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Introduction. Let R be a ring with identity and let E; e M,(R) be the usual n Xn
matrix units, where n=2 and 1<i, j<N. Let E,(R) be the subgroup of GL,(R)
generated by all Ty(r) = I, + rE;, where r € R and i # . For each (two-sided) R-ideal q let
E,(R,q) be the normal subgroup of E,(R) generated by T;(q), where g € q. The
subgroup E,(R,q) plays an important role in the theory of GL,(R). For example,
VaserStein has proved that, for a larger class of rings € (which includes all commutative
rings), every subgroup S of GL,(R), when R e € and n =3, contains the subgroup
E,(R,qp), where qq is the R-ideal generated by a;, ra; —ayr (i#j, r e R), for all
(a;) € S. (See [13, Theorem 1].) In addition VaserStein has shown that, for the same class
of rings, E,(R, q) has a simple set of generators when n = 3. Let E£,(R, q) be the subgroup
of E,(R,q) generated by T,(r)T;(q)T;(—r), where re R, geaqa. Then E.(R,q)=
E.(R,q), for all g, when R € € and n = 3. (See [13, Lemma 8].)

In this paper we are concerned with the question: how are £,(R, q) and Ey(R,q)
related? It is already known that VaserStein’s result does not in general extend to n =2.
The author [9, Example 2.6] has shown that E(Z, q) is of infinite index in E,(Z, q), for all
but finitely many Z-ideals g, where Z is the ring of rational integers. On the other hand
Menal and Vaserstein [10, Theorem 5(a)] have proved that E,(L, q) = E,(L, q), for all g,
where L is a (possibly non-commutative) SR,-ring. (We recall [1, p. 231] that an SR,-ring,
where =2, is one which satisfies Bass’s “r-th stable range” condition. By [1, (3.5)
Theorem, p. 239] fields and semi-local rings, for example, are SR;-rings.) Menal and
VaserStein's result however does not extend to SR;-rings since every Dedekind ring (for
example, Z) is an SR;-ring, again by (1, (3.5), Theorem, p. 239].

This paper elaborates on these results. It would appear that, unless R has “sufficiently
many” units, £,(R, q) is likely to be of infinite index in E,(R, q). For our first principal
result, let O (= O(d)) be the ring of integers of Q(V—-d), where Q is the set of rational
numbers and 4 is a positive integer. For each positive integer m, let O, be the order of
index m in O. (By definition, O = 0,.)

THeoREM A. Suppose that (d,m)# (1,1), (2,1), (3,1), (3,2), (7,1), (11,1). Then, for
all but finitely many q,

E(0,,, 0) is of infinite index in E,(O,,, ).

Our proof is based on results of Cohn [3] and Fine [5].

For our second principal result let D be a k-ring with a degree function, where & is a
field, as defined by Cohn {3, p. 21]). (The simplest examples of such rings are the
polynomial rings in any number of indeterminates over k.)

THEOREM B. Let q be a proper D-ideal.
(i) If dim, (D/q) =1, then

Ey(D,q) = Eo(D, ).
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(ii) Otherwise,
E(D,q) is a non-normal subgroup of infinite index in Eo(D, q).

Our proof is based on another result of Cohn [3].

Menal and Vaserstein’s result [10, Theorem 5(a)] does extend to other rings,
including some SR;-rings, provided the rings have “many” units. For example, when A is
a Dedekind ring of arithmetic type with infinitely many units, it follows easily from a
result of Liehl [7] that £,(A, q) = E4(A, q), for all q. (The simplest examples of such rings
are Z[1/p), where p is a prime, and k[s,¢7'] is the Laurent polynomial ring over a finite
field, k.

We conclude by determining precisely when £,(Z, o) = Ex(Z, §), which completes the
results contained in [9, Example 2.6).

1. Orders in imaginary quadratic number fields. We begin by simplifying some of
our notation.
We denote the set of units in a ring R by R*. For each r € R, a € R*, we put

S(r) =Ty (r), T(r)= Tiy(r), D(a) = diag(a, a ™).
For each x,y e R we put
ST(x,y)=S(x)T(y)S(-x) and TS(x,y)=T(x)S(y)T(—x).

Then E,(R, q) is generated by ST(r,q) and TS(r, q), where r € R and q € q.
Let d, O and O,, be as above. We may assume that d is square-free. Let

) {\/—d, d=1,2 (mod 4),
QA+ V-=d)/2, d=3(mod?4).

It is well-known that
0,=2+uw,Z,

where w,, = mw. It follows that every non-zero O,,-ideal q is a Z-module of rank 2 and
consequently is of finite index in O,,. We require a “canonical” set of Z-generators for
such a q.

Lemma 1.1. Ler q be a non-zero O, -ideal. Then there exist unique a, 3,y € Z with
the following properties:

() a=(awn,+B)Z+vZ,
(i) a>0and 0<B<y;
(i) « |Band a|y;

(iv) |Op:al = ay.

Proof. From the above q has Z-generators of the form
w=a'w,+p' and w;=a"w,+p’,

where o', B8',a",B" e Z, (a’, a") #(0,0) and (B', B") # (0, 0).
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We now replace w;, w, with @y, w; where

-]
wr (73]
and A € GL,(Z). In this way we can assume a”"=0, a',8">0 and 0sB'<B" Let
a'=a,B"=yand B' =8

Now yw,, € q and so a | B and o | v, The uniqueness of the a, B, y follows, for
example, from the fact that vy is the smallest positive integer in q. Part (iv) is obvious. []

NoraTion. We put
9= (a, B*, v*),

where B8 = aB* and y = ay*. (Then 0< B* < y*)

The principal result of this section depends upon Cohn’s theory of GL, over
discretely normed rings. (See [3, § 5].)

To simplify our notation let

0 -1
U=T(w,), T=T(Q), A=[l 0], J=-1,

Lemma 1.2, Suppose (d,m) = (1,1), 2,1), 3, 1), (3,2), (7, 1), (11, 1),
(i) ExO,)=(U,T,A:A*=(AT)*=J,J>=1, UT =TU,J central).
(ii) "E2(Om) = SLy(Z) *¢ B,

the amalgamated product of
SLA(Z)=(A;T: A>=(AT)*=1J,J* =1, J central),
and
B={,U,T:UT=TU,J*=1,,1] central)= (Z/22Z) x Z7?,
over
C=SL(Z)NB={,T:J*=5LJT=TI)=(Z/2Z) X Z.

Proof. Cohn {3, p. 16] has defined a discretely normed ring and Dennis [4, Theorem
3] has proved O, is discretely normed precisely when (d,m) satisfies the above
restrictions.

By virtue of {S, Theorem (5.2)] E;(O,,) has a presentation of the type described in [3,
Theorem (2.2)]. Using an approach similar to that of Fine in [§, Theorem 4.8.1, p. 120]
this presentation simplifies to that in (i) above.

Part (ii) follows immediately. (See also |5, Theorem 4.8.2 (1), p. 120}.) O

NoraTion. Let g = (a, B*, y*) as above. We put

E2(0m9 q) = EZ(as B*’ Y*)
It is clear that E,(a, B*, y*) is the normal subgroup of Ez(Om) generated by
UsT**" and T,
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Lemma 1.3. (i) Ex(a, 0,1) is of infinite index in E»(O,,), when a =6.
(i1) E»(1, B*, y*) is of infinite index in E,(O,,), when y* =6,

Proof. (i) Let N be the normal subgroup of E,(O0,,) generated by J and U and let
G = E5(0,,)/N. Then, by Lemma 1.2(i),

G={(a,r:a’>=1=1)=PSL,(2),

where a (resp. t) is the image of A (resp. T) in G.
Now let M be the image of E,(a,0,1) in G. Then G/M has a presentation of the form

GIM = (x,y:x*=y* = (xy)*),

which is one of the classical triangle groups. It is a classical result that this group is infinite
when o = 6. Part (i) follows.

For part (ii) we repeat the argument with N the normal subgroup of E,(O,,)
generated by J and UT?". O

CoRrOLLARY 1.4. When a =6 or y* =6, Es(a, B*, y*) is of infinite index in E5(O,,).

Proof. Follows from Lemma 1.3 since E,(a,B*, y*)< E,(a,0,1)N E,(1, B*, y*).
O

We require one more lemma before our first principal result.
Lemma 1.5. For all ideals o, E5(O,,, q) is finitely generated.

Proof. We may assume that q #{0}. Then from the above O,,/q is finite and q is a
Z-module of rank 2. Let {a),...,as} be a set of coset representatives of O,, (mod q) and
let w,, w, be a Z-basis of q. Then £,(0,,, q) is generated by

ST (a;, w;)) and TS(a;, w)),
where 1<i<sandj=1,2. O

THEOREM 1.6. For all but finitely many O,,-ideals q, E,(O,,, q) is of infinite index in
EZ(Om’ Q)

Proof. We may assume that q # {0}. Let q = (a, B*, y*) as above. By Lemma 1.5 it
suffices to prove that E,(a, B*, y*) is infinitely generated when a =6 or y*=6.
With the notation of Lemma 1.2(ii) we note that

|C: C n E2(a9 B*’ ‘Y*)‘ < 00,

since T*"" € E,(a, B*, y*). Suppose that E,(a, B*, y*) is finitely generated, where a =6
or y*=6. Then, combining Lemma 1.2(ii) with a result of Karrass and Solitar
[6, Theorem 10], we conclude that

IEZ(Om):EZ(a, ﬁ*s ‘y*)[ < %,

which contradicts Corollary 1.4. The result follows. O
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Nortes. (1) Theorem 1.6 is best possible in the sense that there are ideals q for which
EZ(OnH q) = EZ(Om’ Q) (TriVially’ EZ(Oma {0}) = EZ(Om, {0}) = {12} and EZ(Om, Om) =
EZ(Oms Om) = EZ(Om))

(ii) By Lemma 1.1 it follows, for example, that Theorem 1.6 holds for all non-zero q
where |0,,:q| > 125.

(iii) The results for EZ(Z, q) are very similar to the above and will be described in
detail in the last section.

2. k-rings with a degree function. Throughout this section D denotes a (commuta-
tive) k-ring with a degree function as defined by Cohn [3; p. 21], in which case D* = k*,
where k is a field. Examples of such D include

(i) polynomial rings in any number of indeterminates over k,

(ii) the coordinate ring C = C(%, P, k) of the affine curve obtained by removing a
closed point P from a projective curve € over k. (The simplest example of type (ii) is the
polynomial ring k[t].)

We begin with a “positive” result.

THEOREM 2.1. Let q be a D-ideal such that dim, (D/q)<1. Then
Ey(D,q) = Ex(D, q) = Ey(D) N SLx(D, q).

Proof. Since Ex(D, D)= E»(D, D)= E,(D) we may assume that dim,(D/q) =1, i.e.
D/g=k

Let X € Eo(D)NSLy(D, q). Then
X =Tx)S() ... Txa)S(yn),
where x1, vi,.. ., X, ¥, € D. Now
x;=q;+a; and y,=§;+B;,

for some g;,§; € q and «;, B; € k, where 1 <i=<n. It is clear that X can be written in the
form X = X,X,, where (i) X, is a product of matrices of the type YT(q)Y™', with
Y e SLy(k) and g €q, and (ii)) X, e SL,(k). (Note that AT(x)A™' =S(-x).) Clearly
X, e SLy(D, q). Hence X, € SL,(D, q) and so X, = L. It suffices therefore to prove that

YT(q)Y™" e Eo(D, ).
Let

There are two possibilities.
(a) a #0: In this case

Y =S5(a*)D(a)T(B*),
where a* = ya~! and B* = Ba~', in which case

YT(q)Y ™" = ST(a*, a%9).
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(b) a =0: In this case
YT()Y ™' =5(-q).
The result follows. O
For the simplest case, namely D = k|[t], Theorem 2.1 says that
Ey(k[1), a) = E5(k[1], a)

where g = R or (t ~ a)R, for some a € k (R = k[t]).
The situation when dim,(D/q) > 1 is completely different. We require another result
[3] of Cohn.

DeriNiTION. Let R be a ring. For each r € R we put

E(r)=[ ’ 1].

-1 0
Let r,s € R and a € R* The following identities are easily verified
E(r)E(Q)E(s)=—E(r +s),
E(r)D(a) = D(a™)E(ra?),
E(r)E(a )E(s)= E(r — @)D(a™ )E(s - ).

Now each element X of E,(D) is by definition a product of matrices of the type S(r)
and 7(S) and, since S(r) = —E(0)E(r) and T(s) = ~E(—s)E(0), X is then a product of
matrices of the type E(r). If such an E(r), where r e D* U {0}, occurs in this product the
above identities can be used to reduce its “length”. Cohn’s result says that after all such
eliminations we are left with a unique standard form for X.

LemmA 2.2, Let X € Ey(D). Then X can be written uniquely in the following standard
form

X =D(a)E(ay)... E(a,),
where a € k* and a,, . . . ,a, € D such that

(i) a; ¢ k, where 1 <i<n, when n>2 or
(ii) (a;,a,)# (0,0), when n =2.

Proof. See [3, Theorem (7.1)]. O

TheOREM 2.3. Let q be a non-zero D ideal, where dimy(D/q)>1. Then E,(D,q) is a
non-normal subgroup of infinite index in E(D, q).

Proof. Choose x € D, where x ¢ @k and let Y = §(x)T(x). Let g € q, with ¢ #0. It
suffices to prove that for each positive integer n

Y'S(q)Y ™" ¢ E5(D, a).
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By means of the above identities it is clear that the standard form (Lemma 2.2) of
Y, S(q)Y ™" is

D(-1)E(0)E()E(~x). .. E®)E(—x)E(Q)E(X)E(=x). .. E()E(-x) (1)

(There are 2n + 2 terms in this product.)
Suppose that Z = Y"S(q)Y " belongs to £,(D, q). Then

Z=Y,...Y,

where Y, = 8T (a;,q;) or TS(a;, q;) for some a; ¢ qand q; e g (1 <i<s), wheres=1 It is
clear that s > 1. We note that

ST(a;, q;) = E0)E(a;)E(—q,)(E(—a;)
and
TS(ai,q:) = E(—a;)(E(q:)E(a;)E(0).
From the above identities it follows that
X(r’sl)X(r,SZ) = X(r7sl +52)’

where X =ST or TS. We may therefore assume that if Y;=X(a;,7;) and Y., =
X(a;41,qi+1), where X =8T or TS, and 1<i<s, then a; #a;.,. In addition, from the
standard form of Z, we conclude that at least one a, ¢ g U k (otherwise Z € E,(a @ k)).
Assume from now on that j is the largest integer with this property.

We now write Z as a product of matrices of the type E(x). Then

Z==zxE(a)... E(xa))E(Fq;)E(Fa;)Y,,

where Y, € E,(a®k) and Y, or —E(0)Yy € SL,(D, g). Reducing this to standard form and
comparing its last terms with those of (1) we conclude by Lemma 2.2 that Y, = E(q,) or
—E(0)E(qy), for some g¢ € g and hence that

E(x)E(—x) = E(Fq; + A\)E(Fa; + q9),

for some A € k. Again by Lemma 2.2 it follows that x = Fq; + A which contradicts the fact
that x g q@ k. O

3. Dedekind rings of arithmetic type. Throughout this section A denotes a
Dedekind ring of arithmetic type [2, p. 83]. By a classical theorem of Dirichlet it is known
that A* is finite if and only if A=2Z, A= 0 = O(d), for some d, or A= C(%, P, k), for
some finite k. The preceding results (together with these of the last section) show that for
most A of this type the subgroup £,(A, q) is nearly always of infinite index in E,(A4, q).

When A* is infinite however the situation is completely different.

THeoREM 3.1. Ler A be as above and suppose that A* is infinite. Then, for all
A-ideals a, Eo(A, q) = Eo(A, q).

Proof. Let X e E,(A, q). Liehl {7, (20), p. 164] has proved that
X= S(al)T(ql) B S(a,,)T(q,,),
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for some a,...,a,€Aandgq,,...,q, € a. Then
X =ST(at,q:)...ST(an,q.)S(ax),
where
a¥=a,+...+a (1=<i=n).

Now X =1, (mod q) and so a* e q. Hence X € £5(4,q). O

4. The modular group. We conclude by determining precisely when E,(Z,q)=
E»(Z, q). This completes the results contained in [9, Example 2.6]. Now q = mZ, for some
m = (0. We may assume that m > 0.

Lemma 4.1. Ex(Z,mZ) is (finitely) generated by ST(a,m) and TS(a,m), where

Osasm-1
Proof. Obvious. 0O
LEMMA 4.2. (1) When 3sm <5, Ex(Z,mZ) is a free group of rank

7}
+ —_—
! 12’
where w = |SLy(Z):SL(Z, mZ)|.
(ii) When m=6, Ey(Z,mZ) is a free group of infinite rank.
Proof. We denote the embedding of a subgroup S of SL,(Z) in PSL,(Z) by PS. Now,
for all m = 3,

EXZ,mZ)=PE,Z,mZ),

and, by [11, Theorem VIIL6, p. 143], PE,(Z, mZ) is a free group.
When 1 =m <5 it is well-known that

PE(Z,mZ) = PSLy(Z, mZ).

(See, for example, [12, Theorem (i)].) It is known [11, Theorem VIIL.7, p. 144] that the
rank of E,(Z, mZ) is

p
1+ 6
where p = |PSLy(Z): PSL(Z,mZ)|| with 1 <m <35. Part (i) follows.

For part (ii) it is well-known that, when m =6, PE,(Z,mZ) is of infinite index in
PSL,(Z). (See, for example, [12, Theorem (ii)].) Now PSL,(Z) is a (non-trivial) free
product. (See, for example, [11, Theorem VIIL1, p. 139].) Part (ii) follows from [6,
Theorem 10]. O

We now come to our final result.

TueoreM 4.3. (i) E,(Z, mZ) = Ey(Z, mZ), when 1 <m < 4.
(ii) When m =35, EX(Z, mZ) is a non-normal subgroup of infinite index in Ey(Z, mZ).

Proof. Suppose first that m =6. By Lemmas 4.1 and 4.2(ii) £,(Z,mZ) is a finitely
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generated subgroup of Eo(Z, mZ), a free group of infinite rank. Hence £,(Z, mZ) is of
infinite .index in Ey(Z,mZ) and is consequently non-normal in EyZ,mZ) by
(8, Proposition 3.11, p. 17].

By Lemma 4.2(i) and [11, Theorem VIL15, p. 115] Ex(Z, 5Z) is free of rank 11. By
Lemma 4.1, £,(Z, 52) is free of rank r, where r <10. Hence £,(Z, 5Z) is of infinite index
in Ey(Z,5Z) by [8, Proposition 3.9, p. 16]. Again by [8, Proposition 3.11, p. 17] and
Lemma 4.1, £,(Z, 5Z) is non-normal in E5(Z, 5Z). Part (ii) follows.

For part (i) we treat the cases m =2, 3, 4, separately. (The case m =1 is trivial.)

The case m =2: E,(Z,27Z) is generated by —L, S(2) and T(2). (See, for example,
[12, p. 149].) Now

-5 =TQ2)S(-2)(TS(1,2))™!
and so
E,(2,22)= Ex(Z,22).

The case m=3: It is known [12, p. 149] that E,(Z,3Z) is generated by T(3),
P~'T(3)P, P*T(3)P?, where
0 -1
r=[] 71}
1 1

Now P™'T(3)P = TS(~1, —3) and P™2T(3)P*>=ST(-1, —3) and so
Ey(Z,32) = EX(Z,32).

The case m = 4; By [11, Exercises and problems, p. 137] a complete set of right coset
representatives for SL,(Z,2Z) (modulo SL,(Z,427)) is

+h, £T(), xSQ2) and £T(2)S(2).

From the above SL,(Z,2Z) = E,(Z,2Z) is generated by —/,, S(2) and T(2) and so by
a Reidemeister—Schreier type argument SL.(Z,4Z) = E,(Z,4Z) is generated by

S(4), T5(2,4), T(4), ST 2)S(-2)T(-2) and T2)SQ)T(2)S(-2).
From the above [TS(1,2))* = T(2)S(-2)T(2)S(—2) and so
T(2)S(2Q)T(2)S(-2) = TS(2,4)[TS(1,2)]~
In addition
S()T()S(-2)T(-2)TS(2,4)[TS(1,2)* = ST(2, 4).
It follows that
Ex2,4Z)=ExZ,4Z). O
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