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Obstructions of Connectivity Two for
Embedding Graphs into the Torus

Bojan Mohar and Petr Škoda

Abstract. The complete set of minimal obstructions for embedding graphs into the torus is still not
determined. In this paper, we present all obstructions for the torus of connectivity 2. Furthermore, we
describe the building blocks of obstructions of connectivity 2 for any orientable surface.

1 Introduction

The problem of determining the graphs that can be embedded in a given surface
is a fundamental question in topological graph theory. Robertson and Seymour [9]
proved that for each surface S the class of graphs that embeds into S can be character-
ized by a finite list, Forb(S), of minimal forbidden minors (or obstructions). For the
2-sphere S0, Forb(S0) consists of the Kuratowski graphs, K5 and K3,3. The list of ob-
structions Forb(N1) for the projective plane N1 contains 35 graphs, and N1 is the only
other surface for which the complete list of forbidden minors is known. The number
of obstructions for both orientable and non-orientable surfaces seems to grow fast
with the genus and that can be one of the reasons why even for the torus S1 the com-
plete list of obstructions is still not known, although thousands of obstructions have
been generated by the computer (see [2, 5, 8, 11]).

In this paper, we study the obstructions for orientable surfaces of low connectivity.
A graph G is a k-sum of graphs G1 = (V1, E1),G2 = (V2, E2) if G can be written as
G = (V1∪V2, E1∪E2) such that |V1∩V2| = k. It is easy to show that obstructions that
are not 2-connected can be obtained as disjoint unions and 1-sums of obstructions
for surfaces of smaller genus (see [1]). Stahl [10] and Decker et al. [3] showed that
the genus of a 2-sum differs by at most 1 from the sum of genera of its parts. Decker
et al. [4] provided a simple formula for the genus of a 2-sum that will be used in this
paper. We shall prove that obstructions for an orientable surface of connectivity 2
can be obtained as a 2-sum of building blocks that fall (roughly) into two families of
graphs. One family consists of obstructions for embeddings into surfaces of smaller
genus. The graphs in the second family are critical with respect to the graph param-
eter ga defined in Section 3. We use this characterization in Section 8 to construct all
obstructions for the torus of connectivity 2.
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2 Notation

Let G be a connected multigraph. An (orientable) embedding Π of G is a mapping
that assigns to each vertex v ∈ V (G) a cyclic permutation πv of the edges incident
with v, called the local rotation around v. Thus πv(e) for an edge e incident with v
is the edge that follows e in clockwise order around v in the embedding Π. If Π is
an embedding of G, then we also say that G is Π-embedded. Given a Π-embedded
graph G, a Π-face (or Π-facial walk) is a cyclic sequence (v1, e1, . . . , vk, ek) such that
ei = vivi+1, ei = πvi (ei−1) for each i = 1, . . . , k (where vk+1 = v1 and e0 = ek), and
all pairs (vi , ei) are distinct. The linear subsequence ei−1, vi , ei of a Π-face W is called
a Π-angle at vi . Note that edges of Π-angles are formed precisely by the pairs of edges
that are consecutive in the local rotation around a vertex. The linear subsequence of
W that is obtained from W by removing vi is said to be obtained by opening W at vi .

The above combinatorial definition of an embedding only uses local rotations and
the notion of facial walks. This is equivalent to the notion of topological 2-cell em-
beddings of graphs in surfaces, and we refer the reader to [6] for detailed treatment
of this relationship.

Each edge e of a Π-embedded graph appears twice in the Π-faces. If there exists
a single Π-face where e appears twice, we say that e is singular. Otherwise, e is non-
singular.

The genus of an orientable embedding Π of a graph G is given by the Euler for-
mula,

(2.1) g(Π) =
1

2
(2− n + m− f ),

where n is the number of vertices, m the number of edges, and f the number of Π-
faces of G. The genus g(G) of a connected multigraph G is the minimum genus of an
orientable embedding of G.

In this paper, we will deal mainly with the class G of simple graphs. Let G ∈ G

be a simple graph and let e be an edge of G. Then G− e denotes the graph obtained
from G by deleting e and G/e denotes the graph1 obtained from G by contracting e.
It is convenient for us to formalize these graph operations. The set M(G) = E(G)×
{−, /} is the set of minor-operations available for G. An element µ ∈ M(G) is called
a minor-operation and µG denotes the graph obtained from G by applying µ. For
example, if µ = (e,−), then µG = G − e. A graph H is a minor of G if H can be
obtained from a subgraph of G by contracting some edges. If G is connected, then H
can be obtained from G by a sequence of minor-operations.

Let H be a subgraph of G. We say that H is minor-tight in G (for the genus pa-
rameter g) if g(µG) < g(G) for every minor-operation µ ∈ M(H). The following
observation asserts that being an obstruction for a surface is equivalent to having all
subgraphs minor-tight.

Lemma 2.1 Let H1, . . . ,Hs be subgraphs of a graph G with g(G) = k + 1. If E(H1)∪
· · · ∪ E(Hs) = E(G), then G is an obstruction for Sk if and only if H1, . . . ,Hs are
minor-tight in G.

1When contracting an edge, one may obtain multiple edges. We shall replace any multiple edges by
single edges as such a simplification has no effect on the genus.
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Figure 1: An example of an XY-labelled graph and its corresponding graph in G◦
xy .

It is well known that each closed orientable surface is homeomorphic, for some
k ≥ 0, to the surface Sk, which is the surface obtained from the sphere by adding k
handles. A graph with an embedding of genus k can be viewed as embedded onto Sk

(see [6]).
A graph has connectivity k when it is k-connected but not (k + 1)-connected.2 An

edge whose deletion disconnects the graph is a cut-edge. The structure of obstruc-
tions for orientable surfaces that have connectivity at most 1 is very simple. They are
disjoint unions and 1-sums of obstructions for surfaces of smaller genus. This can
be easily seen as an application of the following theorem that states that the genus of
graphs is additive with respect to their 2-connected components (or blocks).

Theorem 2.2 (Battle et al. [1]) The genus of a graph is the sum of the genera of its
blocks.

3 Graphs with Terminals

In this paper, we study obstructions for embedding graphs into orientable surfaces
that have connectivity 2. Given graphs G1 and G2 such that V (G1)∩V (G2) = {x, y},
we say that the graph G = (V (G1) ∪V (G2), E(G1) ∪ E(G2)) is the xy-sum of G1 and
G2. The graphs G1 and G2 are the parts of the xy-sum.

We wish to study the parts of a 2-sum separately, and in order to do so, we mark
the vertices of the separation as terminals. This prompts us to study the class of graphs
Gxy with two terminals, x and y. The letters x and y will be consistently used for the
two distinguished terminals. Most notions that are used for graphs can be used in the
same way for graphs with terminals. Some notions differ though, and to distinguish
between graphs with and without terminals, let Ĝ be the underlying graph of G with-
out terminals (for G ∈ Gxy). Two graphs, G1 and G2, in Gxy are isomorphic if there is

an isomorphism of the graphs Ĝ1 and Ĝ2 that maps terminals of G1 onto terminals
of G2 (and non-terminals onto non-terminals) possibly exchanging x and y. Note

that it is possible that G1,G2 ∈ Gxy are non-isomorphic, but Ĝ1, Ĝ2 are isomorphic.
We define minor-operations on graphs in Gxy in the way that Gxy is a minor-closed
family. When performing edge contractions on G ∈ Gxy , we do not allow contrac-
tion of the edge xy (if xy ∈ E(G)) and contracting an edge incident with x results

2Here and thereafter we only discuss vertex-connectivity. Recall that a graph is k-connected if it has at
least k + 1 vertices and it remains connected after removal of any set of at most k − 1 vertices.
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Figure 2: xy-alternating embeddings of K5 and K3,3 in the torus.

in a vertex labelled x and similarly for y. We use M(G) to denote the set of available
minor-operations for G. Since (xy, /) 6∈ M(G) for G ∈ Gxy , we shall use G/xy to
denote the underlying simple graph in G obtained from G by identification of x and
y; for this operation, we do not require the edge xy to be present in G.

For convenience, we use G◦xy for the subclass of Gxy of graphs without the edge xy.
We shall sometimes depict the graphs in G◦xy as XY-labelled graphs, which are defined
as follows. Given a graph G ∈ G◦xy , let H be the graph G− x− y, where a vertex of H
is labelled X if it is adjacent to x in G and is labelled Y if it is adjacent to y in G (see
Figure 1). We say that H is the XY-labelled graph corresponding to G.

A graph parameter is a function G→ R that is constant on each isomorphism class
of G. Similarly, we call a function Gxy → R a graph parameter if it is constant on each
isomorphism class of Gxy . A graph parameter P is minor-monotone if P(H) ≤ P(G)
for each graph G ∈ Gxy and each minor H of G. The graph genus is an example of a
minor-monotone graph parameter.

Several other graph parameters will be used in this paper. We use G+ for the graph
G plus the edge xy if it is not already present. The genus of G+ can also be viewed as
a graph parameter g+ defined as g+(G) = g(G+). The graph parameter θ = g+ − g
captures the difference between the genera of G+ and G; that is, θ(G) = g+(G)−g(G).
Note that θ(G) ∈ {0, 1}.

In order to compute the genus of an xy-sum of graphs, it is necessary to know
whether G has a minimum genus embedding Π with x and y appearing at least twice
in an alternating order on a Π-face. More precisely, we say that an embedding Π is
xy-alternating if there is a Π-face W such that (x, y, x, y) is a cyclic subsequence of
W . A graph G ∈ Gxy is xy-alternating if it has a minimum genus embedding that
is xy-alternating. Figure 2 shows two examples of xy-alternating embeddings in the
torus. Note that, up to isomorphism, there are precisely two graphs in Gxy , whose
underlying simple graph is K3,3, and Figure 2 gives xy-alternating embeddings for
both of them (one for terminals x, y1 and second for terminals x, y2). We associate a
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graph parameter with this property. Let ε(G) = 1 if G is xy-alternating and ε(G) = 0
otherwise.3 We shall also use the graph parameter ε+ defined as ε+(G) = ε(G+).

In order to describe minimum genus embeddings of an xy-sum G of graphs G1

and G2, it is sufficient to consider two types of embeddings. To construct them, we
take particular minimum genus embeddings Π1 and Π2 of G1 and G2 (respectively)
and combine them into an embedding Π of G. For a non-terminal vertex v, let the
local rotation around v in Π be the same as the local rotation around v in Πi (if
v ∈ V (Gi) for i ∈ {1, 2}). Consider Π1-faces W1 and W2 incident with x and y,
respectively, and Π2-faces W3 and W4 incident with x and y, respectively. Note that
the faces W1 and W2 (and also W3 and W4) need not be distinct. We distinguish three
cases.

Case 1: W1,W2,W3,W4 are distinct faces.
Write the face W1 as (x, e1,U1, e2), W2 as (y, f1,U2, f2), W3 as (x, e3,U3, e4), and

W4 as (y, f3,U4, f4).4 Note that e1 follows the edge e2 in the clockwise rotation around
x in the embedding Π1. Let e1, S1, e2 be the linear sequence obtained from Π1(x)
by opening it at e1, e2. Similarly, let e3, S2, e4 be the linear sequence obtained from
Π2(x) by opening it at e3, e4. We let Π(x) be the cyclic sequence (e1, S1, e2, e3, S2, e4).
Similarly, we define Π(y) as the concatenation of the two linear sequences obtained
from Π1(y) and Π2(y) by opening each of them at f1, f2 and f3, f4, respectively. Each
Π1-face and Π2-face different from W1,W2,W3, and W4 is also a Π-face. The faces
W1 and W3 combine into the Π-face (x, e1,U1, e2, x, e3,U3, e4), and the faces W2 and
W4 combine into the Π-face (y, f1,U2, f2, y, f3,U4, f4). Thus, the total number of
faces decreases by two, and (2.1) gives the following value h0(G) of g(Π):

(3.1) g(Π) = g(G1) + g(G2) + 1 = h0(G).

Case 2: W1,W2,W3,W4 consist of three distinct faces.
We may assume that W3 = W4 = (x, e3,U3, f4, y, f3,U4, e4). The same construc-

tion as in the previous case (with W1 and W2 expressed as above) combines W1,W2,
and W3 into a single Π-face (x, e1,U1, e2, e3,U3, f4, y, f1,U2, f2, y, f3,U4, e4, x). As
before, the total number of faces decreases by two and the genus of Π is given by (3.1).

Case 3: W1 = W2 and W3 = W4.
Observe that since W1 = W2, we have that θ(G1) = 0, and similarly, we have

θ(G2) = 0. Write W1 = W2 = (x, e1,U1, f2, y, f1,U2, e2) and W3 = W4 =
(x, e3,U3, f4, y, f3, U4, e4). The above construction combines W1 and W3 into the
Π-faces (x, e1,U1, f2, y, f3,U4, e4) and (y, f1,U2, e2, x, e3,U3, f4). Thus, the total
number of faces does not change, and (2.1) gives the following value of g(Π),

(3.2) g(Π) = g(G1) + g(G2).

3Parameters θ, ε and ε+ encode basic properties of parts of xy-sums. They are used throughout the
paper. An easy way to remember their meaning is that θ describes whether adding the edge xy increases
the genus, while ε and ε+ describe whether G and G + xy are xy-alternating, respectively.

4In this notation, U1,U2,U3,U4 denote the corresponding subsequences of vertices and edges in these
facial walks.

https://doi.org/10.4153/CJM-2014-025-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-025-x


1332 B. Mohar and P. Škoda
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Figure 3: (a) An illustration of an embedding of an xy-sum of two xy-alternating graphs on
the torus. For better clarity, the vertices x and y were split into 5 vertices each. Contract all the
edges incident with x and y to get the xy-sum. (b) The 2-sum of two copies of K5 embedded
into the torus.

Suppose that Π1 and Π2 are minimum genus embeddings of G1 and G2 (respec-
tively) that are both xy-alternating. In this case, we construct an embedding of G
whose genus is smaller than given above. Let W1 and W2 be the xy-alternating faces
of Π1 and Π2, respectively, and write W1 as (x, e1,U1, f2, y, f1,U2, e4, x, e3,U3, f4, y,
f3,U4, e2) and W2 as (x, e5,U5, f6, y, f5,U6, e8, x, e7,U7, f8, y, f7,U8, e6). Again, the
local rotation Π(v) of a non-terminal vertex v ∈ V (Gi) is set to Πi(v), i = 1, 2.
To construct Π(x), open Π1(x) at e1, e2 and e3, e4 to obtain two linear sequences
e1, S1, e4 and e3, S2, e2; open Π2(x) at e5, e6 and e7, e8 to obtain e5, S3, e8 and e7, S4, e6.
Let Π(x) be the cyclic sequence (e1, S1, e4, e5, S3, e8, e3, S2, e2, e7, S4, e6). We construct
Π(y) similarly. Figure 3 illustrates this process and gives an example of a 2-sum of
two K5’s. The faces W1 and W2 are combined into Π-faces (x, e1,U1, f2, y, f7,U8, e6),
(y, f1,U2, e4, x, e5,U5, f6), (x, e3,U3, f4, y, f5,U6, e8), and (y, f3,U4, e2, x, e7,U7, f8).
As the total number of faces increases by two, (2.1) gives the following value of g(Π):

(3.3) g(Π) = g(G1) + g(G2)− 1.

Usually, there is a minimum genus embedding of G constructed from the mini-
mum genus embeddings of G1 and G2. Suppose now that θ(G1) = 1, ε+(G1) = 1,
and ε(G2) = 1. Since θ(G1) = 1, the embedding constructed from minimum genus
embeddings of G1 and G2 as described above has genus g(G1) + g(G2) + 1. On the
other hand, g(G+

1 ) = g(G1) + 1 and both G+
1 and G2 are xy-alternating. Thus we

obtain an embedding of G of genus

g(G+
1 ) + g(G2)− 1 = g(G1) + g(G2) < g(G1) + g(G2) + 1.

Hence it is necessary also to consider the embeddings of G+
1 and G+

2 . The minima of
the genera given by equations (3.2) and (3.3) can be combined into a single value,
denoted h1(G):

(3.4) h1(G) = g+(G1) + g+(G2)− ε+(G1)ε+(G2).
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Using the parameters defined above, we can write

h1(G) = g(G1) + g(G2) + θ(G1) + θ(G2)− ε+(G1)ε+(G2).

The similarity of this equation to (3.1) leads us to define the graph parameter
η(G1,G2) = θ(G1) + θ(G2) − ε+(G1)ε+(G2). Note that η(G1,G2) ∈ {−1, 0, 1, 2}.
This gives another expression for h1:

(3.5) h1(G) = g(G1) + g(G2) + η(G1,G2).

Decker et al. [4] proved the following formula for the genus of a 2-sum of graphs.

Theorem 3.1 (Decker, Glover, and Huneke [4]) Let G be an xy-sum of connected
graphs G1,G2 ∈ G◦xy . Then

(i) g(G) = min(h0(G), h1(G)),
(ii) g+(G) = h1(G),
(iii) ε+(G) = 1 if and only if ε+(G1) 6= ε+(G2), and
(iv) θ(G) = 1 if and only if η(G1,G2) = 2.

Often, we consider minor-operations in the graph G1 while the graph G2 is fixed.
When ε+(G2) = 1, the genus of G depends on the graph parameter ga = g − ε,
called the alternating genus of G. Let g+

a = g+ − ε+ be the graph parameter defined
as g+

a (G) = ga(G+) = g+(G)− ε+(G). If we know the value of the parameter ε+(G2),
then we can express h1(G) as follows. If ε+(G2) = 1, then (3.4) can be rewritten as

(3.6) h1(G) = g+
a (G1) + g+(G2).

Otherwise, (3.4) is equivalent to

(3.7) h1(G) = g+(G1) + g+(G2).

The next lemma shows that alternating genus is a minor-monotone graph param-
eter.

Lemma 3.2 Let G ∈ Gxy . If H is a minor of G, then ga(H) ≤ ga(G).

Proof If g(H) < g(G) or ε(H) ≥ ε(G), then the result trivially holds. Hence if
the claimed inequality is violated, then g(H) = g(G), ε(H) = 0, and ε(G) = 1.
Thus, there is an xy-alternating minimum genus embedding Π of G. Let Wa be an
xy-alternating Π-face.

We may assume without loss of generality that H is obtained from G by a single
minor-operation. Suppose first that H = G−e for some edge e ∈ E(G). Let Π′ be the
embedding of H induced by Π. If e is a singular edge that appears in a Π-face W , then
W is split into two Π′-faces in Π′. Thus g(H) ≤ g(Π′) = g(Π)−1 = g(G)−1, which
contradicts the assumption that g(H) = g(G). Hence e appears in two different
Π-faces W1 and W2. The faces W1 and W2 combine to form a single Π′-face W ′ in
Π′. Thus g(Π′) = g(Π). As either Wa is a Π′-face or Wa − e is a subsequence of
W ′, we conclude that Π′ is also xy-alternating. This contradicts the assumption that
g(H) = g(G) and ε(H) = 0.

Suppose now that H = G/e for some edge e ∈ E(G). Let Π′ be the induced
embedding of H obtained from Π by contracting e. That is, the local rotation Π′(ve)
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around the vertex ve obtained by contraction of e = uv contains as a subsequence
both linear sequences obtained from Π(u) and Π(v) by deleting the subsequence
u, e, v. If e does not appear in Wa, then Wa is also a Π′-face. Otherwise, as e 6= xy, Π′

contains a facial walk W ′a that can be obtained from Wa by replacing the occurrence
of u, e, v by ve. It is immediate that W ′a is an xy-alternating Π′-face. This again
contradicts the choice of H.

The following lemma shows how the property of being xy-alternating can be ex-
pressed in terms of θ(G) and ε(G+).

Lemma 3.3 Let G ∈ G◦xy . The graph G is xy-alternating if and only if θ(G) = 0 and
G+ is xy-alternating. In symbols, ε(G) = 1 if and only if θ(G) = 0 and ε+(G) = 1.

Proof Assume that G is xy-alternating and let Π be an xy-alternating embedding
of G of genus g(G). By embedding the edge xy into the xy-alternating Π-face, we
obtain an embedding of G+ into the same surface that is also xy-alternating. This
shows that θ(G) = 0 and ε+(G) = 1.

For the converse, assume that θ(G) = 0 and that G+ is xy-alternating. Let Π be
an xy-alternating embedding of G+ with an xy-alternating Π-face W . Since θ(G) =
0, the edge xy is not a singular edge. Thus by deleting xy from Π, we obtain an
embedding Π′ of G in the same surface where either W is a Π′-face or W − xy is
a subsequence of a Π′-face. Hence Π′ is an xy-alternating embedding of G. Since
g(Π′) = g(G), the graph G is xy-alternating.

Figure 4 shows the relationship between the parameters g, g+, ga, and g+
a . In addi-

tion to the constraints given in the figure, there is one more interrelationship that is
described by the following lemma.

Lemma 3.4 For a graph G ∈ Gxy , we have either ga(G) = g(G) or ga(G) = g+
a (G).

Proof If ε(G) = 0, then ga(G) = g(G), and we are done. Otherwise, ε(G) = 1 and
Lemma 3.3 gives that ε+(G) = 1 and θ(G) = 0. Therefore, g+

a (G) = ga(G) + ε(G) +
θ(G)− ε+(G) = ga(G).

For a graph parameter P, we say that a minor-operation µ ∈M(G) decreases P by
at least k if P(µG) ≤ P(G) − k. The subset of M(G) that decreases P by at least k is
denoted by ∆k(P,G). We write just ∆k(P) when the graph is clear from the context.

We shall show that each minor-operation in a 2-connected minor-tight part of an
xy-sum decreases at least one of the graph parameters g, g+, and g+

a by at least 1. Note
that several parameters can be decreased by a single minor-operation and it depends
on the relations between the parameters. For example, if G is K3,3 with the terminals
that are non-adjacent and we consider an edge e of G, then the contraction (e, /)
belongs both to ∆1(g) and ∆1(g+) as g(G/e) = g+(G/e) = 0. But G is xy-alternating
(see Figure 2), so ga(G) = g+

a (G) = 0 and (e, /) belongs neither to ∆1(ga) nor to
∆1(g+

a ).
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ǫ+θ

ǫ

g+
a

g+

g

ga

Figure 4: Hasse diagram showing relations of several graph parameters. An edge indicates that
the values of parameters differ by at most one and the parameter below is bounded from above
by the parameter above.

Lemma 3.5 Let P and Q be graph parameters such that P(G) ≤ Q(G) ≤ P(G) + 1
for every graph G ∈ Gxy . Then the following holds for each k and each G ∈ Gxy :

(S1) If Q(G)− P(G) = 1, then ∆k(P) ⊆ ∆k(Q);
(S2) if Q(G)− P(G) = 0, then ∆k(Q) ⊆ ∆k(P);
(S3) ∆k+1(P) ⊆ ∆k(Q) and ∆k+1(Q) ⊆ ∆k(P).

The proof of the lemma is easy and is omitted. The lemma will be frequently used
for the pairs P and Q of graph parameters indicated by connecting lines in Figure 4:
g and g+, ga and g, ga and g+

a , g+
a and g+. The following result shows that Lemma 3.5

also applies to the remaining pair ga and g+ from Figure 4.

Lemma 3.6 For any graph G ∈ Gxy , we have that ga(G) ≤ g+(G) ≤ ga(G) + 1.

Proof The first inequality is obvious. To prove the second one, observe that by
Lemma 3.4, either ga(G) = g(G) or ga(G) = g+

a (G). In the former case, g+(G) =
g(G) + θ(G) ≤ ga(G) + 1. In the latter case, g+(G) = g+

a (G) + ε+(G) ≤ ga(G) + 1.

Using the new notation we can state the following corollary of Lemma 3.4.

Corollary 3.7 For each G ∈ Gxy , ∆1(ga) ⊆ ∆1(g) ∪∆1(g+
a ).

Proof Let µ ∈ ∆1(ga). If µ 6∈ ∆1(g) ∪∆1(g+
a ), then g(µG) = g(G) > ga(µG) and

g+
a (µG) = g+

a (G) > ga(µG), which contradicts Lemma 3.4 (for the graph µG).

The next lemma describes necessary and sufficient conditions for a single part of
a 2-sum of graphs to be minor-tight. This is a key lemma, and its outcome, summa-
rized in Table 1, will be used heavily throughout this paper.
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xy ∈ E(G) ε+(G2) η(G1,G2) µ

yes
0

—
∆1(g+)

1 ∆1(g+
a )

no

0
0 ∆1(g+)
1 ∆1(g) or ∆1(g+)
2 ∆1(g)

1

-1 ∆1(g+
a )

0 ∆2(g) or ∆1(g+
a )

1 ∆1(g) or ∆1(g+
a )

2 ∆1(g) or ∆2(g+
a )

Table 1: Possible results for a minor-operation in a minor-tight part of a 2-sum of
graphs.

Lemma 3.8 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy and µ ∈ M(G1)
such that µG1 is connected. Then g(µG) < g(G) if and only if the following are true
(where ∆k( · ) always refer to the decrease of the parameter in G1):

(i) If xy ∈ E(G), then µ ∈ ∆1(g+) if ε+(G2) = 0 and µ ∈ ∆1(g+
a ) if ε+(G2) = 1.

(ii) If xy 6∈ E(G) and η(G1,G2) = −1, then µ ∈ ∆1(g+
a ).

(iii) If xy 6∈ E(G) and η(G1,G2) = 0, then µ ∈ ∆1(g+) when ε+(G2) = 0 and
µ ∈ ∆2(g) ∪∆1(g+

a ) when ε+(G2) = 1.
(iv) If xy 6∈ E(G) and η(G1,G2) = 1, then µ ∈ ∆1(g) ∪ ∆1(g+) when ε+(G2) = 0

and µ ∈ ∆1(g) ∪∆1(g+
a ) when ε+(G2) = 1.

(v) If xy 6∈ E(G) and η(G1,G2) = 2, then µ ∈ ∆1(g) when ε+(G2) = 0 and
µ ∈ ∆1(g) ∪∆2(g+

a ) when ε+(G2) = 1.

Proof Let us start with the “only if” part. Since µG1 is connected, Theorem 3.1
can be used to determine g(µG). In order to show (i), suppose that xy ∈ E(G).
By Theorem 3.1, g(G) and g(µG) are equal to h1(G) and h1(µG), respectively. If
ε+(G2) = 0, then by (3.7),

g+(µG1) + g+(G2) = g(µG) < g(G) = g+(G1) + g+(G2).

Thus g+(µG1) < g+(G1), yielding that µ ∈ ∆1(g+). If ε+(G2) = 1, then by (3.6),

g+
a (µG1) + g+(G2) = g(µG) < g(G) = g+

a (G1) + g+(G2).

Thus g+
a (µG1) < g+

a (G1), yielding that µ ∈ ∆1(g+
a ).

Assume now that xy 6∈ E(G). We will prove the cases (ii), (iii), and (iv) together.
Assume that η(G1,G2) ≤ 1. If ε+(G2) = 0, let us assume that µ 6∈ ∆1(g+) and if
ε+(G2) = 1, let us assume that µ 6∈ ∆1(g+

a ). By (3.7) and (3.6), h1(µG) = h1(G). By
Theorem 3.1, g(µG) = h0(G) < g(G). By using the definition of h0(G) in (3.1), we
obtain

h0(G) = g(µG1) + g(G2) + 1 = g(µG) < g(G) = g(G1) + g(G2) + η(G1,G2).
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Thus g(µG1) ≤ g(G1) + η(G1,G2) − 2. If η(G1,G2) = −1, then µ ∈ ∆3(g), which
implies that µ ∈ ∆2(g+) by Lemma 3.5(S3) (applied to g and g+). By another ap-
plication of (S3), we obtain that µ ∈ ∆1(g+

a ), yielding (ii). If η(G1,G2) = 0, then
µ ∈ ∆2(g). This proves (iii) when ε+(G2) = 1. If ε+(G2) = 0, then also µ ∈ ∆1(g+)
by (S3). This yields (iii). If η(G1,G2) = 1, then µ ∈ ∆1(g) which yields (iv).

Suppose now that η(G1,G2) = 2 and that µ 6∈ ∆1(g). Then h0(G) = h0(µG).
By Theorem 3.1 and (3.5), g(G) = h0(G). Since g(µG) < g(G), we conclude that
g(µG) = h1(µG) < g(G). As η(G1,G2) = 2, we know that θ(G1) = θ(G2) = 1 and
ε+(G1)ε+(G2) = 0. Thus we can write

g(G) = h0(G) = g(G1) + g(G2) + 1 = g+(G1) + g+(G2)− 1.

If ε+(G2) = 0, then we obtain using (3.7) that

g+(µG1) + g+(G2) = g(µG) < g(G) = g+(G1) + g+(G2)− 1.

Hence µ ∈ ∆2(g+), which implies by (S3) that also µ ∈ ∆1(g), a contradiction.
If ε+(G2) = 1, then ε+(G1) = 0 and g+

a (G1) = g+(G1). We use (3.6) to obtain that

g+
a (µG1) + g+(G2) = g(µG) < g(G) = g+

a (G1) + g+(G2)− 1.

Hence µ ∈ ∆2(g+
a ). This finishes the “only if” part.

To prove the “if” part, we assume that (i)–(v) hold and show that g(µG) < g(G).
We start by proving that if µ ∈ ∆1(g), xy 6∈ E(G), and η(G1,G2) ≥ 1, then g(µG) <
g(G). By Theorem 3.1, g(G) = h0(G). Since g(µG) ≤ h0(µG), we obtain that

g(µG) ≤ g(µG1) + g(G2) + 1 < g(G1) + g(G2) + 1 = g(G).

If µ ∈ ∆2(g), xy 6∈ E(G), and η(G2,G2) = 0, we have a similar inequality:

g(µG) ≤ g(µG1) + g(G2) + 1 < g(G1) + g(G2) = g(G).

Similarly, we handle the cases when µ ∈ ∆1(g+) and when µ ∈ ∆1(g+
a ). Suppose

that µ ∈ ∆1(g+), ε+(G2) = 0, and xy ∈ E(G) or η(G1,G2) ≤ 1. By Theorem 3.1,
g(G) = h1(G). We obtain from Theorem 3.1 and (3.7) that

g(µG) ≤ g+(µG1) + g+(G2) < g+(G1) + g+(G2) = g(G).

Suppose now that µ ∈ ∆1(g+
a ), ε+(G2) = 1, and xy ∈ E(G) or η(G1,G2) ≤ 1. We

obtain from Theorem 3.1 and (3.6) that

g(µG) ≤ g+
a (µG1) + g+(G2) < g+

a (G1) + g+(G2) = g(G).

In the remaining case, when xy 6∈ E(G), η(G2,G2) = 2, ε+(G2) = 1, and µ ∈
∆2(g+

a ), we have a similar inequality:

g(µG) ≤ g+
a (µG1) + g+(G2) < g+

a (G1) + g+(G2)− 1 ≤ g(G1) + g(G2) + 1 = g(G).

This finishes the proof of the lemma.

Since for each graph precisely one hypothesis in the cases (i)–(v) of Lemma 3.8
holds, we obtain the following corollary.

Corollary 3.9 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy and µ ∈M(G1)
such that µG1 is connected and g(µG) < g(G). Then µ ∈ ∆1(g) ∪∆1(g+) ∪∆1(g+

a ).
Furthermore, if ε+(G2) = 0, then µ ∈ ∆1(g) ∪∆1(g+).
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Lemma 3.8 characterizes when a graph with two terminals is a part of an ob-
struction for an orientable surface. The next lemma describes when the edge xy is
minor-tight in an xy-sum of graphs.

Lemma 3.10 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy . If xy ∈ E(G),
then the subgraph of G induced by the edge xy is minor-tight if and only if η(G1,G2) = 2
and either g(G1/xy) < g+(G1) or g(G2/xy) < g+(G2).

Proof By Theorem 3.1(ii), θ(G − xy) = 1 if and only if η(G1,G2) = 2. Thus,
g(G− xy) < g(G) if and only if η(G1,G2) = 2. We can therefore assume that
η(G1,G2) = 2.

Theorem 2.2 implies that g(G/xy) = g(G1/xy)+g(G2/xy). Since ε+(G1)ε+(G2) =
0, Theorem 3.1 and (3.4) gives

g(G) = h1(G) = g+(G1) + g+(G2).

Therefore, g(G/xy) < g(G) if and only if g(G1/xy) + g(G2/xy) < g+(G1) + g+(G2).
Since g(G1/xy) ≤ g+(G1) and g(G2/xy) ≤ g+(G2), we obtain that g(G/xy) < g(G)
if and only if g(G1/xy) < g+(G1) or g(G2/xy) < g+(G2).

4 Critical Classes for Graph Parameters

Lemma 3.8 provides necessary and sufficient conditions on the parts of an xy-sum
for being minor-tight. In this section, we shall study and categorize graphs that satisfy
these conditions.

For a graph parameter P, let C(P) denote the family of graphs G ∈ Gxy such that
each minor-operation in G decreases P by at least 1, i.e., M(G) = ∆1(P). We call
C(P) the critical class for P. Let C◦(P) be the subfamily of C(P) of graphs without
the edge xy. We refine the class C(P) according to the value of P. Let Ck(P) denote
the subfamily of C(P) that contains precisely the graphs G for which P(G) = k + 1.
The classes C◦k (P) are defined similarly as subfamilies of C◦(P).

In this section, we shall study the classes C◦(g), C◦(g+), C◦(ga), and C◦(g+
a ). It is

easy to see that, for each graph G ∈ C◦k (g), the graph Ĝ is an obstruction for Sk. On
the other hand, for each graph G ∈ Forb(Sk) and two non-adjacent vertices x and
y of G, the graph in Gxy obtained from G by making x and y terminals belongs to
C◦k (g). Similarly to C◦k (g), the family C◦k (g+) can be constructed from the graphs in
Forb(Sk).

We shall denote by Forb∗(S) the class of graphs of minimum degree at least 3
that are not embeddable in the surface S, but every proper subgraph is embeddable.
These are minimally non-embeddable graphs with respect to deletion of edges and
are sometimes called minimal forbidden topological minors for the surface S.

Lemma 4.1 Let G ∈ C◦k (g+). If θ(G) = 0, then Ĝ ∈ Forb(Sk). If θ(G) = 1, then

either Ĝ+ ∈ Forb(Sk), or Ĝ+ ∈ Forb∗(Sk) and Ĝ/xy ∈ Forb(Sk).

Proof If θ(G) = 0, then M(G) = ∆1(g) by claim (S2) in Lemma 3.5 (applied to g
and g+). Thus G ∈ C◦k (g). Therefore, Ĝ ∈ Forb(Sk) as explained above. Suppose now
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that θ(G) = 1. Since G ∈ C◦(g+), M(G) ⊆ ∆1(g,G+). As g(G+ − xy) < g(G+) (and

all other minor-operations in Ĝ+ except contracting the edge xy decrease the genus

of G+), we have that Ĝ+ ∈ Forb∗(Sk). If g(G/xy) < g+(G), then Ĝ+ ∈ Forb(Sk)
since both deletion and contraction of xy decreases the genus of G+. On the other
hand, if g(G/xy) = g+(G), take any minor-operation µ ∈ M(G/xy). Since µ is also
a minor-operation in G, we obtain that g(µ(G/xy)) ≤ g+(µG) < g+(G) = g(G/xy)
as µ(G/xy) is a minor of µ̂G+. Since µ was chosen arbitrarily, G/xy ∈ Forb(Sk).

Next, we prove that graphs, whose minor-operations decrease either g or g+ by at
least 1 belong to C◦(g) ∪ C◦(g+).

Lemma 4.2 Let G ∈ G◦xy . If M(G) = ∆1(g) ∪ ∆1(g+), then G belongs to either
C◦(g) or C◦(g+).

Proof If θ(G) = 0, then ∆1(g+) ⊆ ∆1(g) by (S2) in Lemma 3.5 applied to g and g+.
Thus M(G) = ∆1(g) and G ∈ C◦(g). Similarly, if θ(G) = 1, then ∆1(g) ⊆ ∆1(g+)
by (S1). We conclude that M(G) = ∆1(g+) and G ∈ C◦(g+).

The classes C◦(ga) and C◦(g+
a ) are related to the class C(ga), which was introduced

in Mohar and Škoda [7] where it was proved that the classes Ck(ga) are finite (for each
k ≥ 1). By the following lemma, this implies that both C◦k (ga) and C◦k (g+

a ) are finite.
Observe that a graph G ∈ G◦xy belongs to C(ga) if and only if it belongs to C◦(ga). The
graphs in C(ga) \ C◦(ga) can be characterized as follows.

Lemma 4.3 For a graph G ∈ G◦xy and k ≥ 0, we have that G+ ∈ Ck(ga) if and only
if G ∈ C◦k (g+

a ) \ C◦k (ga).

Proof Suppose that G+ ∈ Ck(ga). It is immediate that G ∈ C◦k (g+
a ). Since ga(G) =

ga(G+ − xy) < ga(G+) = k + 1, the graph G does not belong to C◦k (ga).
Suppose now that G ∈ C◦k (g+

a ) \ C◦k (ga). If ga(G) = g+
a (G), then M(G) = ∆1(ga)

by (S2) in Lemma 3.5 applied to ga and g+
a . It follows that G ∈ C◦k (ga). Thus ga(G) <

g+
a (G). Hence ga(G+) > ga(G) = ga(G+ − xy) and (xy,−) ∈ ∆1(ga,G+). We

conclude that G+ ∈ Ck(ga) as ga(G+) = g+
a (G) = k + 1.

Also, the graphs that do not belong to C◦(g+
a ) can be characterized.

Lemma 4.4 If G ∈ C◦(ga), then G 6∈ C◦(g+
a ) if and only if there exists µ ∈ M(G)

such that µ ∈ ∆1(g) \∆1(g+
a ).

Proof The “if” part follows from the fact that M(G) 6= ∆1(g+
a ). The “only if” part

follows from Corollary 3.7, as there is µ ∈M(G) such that µ 6∈ ∆1(g+
a ).

Corollary 3.7 says that each minor-operation that decreases alternating genus also
decreases g or g+

a . We have the following weakly converse statement.

Lemma 4.5 Let G ∈ G◦xy . If M(G) = ∆1(g)∪∆1(g+
a ), then G belongs to at least one

of C◦(g), C◦(ga), or C◦(g+
a ).
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Proof By Lemma 3.4, either ga(G) = g(G) or ga(G) = g+
a (G). If g(G) = g+

a (G) =
ga(G), then ∆1(g) ⊆ ∆1(ga) and ∆1(g+

a ) ⊆ ∆1(ga) by property (S2) of Lemma 3.5.
Thus G ∈ C◦(ga).

If g(G) > ga(G), then ∆1(g+
a ) ⊆ ∆1(ga) by (S2). By (S1), ∆1(ga) ⊆ ∆1(g). We

conclude that G ∈ C◦(g). Similarly, if g+
a (G) > ga(G), then ∆1(g) ⊆ ∆1(ga) by (S2).

By (S1), ∆1(ga) ⊆ ∆1(g+
a ). We conclude that G ∈ C◦(g+

a ).

5 Hoppers

In this section, we describe three subfamilies of C◦(g+) all of which we call hoppers.
Two kinds of hoppers (hoppers of level 0 and 1 as defined below) appear as parts of
obstructions of connectivity 2. A graph G ∈ G◦xy is a hopper of level 0 if M(G) =
∆1(g) ∪ ∆2(g+

a ) and G 6∈ C◦(g). A graph G ∈ G◦xy is a hopper of level 1 if M(G) =
∆1(g+

a ) ∪ ∆2(g) and G 6∈ C◦(g+
a ). If G is a graph in C◦(g+

a ) such that ε+(G) = 1,
then we call G a hopper of level 2. It is immediate from (S1) in Lemma 3.5 that G ∈
C◦(g+). The level of the hopper vaguely corresponds to the difficulty to construct
such a graph.

Let Hl, 0 ≤ l ≤ 2, denote the family of hoppers of level l. Let Hl
k denote the

subfamily of Hl containing graphs G with g+(G) = k.

Lemma 5.1 If G ∈ H0, then G ∈ C◦(g+), ε+(G) = 0, and θ(G) = 1.

Proof By (S3) in Lemma 3.5, ∆2(g+
a ) ⊆ ∆1(g+). If θ(G) = 0, then ∆1(g+) ⊆ ∆1(g)

by (S2), a contradiction with G 6∈ C◦(g). Hence θ(G) = 1. By (S1), ∆1(g) ⊆ ∆1(g+)
and we conclude that G ∈ C◦(g+).

If ε+(G) = 1, then ∆2(g+
a ) ⊆ ∆2(g+) by (S1) and, since ∆2(g+) ⊆ ∆1(g) by (S3),

we have that ∆2(g+
a ) ⊆ ∆1(g), a contradiction. Thus ε+(G) = 0.

Note that the proof of the next lemma is analogous to the proof of Lemma 5.1.

Lemma 5.2 If G ∈ H1, then G ∈ C◦(g+), ε+(G) = 1, and θ(G) = 0.

Proof By (S3) in Lemma 3.5, ∆2(g) ⊆ ∆1(g+). If ε+(G) = 0, then ∆1(g+) ⊆
∆1(g+

a ) by (S2), a contradiction with G 6∈ C◦(g+
a ). Hence ε+(G) = 1. By (S1),

∆1(g+
a ) ⊆ ∆1(g+) and we conclude that G ∈ C◦(g+).

If θ(G) = 1, then ∆2(g) ⊆ ∆2(g+) by (S1), and since ∆2(g+) ⊆ ∆1(g+
a ) by (S3),

we have that ∆2(g) ⊆ ∆1(g+
a ), a contradiction. Thus θ(G) = 0.

Similarly to the genus, alternating genus decreases by at most 1 when an edge is
deleted.

Lemma 5.3 Let G ∈ Gxy . For each e ∈ E(G), ga(G− e) ≥ ga(G)− 1.

Proof Suppose that ga(G − e) < ga(G) − 1. Since g(G − e) ≥ g(G) − 1, we have
that ε(G) = 0, ε(G − e) = 1, and g(G − e) = g(G) − 1. Let Π be an xy-alternating
embedding of G− e in Sk, k = g(G− e) and let W be an xy-alternating Π-face. If the
endvertices u and v of e are Π-cofacial, then Π can be extended to an embedding of
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G in Sk, a contradiction. Otherwise, let Π′ be the embedding of G on Sk+1 obtained
from Π by embedding e into a new handle connecting faces incident with u and v.
Since W is a subwalk of a Π′-face, Π′ is xy-alternating. Since g(Π′) = g(G− e) + 1 =
g(G), we have that ε(G) = 1, which is a contradiction.

Lemma 5.3 has the following corollary that shows the motivation for introducing
the notion of hoppers of level 2.

Corollary 5.4 A graph G ∈ C◦k (g+
a ) does not embed into Sk+1 if and only if ε+(G) = 1.

Mohar and Škoda conjectured that all graphs in Ck(ga) embed into Sk+1.

Conjecture 5.5 (Mohar and Škoda [7]) Each G ∈ Ck(ga) embeds into Sk+1.

We suspect that there are no hoppers of level 1 and 2.

Conjecture 5.6 There are no hoppers of level 1 and 2.

Thus Conjecture 5.6 is a stronger version of Conjecture 5.5. The following lemma
shows that Conjecture 5.5 is true if xy ∈ E(G).

Lemma 5.7 Let G ∈ G◦xy . Then ga(G) < g+
a (G) if and only if ε+(G) = 0 and

θ(G) = 1.

Proof If ga(G) < g+
a (G), then ga(G) = g(G) by Lemma 3.4. From Figure 4, we

conclude that g+
a (G)− ga(G) = 1 = ε(G) + θ(G)− ε+(G). Since ε(G) = 0, we obtain

that θ(G) = 1 and ε+(G) = 0, as required.
If ε+(G) = 0 and θ(G) = 1, then ε(G) = 0 by Lemma 3.3. Thus ga(G) <

ga(G) + ε(G) + θ(G)− ε+(G) = g+
a (G).

Lemmas 4.3 and 5.7 assert that a hopper of level 2 belongs to the class C◦k (ga).

6 Dumbbells

Lemma 3.8 provides useful information about minor-operations in a part G1 of an
xy-sum. However, the lemma cannot be used for deletion of cut-edges of G1. Since
the xy-sum is 2-connected, deletion of a cut-edge of G1 separates x and y. In this
section, we determine how minor-tight parts of an xy-sum with such a cut-edge look
like.

If G1 ∈ G◦xy and b ∈ E(G1) is a cut-edge of G1 whose deletion separates x and y,
we say that G1 is a dumbbell with bar b.

Lemma 6.1 If G1 is a dumbbell with bar b, then ε+(G1) = 0 and (b, /) 6∈ ∆1(g) ∪
∆1(g+).

Proof Suppose for a contradiction that ε+(G1) = 1; then there exists an xy-alter-
nating minimum-genus embedding Π of G+

1 . Let W be an xy-alternating Π-facial
walk. The walk W can be split into 4 subwalks containing x and y. Each of the

https://doi.org/10.4153/CJM-2014-025-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-025-x


1342 B. Mohar and P. Škoda

edges xy and b appears precisely twice in the Π-facial walks (either once in two dif-
ferent Π-facial walks or twice in a single Π-facial walk). Since each walk from x to
y has to use either xy or b, both xy and b are singular edges that appear twice in
W . Since Π is an orientable embedding, the edge xy appears in W once in the di-
rection from x to y and once from y to x. Hence, there is another appearance of one
of the terminals, say x, in W that is not incident with the edge xy. We can write W
as W = (x, xy, y,W1, e1, x, e2,W2, y, xy, x, e3,W3, e4, x). The local rotation around x
can be written as (xy, e4, S1, e2, e1, S2, e3). Let Π′ be the embedding obtained from Π
by letting Π′(v) = Π(v) for v ∈ V (G1) \ {x} and Π(x) = (e4, S1, e2, xy, e1, S2, e3).
All Π-facial walks except W are also Π′-facial walks, as all Π-angles not incident
with W are also Π′-angles. The Π-facial walk W is split into three Π′-facial walks:
(x, xy, y,W1, e1, x), (x, e3,W3, e4, x), and (x, e2,W2, y, xy, x). Thus g(Π′) < g(Π), a
contradiction with Π being a minimum-genus embedding of G+

1 . We conclude that
ε+(G1) = 0.

Let µ = (b, /) be the contraction operation of b in G1. We shall show that µ 6∈
∆1(g) ∪ ∆1(g+). Let H1 and H2 be the components of G1 − b. By Theorem 2.2,
g(G1) = g(H1) + g(H2) = g(µG1). If b is incident with a terminal, say b = zy,
z ∈ V (H1), then G+

1 is the 1-sum of H1 + b + xy and H2. By Theorem 2.2,

g(G+
1 ) = g(H1 + b + xy) + g(H2) = g(H1 + xz) + g(H2) = g(µG+

1 ).

Thus g+(G1) = g+(µG1).
Suppose that b is not incident with a terminal and let z ∈ V (H1) be an endpoint

of b. Consider the graphs H′1 = H1 + xy and H′2 = H2 + b as members of the class
G◦yz. Observe that H′1 and H′2 are dumbbells (in G◦yz). We have already shown that
ε+(H′1) = ε+(H′2) = 0 and g(µH′2) = g(H′2), and since the bar of H′2 is incident with
a terminal, g+(µH′2) = g+(H′2). By Theorem 3.1 (when G+

1 is viewed as a yz-sum of
H′1 and H′2),

g(G+
1 ) = min{g(H′1) + g(H′2) + 1, g+(H′1) + g+(H′2)},

g(µG+
1 ) = min{g(H′1) + g(µH′2) + 1, g+(H′1) + g+(µH′2)}.

Since g(µH′2) = g(H′2) and g+(µH′2) = g+(H′2), we conclude that g(µG+
1 ) = g(G+

1 ).
Thus g+(µG1) = g+(G1). This shows that µ 6∈ ∆1(g) ∪∆1(g+).

Lemma 6.2 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy . If G1 is a
dumbbell with bar b and G1 is minor-tight in G, then ε+(G1/b) = 1 and b is unique,
that is, G1 has a single cut-edge separating x and y.

Proof By Lemma 6.1 and Corollary 3.9, (b, /) ∈ ∆1(g+
a ) \∆1(g+). It is immediate

that ε+(G1/b) = 1.
For the second part, suppose that there is another bar e 6= b in G1. By Lemma 6.1,

ε+(G1/b) = 0 as G1/b is a dumbbell with bar e, a contradiction. We conclude that b
is unique.

Let D be the class of dumbbells G1 with bar b such that θ(G1) = 0, µ ∈ ∆1(g) for
each µ ∈M(G1) \ {(b,−), (b, /)}, and ε+(G1/b) = 1.
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Lemma 6.3 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy such that G1

is a dumbbell. Then G1 is minor-tight in G if and only if ε+(G2) = 1 and one of the
following holds:

(i) G1 ∈ C◦(g+
a ) \ C◦(ga), θ(G1) = 1, and either xy ∈ E(G) or η(G1,G2) = 1.

(ii) G1 ∈ D, xy 6∈ E(G), and η(G1,G2) = 1.

Proof Assume that G1 is minor-tight in G. By Lemmas 6.1 and 6.2, ε+(G1) = 0
and G1 has a unique bar b for which it holds that (b, /) 6∈ ∆1(g) ∪ ∆1(g+) and
ε+(G1/b) = 1. Hence g+

a (G1/b) = g+
a (G1) − 1, and we have that (b, /) ∈ ∆1(g+

a ) \
∆2(g+

a ). By Corollary 3.9, ε+(G2) = 1.
Assume first that θ(G1) = 1. We shall show that (i) holds. If xy 6∈ E(G) and

η(G1,G2) = 2, then (b, /) violates Lemma 3.8 as (b, /) 6∈ ∆1(g) ∪ ∆2(g+
a ). Thus

either xy ∈ E(G) or η(G1,G2) ≤ 1. Since ε+(G1) = 0 and θ(G1) = 1, we conclude
that either xy ∈ E(G) or η(G1,G2) = 1.

Since g(G1 − b) = g(G1) and ε(G1 − b) = 0 (as the terminals of G1 − b are
not connected), (b,−) 6∈ ∆1(ga). Hence G1 6∈ C◦(ga). It remains to show that
G1 ∈ C◦(g+

a ).
Since θ(G1) = 1, we have that g+(G1−b) = g(G+

1−b) = g(G1) < g+(G1) and thus
(b,−) ∈ ∆1(g+). By Lemma 6.1, ε+(G1) = 0. By (S2) (Lemma 3.5), (b,−) ∈ ∆1(g+

a ).
Let µ ∈ M(G1) \ {(b,−), (b, /)}. Since µG1 is connected, Lemma 3.8 gives that

µ ∈ ∆1(g+
a ) if xy ∈ E(G) and µ ∈ ∆1(g) ∪∆1(g+

a ) if xy 6∈ E(G) and η(G1,G2) = 1.
By (S1), ∆1(g) ⊆ ∆1(g+). By (S2), ∆1(g+) ⊆ ∆1(g+

a ). We conclude that µ ∈ ∆1(g+
a ).

Since µwas arbitrary and (b,−), (b, /) ∈ ∆1(g+
a ), we have that M(G1) = ∆1(g+

a ) and
G1 ∈ C◦(g+

a ). Therefore, (i) holds.
Assume now that θ(G1) = 0. We shall show that (ii) holds. In G − b, the two

components of G1−b are joined to G2 by single vertices. If xy ∈ E(G), Theorems 2.2
and 3.1 imply (using ε+(G1) = 0 and θ(G1) = 0) that

g(G−b) = g(Ĝ1 − b)+g(Ĝ+
2 ) = g(G1)+g+(G2) = g+(G1)+g+(G2) = h1(G) = g(G).

This contradicts the assumption that G1 is minor-tight. We conclude that xy 6∈ E(G).
If η(G2) = 0, we obtain a similar contradiction:

g(G−b) = g(Ĝ1 − b) + g(Ĝ2) = g(G1) + g(G2) = g+(G1) + g+(G2) = h1(G) = g(G).

Thus η(G1,G2) ≥ 1. Since θ(G1) = 0, we conclude that θ(G2) = 1 and
η(G1,G2) = 1.

It remains to show that G1 ∈ D, namely that µ ∈ ∆1(g) for each µ ∈
M(G) \ {(b,−), (b, /)}. Let µ ∈ M(G) \ {(b,−), (b, /)}. Since µG1 is connected,
µ ∈ ∆1(g) ∪ ∆1(g+

a ) by Lemma 3.8. Since µG is still a dumbbell, ε+(µG) = 0
by Lemma 6.1. Hence g+(µG) = g+

a (µG) and ∆1(g+
a ) ⊆ ∆1(g+). By (S2),

∆1(g+) ⊆ ∆1(g). Therefore, µ ∈ ∆1(g). We conclude that G1 ∈ D. Thus (ii)
holds.

Let us prove the “if” part of the theorem. Assume that ε+(G2) = 1 and that (i)
holds. Let µ ∈M(G1). We have that µ ∈ ∆1(g+

a ). If µG1 is connected, g(µG) < g(G)
by Lemma 3.8, since ε+(G2) = 1. Otherwise, µ = (b,−). If xy ∈ E(G), then by
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Figure 5: A sketch of the structure of the graph G from the proof of Lemma 6.4.

Theorems 2.2 and 3.1,

g(G−b) = g(Ĝ1 − b)+g(Ĝ+
2 ) = g(G1)+g+(G2) < g+(G1)+g+(G2) = h1(G) = g(G).

If xy 6∈ E(G) and η(G1,G2) = 1, then θ(G2) = 0, and we obtain that

g(G− b) = g(Ĝ1 − b) + g(Ĝ2) = g(G1) + g(G2) < g(G1) + g(G2) + 1 = g(G).

In both cases g(G − b) < g(G), and thus g(µG) < g(G) for each µ ∈ M(G1). We
conclude that G1 is minor-tight in G.

Assume now that (ii) holds. Let µ ∈ M(G1) and assume first that µG1 is con-
nected. If µ = (b, /), then (b, /) ∈ ∆1(g+

a ), since ε+(G1) = 0 and ε+(µG1) = 1
(and g+(µG1) = g+(G1)). Otherwise, µ ∈ ∆1(g), since G1 ∈ D. Since xy 6∈ E(G),
η(G1,G2) = 1, and ε+(G2) = 1, Lemma 3.8 gives that g(µG) < g(G).

The case when µ = (b,−) remains. By Theorems 2.2 and 3.1,

g(G− b) = g(Ĝ1 − b) + g(Ĝ2) = g(G1) + g(G2) < g(G1) + g(G2) + 1 = g(G).

We have that g(µG) < g(G) for each µ ∈ M(G1). We conclude that G1 is minor-
tight.

We close this section by showing that in an obstruction of connectivity 2, there
always exists a two-vertex-cut such that neither of the parts belongs to D.

Lemma 6.4 Let G ∈ Forb(Sk) be of connectivity 2. Then there exists a 2-vertex-
cut {x, y} such that neither of the parts of G when viewed as an xy-sum of two graphs
belongs to D.

Proof Let G be an xy-sum of G1,G2 ∈ G◦xy . Suppose that G1 ∈ D. Since G1 is
minor-tight in G and θ(G1) = 0, Lemma 6.3 gives ε+(G2) = 1 and η(G1,G2) = 1.
From the definition of η(G1,G2) we conclude that θ(G2) = 1, as ε+(G1) = 0. Let
b be a bar of G1 and let H1 and H2 be the components of G1 − b. We may assume
that H1 contains at least one edge. Let x be the common vertex of H1 and G2 and
let z be the endpoint of b incident with H1. Let us view G as an xz-sum of H1 and
G′2 = G2 + H2 + b (see Figure 5). We claim that neither H1 nor G′2 belongs to D.

By Lemma 6.2 applied to G1, b is the unique cut-edge separating x and y and thus
there is no cut-edge in H1 separating x and z. Therefore, H1 is not a dumbbell. We
shall show that θ(G′2) = 1 and hence G′2 6∈ D. The graph G′+2 can be viewed as an
xy-sum of G2 and the graph G′1 = H2 + b + zx. The graph G′1 is a dumbbell and thus
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xy ∈ E(G) ε+(G2) η(G1,G2) G1 belongs to

yes
0

—
C◦(g+)

1 C◦(g+
a )

no

0
0 C◦(g+)
1 C◦(g) or C◦(g+)
2 C◦(g)

1

-1 C◦(g+
a )

0 C◦(g+
a ) or H1

1 C◦(g), C◦(ga), C◦(g+
a ), or D

2 C◦(g) or H0

Table 2: Classification of minor-tight parts of 2-sums of graphs.

ε+(G′1) = 0 by Lemma 6.1. By Theorem 2.2, g(G′2) = g(H2)+g(G2). By Theorem 3.1,
using ε+(G1) = 0 and θ(G2) = 1,

g(G′+2 ) = min{g(G′1) + g(G2) + 1, g(G′+1 ) + g(G+
2 )} ≥ g(H2) + g(G2) + 1.

Therefore θ(G′2) = 1. We conclude that G′2 6∈ D.

7 General Orientable Surfaces

In this section, we prove a general theorem that classifies minor-tight parts of a 2-
sum of graphs. The classification that is given in Theorem 7.1 is also summarized in
Table 2.

Theorem 7.1 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy . The graph G1

is minor-tight if and only if the following statements hold (see Table 2).

(i) If xy ∈ E(G), then G1 ∈ C◦(g+) if ε+(G2) = 0 and G1 ∈ C◦(g+
a ) otherwise.

(ii) If xy 6∈ E(G) and η(G1,G2) = −1, then G1 ∈ C◦(g+
a ).

(iii) If xy 6∈ E(G) and η(G1,G2) = 0, then G1 ∈ C◦(g+) if ε+(G2) = 0 and G1 ∈
C◦(g+

a ) ∪H1 otherwise.
(iv) If xy 6∈ E(G) and η(G1,G2) = 1, then G1 ∈ C◦(g) ∪ C◦(g+) if ε+(G2) = 0 and

G1 ∈ C◦(g) ∪ C◦(ga) ∪ C◦(g+
a ) ∪D otherwise.

(v) If xy 6∈ E(G) and η(G1,G2) = 2, then G1 ∈ C◦(g) if ε+(G2) = 0 and G1 ∈
C◦(g) ∪H0 otherwise.

Proof Let us start with the “only if” part of the theorem. Assume first that G1 has
no cut-edge that separates x and y. Lemma 3.8 classifies which graph parameters
of G1 are decreased by the minor-operations in M(G1). If it is a single parameter,
then G1 belongs to the critical class corresponding to the parameter. For example,
if xy ∈ E(G) and ε+(G2) = 0, then M(G1) = ∆1(g+) by Lemma 3.8(i), and thus
G1 ∈ C◦(g+). The statements (i), (ii), (iii) for ε+(G2) = 0, and (v) for ε+(G2) = 0 are
proved in this way, and we omit the details. Let us focus on the remaining cases. In
all of them, we have that xy 6∈ E(G).
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Let us start with the case when η(G1,G2) = 1. If ε+(G2) = 0, then M(G1) =
∆1(g) ∪ ∆1(g+) by Lemma 3.8(iv). By Lemma 4.2, G1 belongs to either C◦(g) or
C◦(g+). If ε+(G2) = 1, then M(G1) = ∆1(g) ∪ ∆1(g+

a ) by Lemma 3.8(iv). By
Lemma 4.5, G1 belongs to either C◦(g),C◦(ga), or C◦(g+

a ). This proves (iv).
If η(G1,G2) = 0 and ε+(G2) = 1, then M(G1) = ∆1(g+

a ) ∪ ∆2(g) by
Lemma 3.8(iii). By definition, G1 belongs to either C◦(g+

a ) or H1. Thus, (iii) holds.
If η(G1,G2) = 2 and ε+(G2) = 1, then M(G1) = ∆1(g) ∪∆2(g+

a ) by Lemma 3.8(v).
By definition, G1 belongs to either C◦(g) or H0. Thus (v) is true.

Assume now that G1 has a cut-edge that separates x and y, and thus G1 is a
dumbbell. Since G1 is minor-tight, Lemma 6.3 gives that ε+(G2) = 1 and that ei-
ther G1 ∈ C◦(g+

a ) and xy ∈ E(G) or η(G1,G2) = 1, or G1 ∈ D, xy 6∈ E(G),
and η(G1,G2) = 1. The statements (ii), (iii), and (v) are vacuously true, since ei-
ther xy ∈ E(G) or η(G1,G2) = 1. The statement (i) is true, since G1 ∈ C◦(g+

a ) if
xy ∈ E(G). The statement (iv) is true, since either G1 ∈ C◦(g+

a ) or G1 ∈ D. This
completes the “only if” part of the proof.

It remains to prove the “if” part. Lemma 3.8 is now used to prove that G1 is
minor-tight. Assume first that G1 has no cut-edge separating x and y. If G1 belongs
to one of the classes C◦(g), C◦(g+), or C◦(g+

a ), then it is straightforward to check that
in each case Lemma 3.8 asserts that G1 is minor-tight. We shall omit the proof here
and do only the cases when G1 ∈ C◦(ga) or G1 is a hopper.

If G1 ∈ C◦(ga), xy 6∈ E(G), ε+(G2) = 1, and η(G1,G2) = 1, then Corollary 3.7
asserts that M(G1) = ∆1(g) ∪ ∆1(g+

a ). Lemma 3.8 gives that G1 is minor-tight.
Finally, let us assume that G1 is a hopper. If G1 ∈ H1, xy 6∈ E(G), ε+(G2) = 1, and
η(G1,G2) = 0, then M(G1) = ∆2(g)∪∆1(g+

a ) by definition of H1. Lemma 3.8 gives
that G1 is minor-tight. If G1 ∈ H0, xy 6∈ E(G), ε+(G2) = 1, and η(G1,G2) = 2,
then M(G1) = ∆1(g) ∪ ∆2(g+

a ) by definition of H0. Lemma 3.8 gives that G1 is
minor-tight.

Assume now that G1 is a dumbbell with bar b. If G1 ∈ D (and ε+(G2) = 1, xy 6∈
E(G), and η(G1,G2) = 1), then G1 is minor-tight by Lemma 6.3(ii). By Lemma 6.1,
G1 6∈ C◦(g) ∪ C◦(g+). Since H0 and H1 are subsets of C◦(g+), we have that G1 6∈
H0 ∪ H1 (Lemmas 5.1 and 5.2). Thus we may assume that G1 ∈ C◦(ga) ∪ C◦(g+

a )
and ε+(G2) = 1. By Lemma 6.1, ε+(G1) = 0. Since ε(G1 − b) = ε+(G1 − b) = 0 and
g(G1 − b) = g(G), we conclude that G1 6∈ C◦(ga). Hence G1 ∈ C◦(g+

a ) \ C◦(ga) and
(b,−) ∈ ∆1(g+

a ). Since ε+(G1−b) = ε+(G1) = 0, (b,−) ∈ ∆1(g+). By property (S2)
of Lemma 3.5, θ(G1) = 1. Since ε+(G1) = 0 and η(G1,G2) ≤ 1, we conclude that
η(G1,G2) = 1. By Lemma 6.3(i), G1 is minor-tight in G. This completes the proof of
the theorem.

Note that a graph can belong to several critical classes at the same time. For ex-
ample, if G ∈ C◦(g) such that θ(G) = 1 and ε+(G) = 0, then G belongs to all four
classes, C◦(g), C◦(g+), C◦(ga), and C◦(g+

a ).
We finish this section by the following corollary which shows that at least one part

of a 2-sum is an “obstruction” for a surface.
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(a)

x y

(b)

x y

(c)

x y

Figure 6: The family C◦
0 (g+). The third graph is the sole member of the family C◦

0 (g).

Corollary 7.2 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy . If both G1 and
G2 are minor-tight, then the following statements hold:

(i) G1 and G2 belong to C◦(g) ∪ C◦(g+) ∪ C◦(ga) ∪ C◦(g+
a ) ∪D;

(ii) if ε+(G2) = 0, then G1 ∈ C◦(g) ∪ C◦(g+);
(iii) either G1 or G2 belongs to C◦(g) ∪ C◦(g+).

Proof By Lemma 5.1 and 5.2, H0 and H1 are subfamilies of C◦(g+). Thus (i) and
(ii) follow from Theorem 7.1 as it covers all possible combinations of the param-
eters describing G. We shall now prove (iii). Assume that G2 does not belong to
C◦(g) ∪ C◦(g+). If G2 is a dumbbell, then Lemma 6.1 gives that ε+(G2) = 0, and
thus G1 ∈ C◦(g) ∪ C◦(g+) by (ii). Thus we may assume that µG2 is connected for
each µ ∈M(G2). Lemma 4.2 applied to G2 gives that there exists a minor-operation
µ ∈ M(G2) such that µ 6∈ ∆1(g) ∪ ∆1(g+). By Corollary 3.9, µ ∈ ∆1(g+

a ). Since
µ 6∈ ∆1(g+), we have that ε+(G2) = 0 by (S1) (Lemma 3.5 applied to g+

a and g+).
Therefore, (ii) gives that G1 ∈ C◦(g) ∪ C◦(g+).

8 Torus

In this section, we characterize obstructions for embedding graphs into the torus of
connectivity 2. We first show that the classes C◦0 (g) and C◦0 (g+) are related to Kura-
towski graphs K5 and K3,3.

Lemma 8.1 The class C◦0 (g) consists of a single graph, K3,3 with non-adjacent termi-
nals (Figure 6(c)). The class C◦0 (g+) consists of the three graphs shown in Figure 6.

Proof The obstructions Forb(S0) for the 2-sphere are K3,3 and K5. As we observed

in Section 4, a graph G belongs to C◦0 (g) if only if Ĝ is isomorphic to a graph in
Forb(S0) with the terminals non-adjacent. Since xy 6∈ E(G), Ĝ cannot be isomorphic
to K5, and there is a unique 2-labeled graph isomorphic to K3,3 with two non-adjacent
terminals.

Let us show first that each graph in Figure 6 belongs to C◦0 (g+). If Ĝ+ is isomorphic
to a Kuratowski graph, the lemma follows from the Kuratowski theorem. Otherwise
Ĝ is isomorphic to K3,3 with x and y non-adjacent. It suffices to show that µG+ is
planar for each minor-operation µ ∈ M(G), as G+ clearly embeds into the torus.
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x y x y x y x y x y x y

Figure 7: T2, the xy-sums of Kuratowski graphs that belong to C◦
0 (ga) ∩ C◦

0 (g+
a ).

Pick an arbitrary edge e ∈ E(G). The graph G+− e has 9 edges and is not isomorphic
to K3,3 as it contains a triangle. The graph G+/e has only 5 vertices and (at most) 9
edges. Since e was arbitrary, it follows that µG+ is planar for every µ ∈ M(G). We
conclude that G ∈ C◦0 (g+).

We shall show now that there are no other graphs in C◦0 (g+). Let G ∈ C◦0 (g+). By
Lemma 4.1, there is a graph H ∈ Forb∗(S0) such that either Ĝ is isomorphic to H or G
is isomorphic to the graph obtained from H by deleting an edge and making the ends
terminals. It is not hard to see that this yields precisely the graphs in Figure 6.

Note that the first two graphs in Figure 6 have θ equal to 1 and the last one has θ
equal to 0. We summarize the properties of graphs in C◦0 (g+) in the following lemma.

Lemma 8.2 For each graph G ∈ C◦0 (g+), the graph G+ is xy-alternating on the torus,
G/xy is planar, and θ(G) = 1 if and only if G 6∈ C◦0 (g).

Proof By Lemma 8.1, Ĝ or Ĝ+ is isomorphic to a Kuratowski graph. The xy-alter-
nating embeddings of Kuratowski graphs are depicted in Figure 2. Since each Kura-
towski graph G is xy-alternating for each pair of vertices of G, the graph G+ is also
xy-alternating for each pair of vertices of G by Lemma 3.3. For each Kuratowski
graph G, the graph G/xy has at most 5 vertices and at most 9 edges. Thus G/xy
contains no Kuratowski graph as a minor and is therefore planar.

Mohar and Škoda [7] presented the complete list of graphs in C0(ga). We describe
them using six subclasses T1, . . . ,T6 of G◦xy . Let T1 be the class of graphs that contains
each G ∈ G◦xy such that Ĝ is isomorphic to a Kuratowski graph plus one or two
isolated vertices that are terminals in G, T2 the class of graphs shown in Figure 7,
T3 the class of graphs corresponding to the graphs in Figure 8, T4 the class of graphs
corresponding to the graphs in Figure 12, T5 the class of graphs depicted in Figure 13,
and T6 the class of graphs corresponding to the graphs in Figure 14.

Theorem 8.3 (Mohar and Škoda [7]) A graph G ∈ Gxy belongs to C0(ga) if and only
if one of the following holds:

(i) xy 6∈ E(G) and G ∈ T1 ∪ · · · ∪ T4;
(ii) xy ∈ E(G) and G− xy ∈ T5 ∪ T6.
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Figure 8: The XY-labelled representation of T3 ⊆ C◦
0 (ga) ∩ C◦

0 (g+
a ). For each white vertex

v ∈ V (G), we have g(G− v) = 1.

The graphs in T1 are disconnected, and hence they do not appear in an xy-sum of
connectivity 2. We will use the following facts about the class C0(ga).

Lemma 8.4 For each graph G ∈ C0(ga), we have g+(G) = g(G) = 1 and hence
ε(G) = ε+(G) = θ(G) = 0.

Proof Observe that each graph in C0(ga) is nonplanar. We shall prove that g+(G) ≤
1 for each G ∈ T1∪· · ·∪T6, which implies that g+(G) = g(G) = 1 for each G ∈ C0(ga)
by Theorem 8.3. For a graph G ∈ T1, Ĝ+ has two blocks, one isomorphic to a Ku-

ratowski graph and the other consisting of a single edge. Thus g+(G) = g(Ĝ+) = 1.
Each graph G in T2 can be obtained as an xy-sum of two Kuratowski graphs. Theo-
rem 3.1 gives that g(G) = 1 and θ(G) = 0, since both parts of G are xy-alternating.
Hence g+(G) = 1.

To prove that a graph G ∈ T3 ∪ T4 has g+(G) = 1, it is sufficient to provide an
embedding of G+ in the torus. Figures 8 and 12 show that G− x− y has a drawing in
the plane with all neighbors of x and y on the outer face. Thus G/xy is a planar graph.
Moreover, the edges in the local rotation around the identified vertex in G/xy can be
written as S1S2 · · · S6 where edges in S1, S3, S5 are those incident with x in G and
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Figure 9: An embedding of G+ in the torus for a graph G such that G/xy is planar and G− e is
xy-alternating in the torus for some edge e incident with x or y.

S2, S4, S6 are incident with y in G. Therefore G+ admits an embedding in the torus as
shown in Figure 9. In the figure, a single edge is drawn from x to the boundary of the
planar patch for all the consecutive edges that connect x and the planar patch.

We shall show that this structure of graphs in T3 ∪ T4 is not accidental. Let e ∈
E(G) be an edge incident with x or y, say e = xv. If G − e is nonplanar, then G − e
has an xy-alternating embedding Π into the torus. The two Π-angles at x of the
xy-alternating face divide the edges in the local rotation around x into two sets, S1

and S3. Similarly, the edges incident with y form sets S2 and S4. It is not hard to see
that since G/xy is planar, we can pick Π so that v is Π-cofacial with y (it is not Π-
cofacial with x since G is not xy-alternating). We can assume that v lies in the region
of edges in S4. Thus G/xy has the structure described above with S5 = {e} and S4

split into sets S′4 and S6. It is thus enough to show that there exists an edge e incident
with x or y such that G− e is nonplanar. For G ∈ T3 and an edge e ∈ E(G) incident
with a white vertex in Figure 8, G− e is nonplanar. For G ∈ T4, the edges e such that
G− e is nonplanar are depicted in Figure 12 as underlined labels.

Each graph G in T5 ∪ T6 is planar. Thus g+(G) = g(G+) ≤ 1.

We suspect that ε+(G) = ε(G) = θ(G) = 0 for all graphs in C(ga), but the proof
seems out of reach. See [7] for more details. Lemmas 5.7 and 8.4 classify when a
graph in C0(ga) ∪ C0(g+

a ) has θ equal to 1. We have the following corollary.

Corollary 8.5 Let G be a graph in C◦0 (ga)∪C◦0 (g+
a ). Then g+(G) = 1 and ε+(G) = 0.

Moreover, θ(G) = 1 if and only if G ∈ C◦0 (g+
a ) \ C◦0 (ga).

Proof Let G ∈ C◦0 (g+
a ) \ C◦0 (ga). By Lemma 4.3, G+ ∈ C0(ga). By Lemma 5.7,

θ(G) = 1 and ε+(G) = 0. Since g+
a (G) = 1, g+(G) = g+

a (G)− ε+(G) = 1.
If G ∈ C◦0 (ga), then G ∈ C0(ga) and thus θ(G) = ε+(G) = 0 and g+(G) = 1 by

Lemma 8.4.

The classes T1, . . . ,T6 lie inC◦0 (g+
a )∪C◦0 (ga). More precise membership as depicted

in Figure 10 is proved below. We shall use the following observation.
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C◦

0 (ga) C◦

0 (g
+
a
)

T4 T1 ∪ T2 ∪ T3 T5 ∪ T6

Figure 10: Venn diagram of critical classes (for alternating genus) for the torus.

Lemma 8.6 Let G ∈ Gxy , P a minor-monotone graph parameter, and

v ∈ V (G) \ {x, y}.

If P(G− v) = P(G), then P(µG) = P(G) for each µ = (uv, · ) ∈M(G).

Proof Let µ = (uv, ·) ∈ M(G). Since G − v is a minor of µG and P is minor-
monotone, P(G) ≥ P(µG) ≥ P(G− v) = P(G).

Lemma 8.6 can be used to prove that ∆1(g) = ∅ if we can find a vertex cover U
of G such that g(G − v) = g(G) for each v ∈ U . We shall use this idea to prove that
T3 ⊆ C◦0 (g+

a ). The following lemma will be also used.

Lemma 8.7 ([7, Lemma 19]) Let G ∈ G◦xy be a graph such that G/xy is planar.
If g+

a (G) ≥ 1, then either x and y have at least five common neighbors or there are
six distinct non-terminal vertices v1, . . . , v6 such that v1, v2, v3 are adjacent to x, and
v4, v5, v6 are adjacent to y.

In order to determine if a graph G ∈ C◦0 (ga) also belongs to C◦0 (g+
a ) we can either

use Lemma 4.4 or note that, since g+
a (G) ≥ ga(G) and g+

a is minor-monotone by
Lemma 3.2, each graph G ∈ C◦0 (ga) contains a graph in C◦0 (g+

a ) as a minor.

Lemma 8.8 C◦0 (ga) ∩ C◦0 (g+
a ) = T1 ∪ T2 ∪ T3, C◦0 (ga) \ C◦0 (g+

a ) = T4, and C◦0 (g+
a ) \

C◦0 (ga) = T5 ∪ T6.

Proof By Theorem 8.3, T1 ∪ T2 ∪ T3 ∪ T4 ⊆ C◦0 (ga). Let us start by proving that
T1 ∪ T2 ∪ T3 ⊆ C◦0 (g+

a ). Suppose that G ∈ T1. Then it is not difficult to see that
G ∈ C◦0 (g+

a ), since Ĝ+ has two blocks, one isomorphic to a Kuratowski graph and the
other consisting of a single edge.

Let G ∈ T2 and µ ∈M(G). Since G is an xy-sum of two graphs in C◦0 (g+), neither
contraction nor deletion of an edge on one side destroys the Kuratowski graph on the
other side. Thus g(µG) = 1 and M(G) ∩∆1(g) = ∅. By Lemma 4.4, G ∈ C◦0 (g+

a ).
Let us prove now that T3 ⊆ C◦0 (g+

a ). Consider a graph G ∈ T3. By Lemma 4.4,
it is enough to show that ∆1(g) \ ∆1(g+

a ) = ∅. Let µ ∈ M(G). Let U be the set of
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x

y

Figure 11: The graph Pinch minus a vertex. The white vertices form one part of the K3,3-
subdivision.

white vertices of G as depicted in Figure 8. It is not hard to show that for each v ∈ U ,
G− v is nonplanar. We omit the detailed proof of this fact and only demonstrate the
proof technique on the graph Pinch. Since U is an orbit of the isomorphism group
of Pinch, it is enough to show that G− u is nonplanar for one of the vertices u ∈ U .
Indeed, G−u is isomorphic to a subdivision of K3,3 as is exhibited in Figure 11. Thus
G− u is nonplanar for each u ∈ U as required.

By Lemma 8.6, we can assume that the edge e of µ is not covered by a vertex in U .
This proves that the graphs Star, Ribbon, Five, and Four are in C◦0 (g+

a ), since U is a
vertex cover. For the other graphs, observe that the vertices in U cover all the edges
not incident with a terminal. Thus e corresponds to a label on a black vertex of G
in Figure 8. Assume that µ = (e,−). By inspection, the conclusion of Lemma 8.7 is
violated for G − e. Hence g+

a (µG) = 0 and µ ∈ ∆1(g+
a ). We can assume now that

µ = (e, /). When G is one of the graphs Saddle, Human, Alien, or Bowtie, when
G is Extra with e incident with the non-terminal vertex of degree 5, and when G is
Doll with e incident with the non-terminal vertex of degree 5, the graph µG+ is an
xy-sum of two graphs G1 and G2. We observe that in all cases, the graphs G+

1 and G+
2

are planar, and thus µG+ is planar by Theorem 3.1. We conclude that µ ∈ ∆1(g+
a ).

If G is Pinch, then µG is a proper minor of Four. Since we already showed that Four
∈ C◦0 (g+

a ), we have that µ ∈ ∆1(g+
a ) in this case as well. If G is Doll and e is incident

with the black vertex of degree 3, then µG is a proper minor of Four. The remaining
case is that G is Extra and e is incident with a non-terminal black vertex of degree 3.
Again, µG is a proper minor of Five and thus µ ∈ ∆1(g+

a ).
By Lemma 4.3, the class C◦0 (g+

a ) \ C◦0 (ga) contains precisely the graphs G such that
G+ ∈ C0(ga). Theorem 8.3 gives that the graphs in T5∪T6 (and only those) have that
property.

We prove that C◦0 (ga) \C◦0 (g+
a ) = T4 by showing that T4 ∩C◦0 (g+

a ) = ∅. Since each
G ∈ T4 has a proper minor in T6 ⊆ C◦0 (g+

a ), G does not belong to C◦0 (g+
a ). Pentagon is

a minor of Rocket and Lollipop, while Hexagon is a minor of Bullet, Frog, and Hive.
Hence, T4 ⊆ C◦0 (ga) \ C◦0 (g+

a ). We have shown that the classes T1,T2,T3,T5,T6 are
subclasses of C◦0 (g+

a ). Hence, C◦0 (ga) \ C◦0 (g+
a ) ⊆ T4 by Theorem 8.3.
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Figure 12: The XY-labelled representation of T4 = C◦
0 (ga) \ C◦

0 (g+
a ).

x y x y x y

Figure 13: T5, splits of Kuratowski graphs that belong to C◦
0 (g+

a ) \ C◦
0 (ga)

Let us present some restrictions on an xy-sum that is an obstruction for the torus.

Lemma 8.9 Let G be an xy-sum of connected graphs G1,G2 ∈ G◦xy . If G ∈ Forb(S1),
then

(i) g+(G1) = g+(G2) = 1,
(ii) ε+(G1)ε+(G2) = 0, and
(iii) η(G1,G2) = 2 if and only if xy ∈ E(G).

Proof Suppose that G ∈ Forb(S1). If g+(G1) ≥ 2, then G+
1 contains a toroidal

obstruction. Since G+
1 is a proper minor of G, this contradicts the fact that G ∈

Forb(S1). Thus g+(G1) ≤ 1 and g+(G2) ≤ 1 by symmetry. If g+(G1) = 0, then
g+(G) ≤ 1 by Theorem 3.1, a contradiction.5 We conclude that g+(G1) = 1 and also
g+(G2) = 1 by symmetry. This shows (i).

If ε+(G1)ε+(G2) = 1, then it follows from Theorem 3.1 that

g(G) ≤ g+(G1) + g+(G2)− ε+(G1)ε+(G2) = 1,

a contradiction. Thus ε+(G1)ε+(G2) = 0 and (ii) holds.
To show (iii), suppose that xy 6∈ E(G) and η(G1,G2) = 2. By (i) and (ii), this is

only possible if g(G1) = g(G2) = 0. By Theorem 3.1, g(G) ≤ g(G1) + g(G2) + 1 ≤ 1,
a contradiction. The other implication follows from Lemma 3.10.

5The fact that g+(G1) and g+(G2) are at least 1 is a simple observation; see for example [6].
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xy ∈ E(G) ε+(G2) η(G1,G2) G1

yes
0

—
C◦0 (g+)

1 C◦0 (g+
a )

no
0

0 C◦0 (g+)
1 C◦0 (g) or C◦0 (g+)

1
0 C◦0 (g+

a )
1 C◦0 (ga) or C◦0 (g+

a )

Table 3: Classification of the parts of obstructions for the torus.

It is time to present the main theorem of this section that derives a full charac-
terization of the obstructions for the torus of connectivity 2. It can be viewed as an
application of Theorem 7.1 with the outcome summarized in Table 3.

Theorem 8.10 Suppose that G is an xy-sum of connected graphs G1,G2 ∈ G◦xy and
that the following statements hold:

(i) G1 ∈ C◦0 (g+),
(ii) G2 ∈ C◦0 (ga) ∪ C◦0 (g+

a ),
(iii) xy ∈ E(G) if and only if G1 6∈ C◦0 (g) and G2 6∈ C◦0 (ga), and
(iv) if θ(G1) = θ(G2) = 0, then G2 ∈ C◦0 (g+

a ).

Then G ∈ Forb(S1). Furthermore, every obstruction for the torus of connectivity 2 can
be obtained this way.

Proof The proof consists of two parts. In the first part, we prove that each graph
satisfying conditions (i)–(iv) is an obstruction for the torus. In the second part, all
obstructions of connectivity 2 are shown to be constructed this way.

Let us assume that (i)–(iv) holds. To show that G is an obstruction for the torus,
we need to prove that G1, G2, and xy (when xy ∈ E(G)) are minor-tight and that
g(G) = 2. By (i) and Lemma 8.2, ε+(G1) = 1 and g+(G1) = 1. By (ii) and Corol-
lary 8.5, ε+(G2) = 0 and g+(G2) = 1. Hence, h1(G) = 2. If η(G1,G2) = 2,
then θ(G1) = θ(G2) = 1. Thus G1 ∈ C◦0 (g+) \ C◦0 (g) by Lemma 8.2 and G2 ∈
C◦0 (g+

a ) \ C◦0 (ga) by Corollary 8.5. By (iii), xy ∈ E(G). Consequently, we have ei-
ther η(G1,G2) ≤ 1 or xy ∈ E(G). This excludes the case where η(G1,G2) = 2
and xy 6∈ E(G) and we shall use it below. If xy ∈ E(G), then by Theorem 3.1,
g(G) = h1(G) = 2 as required. Similarly, if xy 6∈ E(G) and η(G1,G2) ≤ 1, then
h1(G) ≤ h0(G) by (3.5). Hence g(G) = h1(G) = 2 by Theorem 3.1.

It remains to prove minor-tightness. Since ε+(G2) = 0 and G1 ∈ C◦0 (g+), The-
orem 7.1 gives that G1 is minor-tight. If G2 ∈ C◦0 (g+

a ), then G2 is minor-tight by
Theorem 7.1, since ε+(G2) = 1. Otherwise, G2 ∈ C◦0 (ga) \ C◦0 (g+

a ) and θ(G2) = 0 by
Corollary 8.5. Thus θ(G1) = 1 by (iv) and we have that η(G1,G2) = 1. We conclude
that G2 is minor-tight by Theorem 7.1.

If xy ∈ E(G), then (iii) implies that G1 ∈ C◦0 (g+) \ C◦0 (g) and G2 ∈ C◦0 (g+
a ) \

C◦0 (ga). Therefore, θ(G1) = 1 by Lemma 8.2 and θ(G2) = 1 by Corollary 8.5. Hence
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η(G1,G2) = 2. Lemma 8.2 applied to G1 implies that g(G1/xy) < g+(G1). Thus
xy is minor-tight in G by Lemma 3.10. We conclude that G is an obstruction for the
torus by Lemma 2.1.

Let us now prove that, for a graph G ∈ Forb(S1) of connectivity 2, there exists
a 2-vertex-cut {x, y} such that when G is viewed as an xy-sum of graphs G1 and
G2, statements (i)–(iv) hold. We pick x and y as guaranteed by Lemma 6.4 so that
G1,G2 6∈ D. Since G is an obstruction, the subgraphs G1, G2, and xy (if present) are
minor-tight. By Lemma 8.9, g+(G1) = g+(G2) = 1 and ε+(G1)ε+(G2) = 0. We may
assume by symmetry that ε+(G2) = 0. By Corollary 7.2(ii), the graph G1 belongs to
C◦0 (g)∪C◦0 (g+) = C◦0 (g+), since g(G1) ≤ g+(G1) = 1. Hence (i) holds. By Lemma 8.2,
ε+(G1) = 1.

Since ε+(G2) = 0, Lemma 8.2 gives that G2 6∈ C◦0 (g+). By Corollary 7.2(i), the
graph G2 belongs to C◦0 (ga) ∪ C◦0 (g+

a ) since G2 6∈ D, g+(G2) = 1, and g+ bounds all
the other parameters. Thus (ii) is true.

We prove equivalence in (iii) at once. By Lemma 8.9(iii), we have that xy ∈ E(G)
if and only if η(G1,G2) = 2. Since ε+(G2) = 0, η(G1,G2) = 2 if and only if θ(G1) =
θ(G2) = 1. By Lemma 8.2 and Corollary 8.5, θ(G1) = θ(G2) = 1 if and only if
G1 ∈ C◦0 (g+) \ C◦0 (g) and G2 ∈ C◦0 (g+

a ) \ C◦0 (ga). We conclude that (iii) holds.
For (iv), suppose that G2 6∈ C◦0 (g+

a ). Since G2 6∈ C◦0 (g+) and G2 is minor-tight,
Theorem 7.1 gives that η(G1,G2) = 1 (as H1

0 ⊆ C◦0 (g+) by Lemma 5.2). We conclude
that either θ(G1) = 1 or θ(G2) = 1, and thus (iv) holds. This finishes the proof of
the theorem.

Corollary 8.11 There are 68 obstructions for the torus of connectivity 2.

Proof By Theorem 8.10, for each G ∈ Forb(S1) of connectivity 2, there exists a
2-vertex-cut {x, y} such that G is an xy-sum of parts G1 and G2 satisfying (i)–(iv).
Let us count the number of graphs in Forb(S1) of connectivity 2 by counting the
number of non-isomorphic xy-sums satisfying (i)–(iv).

Let us first count the number of pairs G1 and G2 for which (i), (ii), and (iv) of
Theorem 8.10 hold. The graphs in T1 are disconnected so their 2-sum with G1 is not
2-connected. The number of connected graphs in C◦0 (ga)∪C◦0 (g+

a ) is |T2∪· · ·∪T6| =
27 and the number of graphs in C◦0 (g+) is 3. Thus we have precisely 81 pairs satisfying
(i) and (ii). However, some of them do not satisfy (iv).

Let us consider property (iv). There is only a single graph in C◦0 (g+) that has θ
equal to 0 (Figure 6(c)). By Lemma 8.8, there are precisely |T4| = 5 graphs in

C◦0 (ga) \ C◦0 (g+
a );

they all have θ equal to 0 by Corollary 8.5. Thus 5 pairs out of the total of 81 do not
satisfy (iv) of Theorem 8.10 giving the total of 76 pairs satisfying (i), (ii), and (iv).

For fixed graphs G1 and G2 in G◦xy , there are four different xy-sums with parts G1

and G2; there are two ways to identify two graphs on two vertices, and the edge xy is
either present or not. Precisely two of those xy-sums satisfy (iii) as the presence of xy
depends only on G1 and G2. Since for each graph in C◦0 (g+) there is an automorphism
exchanging the terminals, there is precisely one xy-sum with parts G1 and G2 that
satisfies (i) and (iii).
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Figure 14: The XY-labelled representation of T6 ⊆ C◦
0 (g+

a ) \ C◦
0 (ga).

Therefore, for each of the 76 pairs, there is a unique xy-sum satisfying (i)–(iv).
By Theorem 8.10, each such xy-sum is an obstruction for the torus. Some of the
obtained obstructions are isomorphic though. Let G be an xy-sum of G1 and G2 and
G′ be an x′y′-sum of G′1 and G′2 such that both G and G′ satisfy (i)–(iv), and there is
an isomorphism ψ of Ĝ and Ĝ′. If ψ({x, y}) 6= {x′, y′}, then ψ({x, y}) is a 2-vertex-
cut in G′. It is not hard to see that G′ has another 2-vertex cut only if G′2 ∈ T5. We
can see that the preimage of ψ of one side of ψ({x, y}) is a graph in C◦0 (g+) \ C◦0 (g).
Therefore, G1 ∈ C◦0 (g+) \ C◦0 (g) and G2 ∈ T5 ⊆ C◦0 (g+

a ) \ C◦0 (ga). By (iii), xy ∈ E(G).
But ψ(x) is not adjacent to ψ(y), a contradiction.

We may assume now that ψ({x, y}) = {x′, y′}. If ψ(V (G1)) = V (G′1), then
G1
∼= G′1 and G2

∼= G′2, as argued above. Thus ψ(V (G1)) 6= V (G′1). It is not
hard to check that only the graphs in T2 have a subgraph isomorphic to a graph in
C◦0 (g+). There are 18 pairs G1,G2 such that G1 ∈ C◦0 (g+) and G2 ∈ T2, but there
are precisely 10 non-isomorphic obstructions for the torus obtained from these 18
pairs. We conclude that there are 68 non-isomorphic obstructions for the torus of
connectivity 2.

9 Open Problems

The following questions remain unanswered:

(a) Do hoppers exist? If they do, what is the smallest genus k such that the class H0
k

(H1
k , or H2

k) is non-empty?
(b) Is it possible that there exists a graph G ∈ C◦(g) with θ(G) = 1? In other words,

can each of the graphs G and G+ be an obstruction for an orientable surface?
What is the smallest k such that this is the case for a graph of genus k?

(c) What is the smallest m(r) such that there exists an r-connected obstruction G of
genus k with a pair of vertices x, y such that G is not xy-alternating. For example,
m(0) = 2. We do not know the value m(r) for any r > 0.
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