks.
Parameter � (Fig. 4d) is equally small for persistent and
non-persistent layers (Jamieson and Johnston, 1998), in-
dicating similar bonded layers. The weak layer (transition 2)
in this example is a layer of rounded facets below a layer of
small rounded grains that is harder than the weak layer. The
rupture forces (Fig. 4e) below and above the hard layer are
quite similar. In fact, similar grain sizes were observed,
supporting assumption 2, above. As a result, in this case,
following Equation (1), � can only be smaller if the number
of ruptures is smaller, which is often the case for layers of
poorly bonded grains (Fig. 4f). In the example shown, the
layer of rounded facets has slightly fewer bonds than the
layers above the harder layer. Figure 4 also shows the
difficulty of detecting weak layers that have structural
parameters similar to those of layers that are not weak. To
determine which of the four potential weak layers is the
most prone to skier triggering, the minimum value of

Equation (5) is used. Including either slab properties, weak-
layer properties or a combination of both did not improve
the automatic picking of the critical weak layer.

Testing detection of the critical weak layer
In order to test the algorithm, we compared the depth of the
automatically picked critical weak layer to the depth of the
failure layer that was identified manually in the SMP profile
with the help of the manual snow profile and the stability test.

As the manual weak-layer definition is subjective and the
boundaries can often not be accurately defined, we assumed
that the weak-layer boundaries identified by the algorithm
matched the observation when the boundaries (top or
bottom) fell within �1 cm of the observed location.

When applying the algorithm to the 68 SMP profiles using
the above condition, in 90% of cases one of the four
potentially weak layers derived from the SMP signal
coincided with the observed weak layer (Fig. 5a).

Using Equation (5) to select one of the four potential
weaknesses, the selected critical weak layer agreed with the
observed weak layer in 60% of cases (Fig. 5b). When only
the 61 profiles were considered where the observed weak
layer coincided with one of the four weaknesses suggested
by the algorithm, the accuracy increased to 67%.

For comparison, Figure 5c shows that the depth of the
minimum penetration resistance (or strength) was poorly
related to the observed failure depth. The agreement was
only 10%. This implies that microstructural properties and
micromechanical strength derived from the SMP signal are
essential for weak-layer detection.

Stability estimation
To derive a stability classification, we contrasted the profiles
from the two stability groups (poor, fair-to-good) for various
weak-layer and slab properties (Fig. 6). Variables included
the number of ruptures, the rupture force, parameter �, the
weak-layer penetration resistance, the mean penetration
resistance of the slab and the maximum penetration resist-
ance of the slab. For the comparison, only those 61 profiles
were considered where one of the potential weaknesses was
the observed weak layer. The weak layer was manually
selected as described above.

The profiles rated poor had lower median values for all
variables than the profiles rated fair-to-good. For all variables,
except the weak-layer penetration resistance (p = 0.75), the
observed differences were judged to be statistically signifi-
cant (p < 0.006) based on a non-parametric Mann–Whitney
U-test (Spiegel and Stephens, 1999). For the significant
variables, a threshold value was determined using tree
statistics (Breiman and others, 1998) that classifies the
profiles into the two stability classes. The performance of
the different classifiers is indicated with the unweighted
average accuracy (RPC) (Wilks, 1995). Results are shown in
Table 1. All classifiers show similar performance. For our
dataset, the weak-layer parameter, �, discriminated best
(RPC = 78%) between poor and fair-to-good profiles.

DISCUSSION

The proposed algorithm detects structural weaknesses in a
SMP signal. Whereas in most cases one of the four potential
weaknesses derived from the SMP signal coincided with the
observed weak layer (manual selection), the fully automatic

Bellaire and others: Instruments and methods 809

https://doi.org/10.3189/002214309790152582 Published online by Cambridge University Press

https://doi.org/10.3189/002214309790152582


weak-layer detection by subsequently applying Equation (5)
did not provide satisfactory results. However, the obtained
accuracy is comparable to the performance of stability field
tests such as the compression test or extended column test
(Winkler and Schweizer, in press). These stability tests
performed adjacent to each other identified the same weak
layer only in �60% of cases.

Some of the lack of accuracy might be due to technical
problems with the SMP. The sensitivity of the SMP sensor to

temperature changes might have caused erroneous signals
that affected the layer boundary definition. This signal drift,
i.e. positive or negative offset, can often not be recognized
by a visual inspection and might affect the derivation of the
structural properties.

Weak-layer as well as slab properties were tested to
classify the measured SMP profiles into stability classes of
poor and fair-to-good (Table 1). All variables provided plaus-
ible results. Poor stability is expected with a low number of

Fig. 4. (a) Original (black solid) and averaged SMP signal (grey solid line, 1mm average). (b) Parameter � to find potential weak transitions.
The locations are indicated by numbers 1–4. (c) Zoom to the region of weak layer (dashed lines in (a)) with original (solid black curve) and
averaged (solid grey curve) SMP signal. Dashed lines show upper and lower boundaries indicated by the algorithm. (d) Parameter � at the
depth of the weak layer, with schematics indicating grain types for both the observed weak layer and adjacent layer. (e) Averaged rupture
force for the depth of the weak layer. Dashed lines show layer boundaries of the weak layer. (f) Number of ruptures for the region of the weak
layer. Dashed lines show upper and lower boundaries of the weak layer defined by the algorithm.
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ruptures, low rupture force and a low value of � in the weak
layer, andwith rather soft slab layers. The latter finding agrees
with results of Habermann and others (2008) who found that
hard layers within the slab impede failure initiation. A larger
dataset would certainly improve the stability estimation and
might also allow a multivariate approach.

Weak-layer detection and stability estimation is based on
a single SMP measurement which is compared to a manual
profile and a stability test that cannot be done at exactly the
same location. Some spatial variations in layer properties
may occur between the location of the SMP measurement
and the location of the rutschblock. The uncertainty in the
stability test result (�1 score) may further affect the results of
the stability classification since only two stability classes
were used.

A set of SMP measurements, covering the area of the
rutschblock up to the slope scale, would improve the
reliability of weak-layer detection. Furthermore, this would
allow spatially related layer properties that favour fracture
propagation to be determined, and taken into account for
automatic weak-layer detection and stability estimation.

Nonetheless, the SMP, in combination with the algorithm
and standard field observations (rutschblock test plus
manual profile), can be used to quantify and analyse
spatial-variability patterns faster than using standard obser-
vation methods.

CONCLUSIONS
We have developed an algorithm for the analysis of SMP
profiles that detects a potential weakness and provides a
stability estimate, and tested the procedure with 68 manually
observed profiles. The algorithm suggests a set of four
potential weak layers, and, in 90% of the cases, one of these
weak layers coincided with the observed failure layer in the
stability test. A fully automatic detection of the layer most
prone to skier triggering identified the weak layer as observed
with an accuracy of 60% and needs to be improved. A
statistical analysis of weak-layer and slab properties was
carried out for a subset of 61 profiles, in order to classify the
SMP signals into two stability classes: poor and fair-to-good.
With an accuracy of 78%, parameter�was the best predictor
of snowpack instability with regard to skier triggering.

The proposed algorithm, which is essentially a statistical
method, is the first successful attempt to locate potential
weak layers in a SMP signal and to suggest a degree of
instability with regard to skier triggering. Obviously, the
automatic detection of the weak layer that is most prone to be

Fig. 5. (a) Failure depth derived from rutschblock test and
compression tests vs failure depth selected manually from the four
suggested weak layers (accuracy 90%). (b) Comparison of the
observed failure depth to the failure depth of the weak layer derived
with Equation (5) (accuracy 60%). (c) Comparison of the position of
the lowest measured penetration resistance to the observed failure
depth (accuracy 10%). The solid line in each graph shows the one-
to-one relationship.

Table 1. Threshold values, classification accuracy and level of significance, p (U-test), for various weak-layer and slab properties. Values
smaller than the threshold indicate poor stability. The classification accuracy is given by the unweighted average accuracy (RPC)

Parameter Threshold RPC p

%

Mean number of ruptures per 1mm <7 75.7 <0.001
Mean rupture force (N) per 1mm <0.03 73.0 <0.001
� of weak layer (Pa) <5193 78.4 <0.001
Mean penetration resistance of slab (N) <0.21 77.5 0.006
Mean penetration resistance of weak layer (N) — — 0.75
Maximum penetration resistance of slab (N) <0.65 72.4 0.002
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skier-triggered needs to be improved. However, it has been
previously shown that detecting weak layers is, in general, a
very difficult problem and field tests do not perform any
better. Furthermore, our results suggest that the presently
used microstructural parameters are not sufficient for de-
scribing the complex interaction between the SMP tip and the
ice matrix. In summary, the partly insufficient performance
can be attributed to the limitations of the algorithm, poor
SMP signal quality, spatial variations at the scale of the profile
site and uncertainty of the stability test result.

Our analysis confirms that snowpack stability is not simply
a question of minimal strength, but a complex interaction
between weak-layer and slab properties (e.g. Schweizer and
Jamieson, 2001). The somewhat unsatisfactory result is
probably not only caused by our method of analysis, but
also by the fact that snowpack instability cannot be measured
objectively and by our general lack of understanding of the
failure processes leading to avalanche release.

The SMP together with the proposed algorithm shows
high potential for snow-cover investigations that require
high-resolution data in time and space, which is needed for

research on stability variations, as well as for operational
avalanche forecasting.
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