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Abstract
The Lyman alpha (Lyα) forest in the spectra of z > 5 quasars provides a powerful probe of the late stages of the epoch of reionisation
(EoR). With the recent advent of exquisite datasets such as XQR-30, many models have struggled to reproduce the observed large-scale
fluctuations in the Lyα opacity. Here we introduce a Bayesian analysis framework that forward-models large-scale lightcones of intergalactic
medium (IGM) properties and accounts for unresolved sub-structure in the Lyα opacity by calibrating to higher-resolution hydrodynamic
simulations. Our models directly connect physically intuitive galaxy properties with the corresponding IGM evolution, without having to
tune ‘effective’ parameters or calibrate out the mean transmission. The forest data, in combination with UV luminosity functions and the
CMB optical depth, are able to constrain global IGM properties at percent level precision in our fiducial model. Unlike many other works,
we recover the forest observations without invoking a rapid drop in the ionising emissivity from z ∼ 7 to 5.5, which we attribute to our
sub-grid model for recombinations. In this fiducial model, reionisation ends at z = 5.44± 0.02 and the EoR mid-point is at z = 7.7± 0.1.
The ionising escape fraction increases towards faint galaxies, showing a mild redshift evolution at fixed UV magnitude, MUV. Half of the
ionising photons are provided by galaxies fainter thanMUV ∼ −12, well below direct detection limits of optical/NIR instruments including
JWST. We also show results from an alternative galaxy model that does not allow for a redshift evolution in the ionising escape fraction.
Despite being decisively disfavoured by the Bayesian evidence, the posterior of this model is in qualitative agreement with that from our
fiducial model. We caution, however, that our conclusions regarding the early stages of the EoR and which sources reionised the Universe
are more model-dependent.
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1. Introduction

The epoch of reionisation (EoR) is a fundamental milestone
in the evolution of our Universe. Its timing and spatial fluc-
tuations encode invaluable information about the intergalactic
medium (IGM) and the first galaxies. Recent years have witnessed
a dramatic increase in the number and quality of observa-
tions probing the EoR, including upper limits on the cosmic
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21-cm power spectrum (Mertens et al. 2020; Trott et al. 2020;
HERA Collaboration et al. 2023), the polarisation anisotropy of
the cosmic microwave background (CMB; Planck Collaboration
et al. 2020; Reichardt et al. 2021), and the IGM Lyman-α (Lyα)
damping-wing absorption seen in spectra of high-redshift quasars
(Eduardo Bañados et al. 2018; Wang et al. 2020) and star-forming
galaxies (Pentericci et al. 2018; Umeda et al. 2024; Heintz et al.
2024).

Arguably the most mature of EoR datasets is the Lyα forest.
More than two decades of observational efforts have provided over
70 high-quality quasar spectra at z > 5.5 (Fan et al. 2002, 2006b,a;
Willott et al. 2007; Becker et al. 2015; Wu et al. 2015; Eduardo
Bañados et al. 2016; Jiang et al. 2016; Eilers, Davies, & Hennawi
2018; Yang et al. 2020; D’Odorico et al. 2023). These data provide
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unparalleled statistics over large volumes of the IGM. As such, the
Lyα forest is one of the few EoR probes that is not sensitive to the
biased environments proximate to the ionizing sources.

The high quality and quantity of Lya forest data provide an
invaluable stress test on our understanding of the EoR, as they are
quite sensitive to missing components in our theoretical and sys-
tematic models. For instance, the observed large-scale fluctuations
in the Lyα optical depth cannot be reproduced by the simplest,
uniform ultraviolet background (UVB) models at z > 5.2 (Becker
et al. 2015; Bosman et al. 2022). Various theoretical models have
attempted to reproduce the observations by increasing fluctua-
tions in the IGM temperature, mean free path (MFP) of ioniz-
ing photons, ionizing emissivity, and/or including an ongoing,
patchy reionisation (D’Aloisio, McQuinn, & Trac 2015; Davies &
Furlanetto 2016; D’Aloisio et al. 2017, 2018; Chardin, Puchwein, &
Haehnelt 2017; Kulkarni et al. 2019; Keating et al. 2020; Meiksin
2020; Nasir & D’Aloisio 2020; Asthana et al. 2024). However, mov-
ing beyond ‘this particular model is (in)consistent with the data’
to ‘this is the distribution of IGM and galaxy properties inferred
from the data’ is considerably more challenging, and can only be
achieved in a physically-motivated, efficient Bayesian inference
framework.

Previous work that reproduced the data relied heavily on
effective (i.e. not physically interpretable) parameters and/or
ad-hoc assumptions that ignore or fine-tune the redshift evolution
of the mean transmission flux. For example, several studies
found that in order to reproduce the forest data, the UV ionizing
emissivity in their simulations has to be tuned to drop rapidly
towards the end of the EoR, with up to a factor of 2 decrement
over just �z ∼ 0.5 (∼100 Myr at these redshifts; e.g. Kulkarni
et al. 2019; Ocvirk et al. 2021; Fig. 6). Such short time-scales
for the UVB evolution are difficult to justify physically (e.g.
Sobacchi & Mesinger 2013) or to reconcile with the observed
gradual evolution of the cosmic star formation rate (SFR) density
from bright galaxies (Bouwens et al. 2015b; Oesch et al. 2018).
Indeed subsequent analysis pointed to unresolved substructure
in the simulations as a possible explanation (e.g. see section 5.4
in Qin et al. 2021, and the recent analysis in Cain et al. 2024).
Alternatively, simulations that tune the ionizing MFP without
modelling the time evolution of HII regions and/or adopt effective
parameters for inhomogeneous recombinations are also difficult
to interpret as they only provide a somewhat opaque proxy for
cosmic reionisation (e.g. Choudhury, Paranjape, & Bosman 2021;
Gaikwad et al. 2023; Davies et al. 2024).

Ideally, one should use a self-consistent model in which the
redshift evolution of the patchy reionisation is simulated directly
from the galaxies that drive it. This would allow us to set well-
motivated priors on physical parameters that can be constrained by
complementary galaxy observations (e.g. Park et al. 2019; Mutch
et al. 2024). Anchoring the EoR models on galaxies also allows
us to constrain earlier epochs where we have no forest measure-
ments, since structure evolution (i.e., the halo mass function) is
comparably well understood (e.g. Sheth et al. 2001) and we have
complementary observations of UV luminosity functions (LFs)
that constrain how halos are populated with galaxies at these high
redshifts.

However, such self-consistent modelling of the EoR is inher-
ently extremely challenging, due to the enormous dynamic range
of relevant scales. Fluctuations in the Lyα forest are correlated
on scales larger than ∼100 cMpc (e.g. Becker et al. 2021; Zhu
et al. 2021), while galaxies and IGM clumps are on sub-kpc scales
(e.g. Schaye 2001; Emberson, Thomas, & Alvarez 2013; Park et al.

2016; D’Aloisio 2020). As a result, current simulations must rely
on sub-grid prescriptions that have to be calibrated against obser-
vations or other more detailed, higher resolution simulations.

Here, we present an updated Bayesian inference framework
for the high-redshift Lyα forest that is arguably free from
‘effective’ parameters. We sample physically-intuitive galaxy scal-
ing relations to compute large-scale lightcones of the Lyα opacity
using 21cmFAST (Mesinger, Furlanetto, & Cen 2011; Murray et al.
2020). This self-consistently connects galaxy properties to the state
of the IGM that is shaped by their radiation fields. We account
for missing small-scale structure by calibrating to the Sherwood
suite of high-resolution hydrodynamic simulations (Bolton et al.
2017). This calibration allows us to eliminate the poorly-motivated
hyperparameters we previously used to account for missing sys-
tematics and/or physics (Qin et al. 2021, hereafter Q21). For each
astrophysical parameter combination, we forwardmodel the forest
transmission, comparing against the observations (Bosman et al.
2022) using an implicit likelihood. We present the resulting joint
constraints on reionisation and galaxy properties, implied by the
combined data from the Lyα forest, UV LFs, and CMB optical
depth.

This paper is organised as follows. We summarise the extended
XQR-30 Lyα forest data in Section 2, and introduce our Bayesian
framework for forward-modelling Lyα forests in Section 3. After
summarizing the complementary observations and free parame-
ters used in this work in Sections 3.5 and 3.6, we present results
in Section 4 including the recovered properties of the IGM and
those of the underlying galaxies. We then discuss the implication
to our understanding of reionisation in Section 5, before conclud-
ing in Section 6. In this work, we adopt cosmological parameters
from Planck (�m,�b,��, h, σ8, ns = 0.312, 0.0490, 0.688, 0.675,
0.815, 0.968; Planck Collaboration et al. 2016). Distance units are
comoving unless otherwise specified.

2. The Lyα opacity distributions from XQR-30+
The ultimate XSHOOTER legacy survey of quasars at z ∼ 5.8–6.6
(XQR-30) is a∼250-h programme using the Very Large Telescope
(VLT) at the European Southern Observatory (ESO; D’Odorico
et al. 2023). While XQR-30 contains 30 high-quality quasar spec-
tra, Bosman et al. (2022) assembled 67 sightlines at these redshifts
by combining XQR-30 with archival spectra. We refer to this
extended dataset as XQR-30+.

The Lyα transmission in these spectra was quantified by the
commonly-used ‘effective optical depth’, τeff ≡ − ln〈Fα〉�z=0.1.
Here Fα(λ) is the continuum-normalised flux in the Lyα for-
est, which is averaged over segments of width �z = 0.1 (roughly
corresponding to ∼ 40 cMpc at these redshifts). Non-detections
(2σ ) were assigned lower limits on τeff corresponding to twice the
mean flux noise in the corresponding segment. The full XQR-30+
sample has at least ∼10 estimates of τeff in each redshift bin span-
ning z = 5.1, 5.2, . . ., 6.1. We show the cumulative distribution
functions (CDFs) of these τeff estimates in Fig. 3, where we also
compare them to our fiducial posterior. For more details on how
the observations were processed, see Bosman et al. (2022).

3. Forwardmodelling

We use the public simulation code, 21cmFASTa (Mesinger &
Furlanetto 2007; Mesinger, Furlanetto, & Cen 2011; Murray et al.

ahttps://github.com/21cmfast/21cmFAST.
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Figure 1. A flow chart showing the steps involved in computing the likelihood for a single sample of astrophysical parameters. See text for more details.

2020), to compute 3D lightcones of the Lyα IGM opacity. A single
forward model and the corresponding likelihood evaluation are
summarised in the flow chart of Fig. 1 and consist of the following
steps:

1. Simulate large-scale 3D lightcones of the IGM density
(� ≡ ρ/ρ), neutral fraction due to inhomogeneous reion-
isation (xHI), photo-ionisation rate (
ion), IGM tempera-
ture (Tg), residual neutral fraction inside the ionised IGM
(xHI,res) and corresponding Lyα opacity (top left panel of
Fig. 1);

2. Construct mock quasar sightlines and compute the effec-
tive optical depth by binning the sightlines over the same
redshift intervals as the XQR-30+ observation (lower left
panels of Fig. 1);

3. Account for missing small scales by calibrating these effec-
tive optical depths against high-resolution hydrodynamic
simulations. Use the resulting probability density function
(PDF) of calibrated τeff to evaluate the likelihood of the
observed values (lower right panel of Fig. 1);

4. Multiply this forest likelihood with the corresponding UV
LF and CMB likelihoods in order to obtain the total like-
lihood of this parameter sample (upper right panels in
Fig. 1; c.f. Section 3.5).

We discuss this procedure in detail below, emphasizing the
improvements over our previous analysis in Q21.

3.1 Galaxy models

Our galaxy models are based on the semi-empirical parametri-
sation in Park et al. (2019). We assume power laws relating the
fraction of galactic baryons in stars (f∗) and the UV ionizing escape
fraction (fesc) to the host halo mass (Mvir):

f∗ =min
[
1, f∗,10

(
Mvir

1010M�

)α∗]
(1)

and

fesc =min

[
1, fesc,10

(
Mvir

1010M�

)αesc
(
1+ z
8

)βesc
]
, (2)

where f∗,10, α∗, fesc,10, αesc and βesc are free parameters. Compared
to Park et al. (2019) and our previous analysis in Q21, here we
allow for an additional redshift dependence of fesc at a given halo
mass through the parameter βesc (e.g. Haardt & Madau 2012;
Kuhlen & Faucher-Giguère 2012; Mutch et al. 2016). Note that
f∗ and fesc have to be in the range from zero to unity as they are
fractions.

The average SFRs of galaxies over the past 100 Myr are com-
puted as SFR=M∗/

[
τ∗H−1(z)

]
, whereM∗ ≡ f∗Mvir�b/�m is the

stellar mass, and τ∗ is an additional free parameter correspond-
ing to the characteristic star formation time-scale in units of the
Hubble time, H−1(z), which scales as the halo dynamical time
during matter domination. Note that the 1 500 Å rest-frame lumi-
nosity used in photometric UV LF observations is sensitive to star
formation over the previous 100Myr (e.g., Flores Velázquez et al.
2021). When forward-modeling UV LFs, we adopt the conversion
factor, LUV/SFR= 8.7× 1027erg s−1 Hz−1 M−1

� yr (e.g. Madau &
Dickinson 2014).

We also assume only a fraction fduty ≡ exp [−Mturn/Mvir] of
halos host star-forming galaxies. Here,Mturn characterises the halo
mass below which star formation becomes inefficient due to feed-
back and/or atomic cooling limits and is left as a free parameter.

Below we explore two galaxy models, differing in their treat-
ment of the ionizing escape fraction:
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Table 1. Posterior distribution ([16, 84]th percentiles) and Bayesian evidence of the galaxy models used in this work. The Bayes ratio indicates a
very strong preference for the Evolving_fesc model, according to Jeffrey’s scale (e.g. Jeffreys 1939).

log10 f∗,10 α∗ log10 fesc, 10 αesc βesc τ∗ log10 (Mturn/M�) lnB∗

Prior range [−2,−0.5] [0, 1] [−3, 0] [−1, 0.5] [−3, 3] (0, 1] [8, 10] –

Evolving_fesc† −1.51± 0.03 0.48± 0.05 −1.52+0.12
−0.10 −0.94+0.09

−0.04 −1.61+0.27
−0.21 0.27+0.02

−0.01 8.10+0.16
−0.07 1

Constant_fesc‡ −1.42± 0.04 0.51± 0.07 −1.08+0.09
−0.06 −0.46+0.09

−0.13 Fixed at 0 0.34± 0.02 8.46+0.51
−0.35 −17.5

∗Bayes ratio w.r.t. Evolving_fesc in natural logarithmic scale.
† Galaxies have a mass-dependent and time-evolving escape fraction.
‡ Galaxies have a mass-dependent and time-independent escape fraction.

1. Constant_fesc – the ionizing escape fraction is a func-
tion of halo mass only and is constant with redshift (fixing
βesc to zero in equation 2). Note that this model does effec-
tively allow for the population-averaged escape fraction to
evolve with redshift, since fesc depends on halo mass and
the halo mass function evolves with redshift. This sets a
‘characteristic’ halo mass that drives both the timing and
morphology of reionisation.

2. Evolving_fesc – the ionizing escape fraction is a func-
tion of halo mass and evolves with redshift (treating both
αesc and βesc as free parameters in equation 2). Note that
adding an explicit redshift dependence to the escape frac-
tion at a fixed halo mass gives the Evolving_fesc model
the flexibility to decouple the EoR/UVB morphology from
the mean EoR history.

In this work we perform inference with both models, compar-
ing their Bayesian evidences. We find that the data strongly prefer
Evolving_fesc, and we therefore refer to this model as ‘fiducial’.
We list the posterior distribution and Bayesian evidence of these
two models in Table 1.

3.2 Large-scale IGM simulations

Our simulation boxes are 250 cMpc on a side. Realisations of
Gaussian initial conditions are computed at z = 300 on a 6403 grid,
with the density fields evolved down to z = 5 using second order
Lagrangian perturbation theory (2LPT; Scoccimarro 1998) and
smoothed down to a final resolution of 1283. Galaxy abundances
are identified from the evolved density fields using excursion-set
theory (Mesinger, Furlanetto, & Cen 2011), and assigned prop-
erties including the stellar mass, SFR, ionizing escape fraction
and duty cycle according to the galaxy models discussed in the
previous section.

Reionisation is modeled with the excursion-set approach
(Furlanetto, Zaldarriaga, & Hernquist 2004), accounting for inho-
mogeneous recombinations (Sobacchi & Mesinger 2014). Unlike
Q21, here we include a correction for photon-conservation (Park,
Greig, & Mesinger 2022), which further decreases the need for the
nuisance hyperparameters used in our previous work. Specifically,
a cell is flagged as ionised when the cumulative number of ionizing
photons per baryon reaching it:

nion =
∫

dMvirφfdutyM∗fescnγ ρ−1
b , (3)

exceeds the cumulative number of recombinations per baryon
(nrec; accounting for unresolved substructure with the analytic
framework of Sobacchi & Mesinger 2014):

n̄ion ≥ (1+ n̄rec). (4)

In the above equations, φ, nγ and ρb represent the conditional
halo mass function, number of ionizing photons per stellar baryon
which we fix at 5 000, and baryon density. The averaging is per-
formed over spherical regions around each cell for radii R≤
RMFP, LLS. Here RMFP, LLS corresponds to the MFP through the
ionised IGM and is governed by damped Lyα systems (DLAs),
Lyman limit systems (LLSs) and other unresolved systems with
lower column densities (Nasir et al. 2021; Feron et al. 2024;
Georgiev, Mellema, & Giri 2024)

Before the end of the EoR, the totalMFP determining the local
ionizing background is set by a combination of RMFP, LLS and the
distance to the surrounding neutral IGM, RMFP, EoR, i.e. R−1

MFP =
R−1
MFP, LLS + R−1

MFP, EoR (e.g. Alvarez & Abel 2012). The reionisation
topology computed with our excursion-set algorithm determines
the local (inhomogeneous) RMFP, EoR around each cell. However,
since we do not directly resolve the spatial distribution of LSSs
and DLAs when these become rare/biased, we assume a homo-
geneous value for RMFP, LLS = 66 [(1+ z) /6.3]−4.3 cMpc at z ≤ 6
motivated by post-EoR measurements (Worseck et al. 2014; see
also Songaila & Cowie 2010 and Becker et al. 2021).b In future
work we will expand our model to additionally sample the mean
and variance of RMFP, LLS, allowing us to extend our analysis to even
lower redshifts.

With the above, we compute the local photoionisation rate as


ion = (1+ z)2RMFPσH
αUVB

αUVB + βH
×

∫
dMvirφfduty

M∗
τ∗H−1 fescnγm−1

p

(5)
wheremp is the protonmass, αUVB = 2 corresponds to the effective
spectral index of the UVB (see Becker & Bolton 2013; D’Aloisio
et al. 2019), βH = 2.75 and σH = 6.3× 10−18cm2 characterise the
photo-ionisation cross-section σ (ν)= σH

(
ν
νH

)βH
with νH corre-

sponding to the Lyman limit. After a cell is ionised, its residual
neutral fraction is determined assuming photo-ionisation equilib-
rium:

xHI, resfion,ss
ion = χHeII�nH(1− xHI, res)2αB (6)

where nH is the mean hydrogen number density while � is the
cell’s overdensity, χHeII ∼ 1.08 accounts for singly ionised helium,
αB is the case-B recombination coefficient, and fion,ss accounts
for gas self-shielding (Rahmati et al. 2013; see also Chardin,

bAt z > 6 where we do not have direct measurements, we set RMFP, LLS = 42 cMpc. The
value of RMFP, LLS at these high redshifts is highly uncertain, depending on the heating his-
tory of the IGM (Emberson, Thomas, & Alvarez 2013; Park et al. 2016; D’Aloisio 2020).
However, during reionisation the MFP is dominated by the reionisation topology (i.e.
RMFP, LLS > RMFP, EoR; Fig. 5 and Sobacchi &Mesinger 2014). Thus the exact value of RMFP, LLS

at z > 6 should have a negligible impact on the EoR and the corresponding Lyα opacity
distributions for realistic scenarios (see also Cain et al. 2023).
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Kulkarni, & Haehnelt 2018). Note that sub-grid physics are imple-
mented (Sobacchi &Mesinger 2014) when calculating recombina-
tions with the sub-grid density unresolved by our simulation cells
assumed to follow a volume-weighted distribution of PV(�sub, z)
from Miralda-Escudé, Haehnelt, & Rees (2000). However, we
use the cell’s mean overdensity when computing the Lyα opti-
cal depth, which neglects unresolved opacity fluctuations when
calibrating to the hydrodynamic simulations below. This will be
improved in future work.

The IGM temperature (Tg) is tracked following McQuinn &
Upton Sanderbeck (2016):

Tγ
g =Tγ

ion,I

[(
Z

Zion

)3
ρb

ρb,ion

] 2γ
3 exp

(
Z2.5)

exp
(
Z2.5

ion
)+Tγ

lim
ρb

ρb
, (7)

where we denote Z = (1+ z)/7.1 and use the subscript ‘ion’ to
indicate values at the time the cell was first ionised for conve-
nience. γ = 1.7 is the equation of state index while Tlim = 1.8Z ×
104 K (Hui & Gnedin 1997; Theuns et al. 1998; Puchwein et al.
2015) and Tion,I = 2× 104 K (D’Aloisio et al. 2019) are the relax-
ation and post I-front temperatures, respectively. Note that the
scatter in Tion,I has a negligible impact on the Lyα forest (e.g.
Davies et al. 2019).

Finally, we compute the associated Lyα optical depth
of each 1.95 cMpc simulation cell using a form of the
Fluctuating Gunn-Peterson Approximation (FGPA; Gunn &
Peterson 1965;Weinberg et al. 1999) for ionised cells:

τα,GP =
√
3πσT

8
fαλαcH−1nHxHI. (8)

Here σT, fα=0.416, λα=1 216 Å and nH are the Thomson cross-
section, Lyα oscillator strength, Lyα rest-frame wavelength, and
hydrogen number density, respectively. Finally, we compute the
effective optical depth, τeff, GP, following the same definition as the
observation (see Section 2).

The FGPA approximates the cross-section of Lyα absorption as
a Dirac delta function at resonance and ignores peculiar velocities
of the gas. In the following section we discuss how we use high-
resolution hydrodynamic simulations to correct for the FGPA,
accounting for missing small-scale structure. This represents the
main improvement of this work over our previous analysis in Q21.

3.3 Accounting for missing small-scale structure

As mentioned above, our large-scale IGM simulations have a cell
size of 1.95 cMpc. This is a factor of few larger than the typical
Jeans length in the ionised IGM and the width of the Lyα cross-
section at resonance. As a result, we use the FGPA in equation (8)
instead of directly integrating over the full Voigt profile for the
Lyα cross-section, σα , and accounting for gas peculiar velocities:

τα =
∫ dz

1+ z
cH−1nHxHIσα . (9)

Does this approximation impact our modelled τeff distributions?
The fact that τeff is defined over �z = 0.1 (corresponding to

roughly 20 of our IGM simulation cells) would suggest that this
summary statistic is mostly sensitive to (resolved) large-scale fluc-
tuations in flux. However, not resolving small-scale structures
can effectively alias power towards large scales (e.g. Viel et al.
2005; Kooistra, Lee, & Horowitz 2022). Here we use a high-
resolution hydrodynamic simulation from the Sherwood suite

(Bolton et al. 2017) to compare τeff,GP obtained from the low-
resolution FGPA (equation 8) against the correct calculation
(equation 9).

We use a simulation with a cubic volume of 80h−1 cMpc on
a side and 2× 5123 particles. It was performed using an updated
version ofGadget-2 (Springel et al. 2005) and with a slightly differ-
ent �CDM cosmology (�m,�b,��, h, σ8, ns = 0.31, 0.048, 0.69,
0.68, 0.83, 0.96; Planck Collaboration et al. 2016). The modelled
universe is exposed to a Haardt &Madau (2012) UVB switched on
at z = 15. Although this homogeneous UVB does not account for
the effects of patchy reionisation, the simulated Lyα forests from
Sherwood, which has a spatial resolution of <60 kpc, agree very
well with observational data at z ≤ 5 (Viel et al. 2013; Bolton et al.
2017) and therefore can be used to calibrate our forward models
in the post reionisation regime (i.e. xHI = 0).

We project sightlines along each axis of the z = 5 snapshot.c
This results in 5 000 segments of length 80 h−1 cMpc, which
we bin to �z = 0.1. As the physical scale corresponding to �z =
0.1 changes with redshift, we repeat the binning for all redshifts
spanned by the data, z = 5.1, 5.2, 5.3, . . ., 6.1. For each bin, we
compute the ‘true’ effective optical depth (τeff; i.e. averaging the
flux obtained using equation 9). We then recompute the effective
optical depth of each segment assuming the same approximations
we make in our large-scale IGM simulations (down-sampling the
resolution and applying equation 8) to obtain the corresponding
τeff, GP. We are then left with pairs of τeff – τeff, GP, which act as
samples of the conditional probability of having a true τeff given
the corresponding FGPA value τeff, GP ∼ p(τeff | τeff, GP;z, xHI = 0).

We then generalise this conditional probability to higher
neutral fractions. Specifically, we randomly place spherical neu-
tral IGM patches in the Sherwood box until we obtain an HI
filling factor of xHI, repeating the above procedure to obtain
p(τeff | τeff, GP;z, xHI). We assume a log normal distribution peaked
at a constant value of 4 cMpc for the radii of these HI patches. This
is motivated by the results of Xu, Yue, & Chen (2017), who find a
very modest evolution in the neutral patch size distribution during
the final stages of the EoR.

The resulting τeff – τeff, GP samples at z = 5 are shown in
Fig. 2 where τeff = τeff, GP is marked by a diagonal line in each
panel. At low values of the neutral fraction, the FGPA tends
to overestimate the true value of the effective optical depth.
This is especially evident at large overdensities with high val-
ues of τeff (Kooistra, Lee, & Horowitz 2022). As the neutral
fraction increases, this bias decreases. However, the scatter in
p(τeff | τeff, GP;z, xHI) increases significantly. At xHI � 0.5 when
damping-wing absorption becomes significant, the FGPA starts to
instead underestimate the effective optical depth.

We fit these samples with kernel density estimators (KDEs)
in order to obtain an analytic form for p(τeff | τeff, GP;z, xHI)
that can be evaluated when forward modelling (c.f. Fig. 1).
Specifically, we use 2D conditional Gaussian distributions from
the conditional_kded package to fit the samples of 1/τeff –
1/τeff, GP (as the reciprocal of the optical depth more closely fol-
lows a Gaussian distribution). The parameters of the Gaussian

cUnfortunately, we did not have snapshots available at every redshift probed by obser-
vations, z = 5.1, 5.2, 5.3. . . We therefore perform our calibration only using the z = 5
snapshot and assume the conditional distribution functions to be self-similar at other
redshifts. We crudely tested this assumption by scaling the density field by its mean evo-
lution, finding only a τeff � 0.5 shift in the resulting conditionals. We plan to improve the
calibration in the future using more snapshots from higher resolution simulations.

dhttps://github.com/dprelogo/conditional_kde.
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Figure 2. Lower sub-panels: comparisons of the Lyα effective optical depth calculated using the full integral over the Lyα cross-section at the highest available resolution (τeff), to
those calculated assuming the FGPA (τeff, GP). Both calculations use the Sherwood hydrodynamic simulation, with the latter obtained by down-sampling to the same low resolution
adopted in our IGM forward-models and ignoring peculiar velocities. These sub-panels showpairs of τeff – τeff, GP at different values of themean neutral fraction, xHI – an incomplete
EoR is approximated by randomly placing spherical neutral patches in the simulation box until the desired filling factor of xHI is reached. These distributions of (τeff, τeff, GP) pairs
are fit with KDE, resulting in a conditional probability distribution function p(τeff | τeff, GP;xHI, z), which is employed to correct our forward-modelled IGM lightcones formissing small
scales. Upper sub-panels: example τeff distributions conditioned at τeff, GP = 3, 4 and 5.

kernels (means and standard deviations) are explicit functions of
redshift and the neutral fraction,e allowing us to easily evaluate
p(τeff | τeff, GP;z, xHI) at any neutral fraction and redshift. We show
some examples of the fitted conditional distributions in the upper
sub-panels of Fig. 2.

3.4 Computing the forest likelihood

For each τeff, GP(xHI, z) calculated using equation (8) on our
IGM lightcones, we obtain a random sample from the condi-
tional distributions discussed in the previous subsection: τeff ∼
p(τeff | τeff, GP;z, xHI). Therefore, this leads to a set of effective
optical depths that are stochastically corrected for missing sub-
structure in the FGPAmethod.We additionally account for uncer-
tainty in the continuum reconstruction by adding ln (R) to every
τeff sample. Here, R is a random number following a normal dis-
tribution centred at unity with a standard deviation of 10%, typical
of the continuum reconstruction relative errors (Bosman et al.
2022). Note that we do not account for wavelength correlations in

eThroughout this paper, we list the fitted functional dependencies of probability distri-
butions to the right of a semi-colon. Thus p(τeff | τeff, GP;z, xHI) is a conditional probability
of τeff given τeff, GP, whose parameters (mean and sigma) are functions of z and xHI.

the reconstruction errors or the actual ‘usable’ range of observed
wavelengths in each quasar spectrum (see more in Bosman et al.
2022); we plan on including these in future work.We fit the result-
ing histograms of τeff in each of the redshift bins defined by the
data to obtain the PDFs, p(τeff;z).

These PDFs are our theoretical expectation of the real Universe,
for a given model and choice of astrophysical parameters.
Therefore, each observed value of τ i

eff at zi corresponds to a sam-
ple from the theoretical PDF, with a corresponding likelihood
p(τeff = τ i

eff;z = zi). For non-detections, we take τ i
eff to be the 2 σ

lower limit implied by the noise (Bosman et al. 2022).
It is worth noting that the likelihood distribution, p(τeff, z), is

forward-modeled, meaning it is sampled by running the simula-
tor many times, varying the most relevant sources of stochasticity
together with the astrophysical parameters. This is known as an
implicit likelihood, as it avoids the need to specify an explicit likeli-
hood function such as a Gaussian, when comparing data to model.
Instead, the simulator itself generates data realisations allowing
the observed data to be treated as a sample of this data distribution,
for the correct astrophysical parameters. This makes it particu-
larly powerful for cases where the likelihood is too complex or
intractable to express analytically (Cranmer, Brehmer, & Louppe
2020; Davies et al. 2024). Indeed, inferences using an implicit
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likelihood (also called simulation-based inference) are becoming
increasingly popular in this field (e.g. Zhao, Mao, &Wandelt 2022;
Prelogović &Mesinger 2023; Davies et al. 2024; Greig et al. 2024,?)
as most EoR datasets do not have an analytically-tractable likeli-
hood; and common assumptions of Gaussian pseudo-likelihoods
can result in biased posteriors (see Prelogović & Mesinger 2023).

We obtain the final forest likelihood by multiplying the
implicit likelihoods over all XQR-30+ quasars, i, and over all
redshift bins used in the analysis. Specifically, we take Lforest =∏z=6.1

z=5.3
∏

i p(τeff = τ i
eff;z). We do not include data at z ≤ 5.2 in

order to make our likelihood more sensitive to the EoR (see e.g.
Bosman et al. 2022 who showed that the EoR ends sometime
before z ∼ 5.2).

Note that this procedure does not account for higher order cor-
relations in the mapping from τeff, GP to τeff. Moreover, it assumes
that each �z= 0.1 (∼ 40 cMpc) segment is an independent sam-
ple of p(τeff;z); i.e. we ignore the covariance between the �z= 0.1
segments extracted from a single quasar spectrum. We expect the
covariance on such large scales to have only a minor impact on
the total likelihood. Nevertheless, we plan on relaxing this approx-
imation in future work in which we will use simulation-based
inference for the total likelihood, accounting for large scale cor-
relations in both the effective optical depths and reconstruction
errors.

3.5 Combining with complementary observations

We also account for complementary, independent data when per-
forming inference. Specifically, we compute additional likelihood
terms for: (i) the galaxy non-ionising UV LFs well-established by
Hubble at 6≤ z ≤ 10 (Bouwens et al. 2015b, 2016; Oesch et al.
2018); and (ii) the CMB polarisation power spectra observed by
Planck (Planck Collaboration et al. 2020). These two datasets
are independent and mature, and can therefore be interpreted
robustly. Unlike Q21, we do not include a likelihood term for
the pixel Dark Fraction (Mesinger 2010; McGreer, Mesinger, &
D’Odorico 2015) as this statistic is also based on Lyman forests
and therefore is technically not fully independent from the opti-
cal depth distributions discussed above. Thus our total likelihood
consists of the product of three terms: Ltot = Lforest ×LLF ×
LCMB, where the final two correspond to the LF and CMB like-
lihoods, discussed further below.

We construct the UV LF likelihood following Park et al.
(2019). Specifically, we assume a Gaussian likelihood in each
magnitude bin, MUV,i, with a negligible covariance between
bins (see e.g. Leethochawalit et al. 2023 for an alterna-
tive approach). The UV LF likelihood is thus LLF,tot = ∏z=10

z=6∏
i exp

{
− [

�φ(MUV, i)/σφ(MUV, i)
]2}, where �φ is the differ-

ence between forward-modelled and observed galaxy number
densities in a given magnitude and redshift bin, and the corre-
sponding observational uncertainties are σφ . As dust is thought
to significantly suppress the UV LFs in the bright end (Mason,
Trenti, & Treu 2023; Qin, Balu, & Wyithe 2023), we only con-
sider magnitudes fainter thanMUV = −20 to avoid modelling dust
attenuation, and use the redshift range between z = 6 and 10
spanning the EoR.

We construct the Planck CMB likelihood as a two-sided
Gaussian on the Thomson scattering optical depth sum-
mary statistic inferred by Qin et al. (2020): τe = 0.0569+0.0073

−0.0066.
Specifically, we take the form LCMB = exp

[
− (

�τe/στe

)2], where

�τe represents the difference between the forward-modelled and
measured optical depths while στe is the observational uncer-
tainty. Note that Qin et al. (2020) found very little difference in
the inferred posteriors when using a likelihood defined directly
on the E-mode polarisation power spectra compared to using a
Gaussian likelihood on the τe summary derived from the power
spectra. We thus use the latter as it is much more computationally
efficient.

3.6 Summary of model parameters and associated priors

Before showing our inference results, we summarise the free
parameters used in our galaxy models and their associated prior
ranges (see also Table 1).

1. log10 f∗,10 ∈ [− 2,−0.5]: the fraction of galactic baryons in
stars, normalised at Mvir = 1010 M�. This parameter sets
the normalisation of the stellar-to-halo mass relation, and
its prior range is motivated by observations and simula-
tions of high-redshift galaxies (Dayal et al. 2014; Mutch
et al. 2016; Behroozi et al. 2019; Bird et al. 2022; Stefanon
et al. 2021).

2. α∗ ∈ [0, 1.0]: the power law index relating the stellar frac-
tion to the halo mass. This parameter determines the slope
of the stellar-to-halo mass relation. Observations of the
faint end of the UV LFs suggest more efficient star forma-
tion inmoremassive galaxies (Bouwens et al. 2015b; Oesch
et al. 2018), motivating our prior range.

3. log10 fesc,10 ∈ [− 3, 0]: the amplitude of the power-law
relating the UV ionising escape fraction to halo mass,
normalised at Mvir = 1010 M�. The wide prior reflects
the large uncertainties in both low-redshift observations
(Vanzella et al. 2010, 2016; Boutsia et al. 2011; Nestor et al.
2013; Guaita et al. 2016; Grazian et al. 2016; Shapley et al.
2016; Bian et al. 2017; Steidel et al. 2018; Naidu et al. 2018;
Fletcher et al. 2019; Izotov et al. 2021; Pahl et al. 2021) and
reionisation simulations (Kostyuk et al. 2023; Choustikov
et al. 2024; Mutch et al. 2024).

4. αesc ∈ [− 1, 0.5]: the power law slope of the UV ionis-
ing escape fraction to halo mass relation. Galaxy simula-
tions seem to suggest boosted Lyman continuum leakage
in less massive galaxies as supernovae evacuate low col-
umn density channels from shallow gravitational poten-
tials (Paardekooper, Khochfar, & Dalla Vecchia 2015; Xu
et al. 2016; Kostyuk et al. 2023; Mutch et al. 2024). This
motivates a wider negative range in the prior, although
we caution that this is highly uncertain and therefore still
allow positive values in our prior (e.g.Ma et al. 2015; Naidu
et al. 2020; Rosdahl et al. 2022; Bhagwat et al. 2024).

5. βesc ∈ [− 3, 3]: the power law scaling index of the UV ion-
ising escape fraction as a function of redshift, used only in
Evolving_fesc. The prior is somewhat arbitrary with the
upper and lower limits allowing fesc to scale similarly.f

fBecause of the wide prior, we save computational time by initially performing a fast,
approximate likelihood estimate, which shows that the posterior peaks at negative values
of βesc. We then perform our fiducial inference on a narrower prior range βesc∈[− 3.0, 0]
to save computational overheads, but scale the Bayesian evidence to account for the
missing prior volume (see e.g. Murray et al. 2022).
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Figure 3. Inferred τeff CDFs from our fiducial model from z=5.3 to 6.1. To account for cosmic variance, we randomly select from each model in the posterior the same number
of sightlines as in the XQR-30+ observational dataset. The red regions indicate the 95% C.I. For comparison, the XQR-30+ observations are shown in grey with non-detections
denoted with the shaded regions spanning the flux range between zero and double the noise (Bosman et al. 2022). A number of theoretical results are shown for comparison
(Kulkarni et al. 2019; Garaldi et al. 2022; Cain et al. 2024; Davies et al. 2024, optimistic; with earlier works using slightly different binning for τeff).

6. τ∗ ∈ (0, 1]: the star formation timescale in units of the
Hubble time. The flat prior encompasses extreme cases
where the entire stellar mass is formed in an instanta-
neous burst event or gradually built over the age of the
universe.

7. log10 (Mturn/M�) ∈ [8, 10]: the characteristic halo mass
below which star formation becomes exponentially sup-
pressed. The lower and upper limits of the flat prior are
motivated by the atomic cooling threshold and the faintest,
currently observed high-redshift galaxies (e.g. Bouwens
et al. 2016, 2015b; Oesch et al. 2018), respectively.

4. Fiducial inference results

As can be seen from Table 1, the Bayesian evidence ratios sug-
gest that the data have a very strong preference (Jeffreys 1939)
for the Evolving_fesc model. We therefore treat this model
as ‘fiducial’, presenting its posterior in this section, before com-
paring it to the Constant_fesc model in the following sec-
tion.g Alternatively, one could do Bayesian model averaging to
combine the derived IGM and galaxy properties from different
models; however the evidence ratio in this case is so strongly
skewed towards Evolving_fesc, that the model-averaged poste-
riors would just follow the Evolving_fesc ones.

gNote that having a much higher Bayesian evidence does not necessarily mean that
the model is ‘the correct’ one. Compared to the alternate model, the fiducial one is more
flexible and predictive given the observed data, without wasted prior volume.

We show the posteriors in the space of galaxy parameters in
Appendix A. Here we focus on the inferred IGM properties and
galaxy scaling relations.

4.1 Effective optical depth distributions

In Fig. 3, we plot the recovered optical depth CDFs in red enclos-
ing the 95% confidence interval (C.I.). Observational data from
Bosman et al. (2022) are shown in grey. The red-shaded regions
are constructed from the posterior samples, each having the same
number of randomly selected sightlines per redshift bin as in the
data to account for cosmic variance. We note that the cosmic vari-
ance dominates the widths of the CDFs, especially at the highest
redshifts.

We see from the figure that our fiducial model excels at recov-
ering the observed τeff CDFs throughout this redshift range –
despite individual τeff data being used in the likelihood, our model
can recover both the mean and the shape of the observed optical
depth distribution. We stress that most previous work either used
hyperparameters to account for the mean opacity evolution (e.g.,
Q21), calibrated the models to have the same mean opacity as the
data and/or treated each redshift bin independently (e.g. Kulkarni
et al. 2019; Meiksin 2020; Cain et al. 2024; Gaikwad et al. 2023;h
Davies et al. 2024). Some more expensive coupled hydrodynamic
and radiative-transfer simulations such as CODA and THESAN
(Ocvirk et al. 2021; Garaldi et al. 2022) do not directly tune their

hIn order to constrain the MFP and UVB using Kolmogorov–Smirnov test statistics,
Gaikwad et al. (2023) treated non-detections in slightly different ways when calculating
the CDFs from data and their model.
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Figure 4. The inferred EoR history using our fiducial model. The blue-shaded region uses only UV LFs and CMB τe data (a likelihood of LLF ×LCMB), while the red additionally
includes the Lyα forest τeff distributions (likelihood ofLforest ×LLF ×LCMB). In both cases, the dark (light) regions indicate the 68% and 95% C.I. The XQR-30+ forest data are very
constraining; including them makes the posterior transition from being prior-dominated to being likelihood-dominated. PDFs of the redshifts corresponding to xHI = 0.01 and
0.5 are presented in the inset panels, showing that in our fiducial model reionisation ends at z= 5.44± 0.02 and the EoR mid-point is at z= 7.7± 0.1. Estimates of the ionisation
state of the universe coming from other probes are also shown for illustrative purposes including the dark pixel upper limits (McGreer, Mesinger, & D’Odorico 2015; Jin et al. 2023),
Lyman-α damping-wing absorption in QSOs (Eduardo Bañados et al. 2018; Davies et al. 2018; Wang et al. 2020; Greig et al. 2022; see also Mesinger & Haiman 2004; Greig et al. 2017;
Greig, Mesinger, & Bañados 2019), in galaxies (Curtis-Lake et al. 2023; Hsiao et al. 2024; Umeda et al. 2024), or in forests (Spina et al. 2024; Zhu et al. 2024), Lyman-α equivalent
widths (Mason et al. 2019; Jung et al. 2020; Whitler et al. 2020; Bolan et al. 2022; Bruton et al. 2023; Nakane et al. 2024; Tang et al. 2024; Jones et al. 2025; see also Mesinger et al.
2015), and the LF (Inoue et al. 2018; Morales et al. 2021; Wold et al. 2022; Umeda et al. 2024; Kageura et al. 2025) or clustering of Lyα emitters (Sobacchi & Mesinger 2015; Ouchi
et al. 2018; Umeda et al. 2024), most of which are consistent with our results despite not being included in the inference.

simulations to reproduce the forest data; however their predicted
CDFs do not agree with the data as well as most of the other pre-
viously mentioned works. For illustration, we show some of these
results in Fig. 3.

4.2 EoR history

In Fig. 4, we show themain result of this work – the inferred reion-
isation history in our fiducial model. In blue we show the posterior
resulting from using only the LLF and LCMB likelihood terms. This
roughly corresponds to our previous state of knowledge, without
using the forest data.i From the blue region we see that the CMB
optical depth and the UV LFs do not result in tight constraints on
the EoR history. The UV LFs loosely constrain the evolution of the
star formation rate density (SFRD), while the CMB optical depth
additionally constrains the corresponding ionising escape fraction
(see the parameter posterior shown in blue in Fig. A1). Given that
these constraints are not tight, the posterior is prior dominated (as
opposed to being likelihood dominated). Since we chose broad pri-
ors, allowing the ionising escape fraction to extend to unity, most
of the posterior volume traces a relatively early reionisation, with
midpoints around z = 8–9.

The red shaded region in the figure shows what happens to the
posterior when we further include the Lyα forest data, i.e. with the

iThe literature has many additional estimates of the EoR history that we do not include
in our inference (see for instance data points shown in Fig. 4). As mentioned above, inter-
preting these observations is very challenging and prone to observational and modelling
systematics. Robust interpretation would require dedicated forward-models of each obser-
vation and associated systematics. In any case, these alternate probes only weakly constrain
the EoR history using current data (Mesinger & Haiman 2004; Greig et al. 2022; Bruton
et al. 2023; Ouchi et al. 2018; Reichardt et al. 2021). We therefore expect our results to not
be impacted by the inclusion of additional datasets.

total likelihood of Lforest ×LLF ×LCMB. The EoR history, xHI(z),
of the maximum-a-posteriori (MAP) model is listed in Table A1,
and is well fit by a rational function

f (z)= m0 +m1z +m2z2 +m3z3

n0 + n1z + n2z2 + n3z3
, (10)

with parameters {m0,m1,m2,m3, n0, n1, n2, n3} = {292.6,−105.47,
7.824, 0.312, −24.3, 22.9, −4.96, 0.694}. It is obvious that the τeff
data are extremely constraining, resulting in a very narrow pos-
terior. The uncertainties are over an order of magnitude smaller
than without the forest data, with most of the history constrained
to better than �z ∼ 0.1 at the 68% C.I. The forest data require
the EoR to be ongoing below z ≤ 6 (see also the previous results
in Choudhury, Paranjape, & Bosman 2021 and Q21). From the
inset panels in the figure, we see that in this fiducial model reion-
isation ends at z = 5.44± 0.02 and the EoR mid-point is at z =
7.7± 0.1. Consequently, the inferred CMB optical depth is also
tightly constrained with τe = 0.0589± 0.001 (1σ ) compared to
τe = 0.0571± 0.006 when the forest is not included.

Perhaps surprisingly, the forest data tightly constrain the EoR
history at redshifts beyond where we have forest data, z > 6.3.
These constraints are indirect, coming from the combination
of HMF evolution, the SFR to halo mass implied by UV LF
observations, and the ionising escape fraction scalings required
to match the forest. The forest in particular provides a firm
anchor for our models. The forest data requires a photon-starved
end to reionisation, with recombinations starting to balance
ionisations, in order to smoothly transition into the post EoR
regime (Bolton & Haehnelt 2007; Sobacchi & Mesinger 2014).
Such a ‘soft-landing’ is difficult to achieve with small-box EoR
simulations (e.g., Barkana & Loeb 2004) and/or with those that
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cannot resolve recombinations in the late EoR stages (c.f. Fig. 6 in
Sobacchi & Mesinger 2014, and Qin et al. 2021; Cain et al. 2024).
Such limitations tend to result in an overly rapid evolution of the
late EoR stages, which in turn requires ad-hoc corrections/tuning
(e.g., a very rapid drop in emissivity) in order to match forest data
(see Fig. 7 and associated discussion). The fact that our box sizes
are 250 Mpc and that sub-grid recombinations are computed ana-
lytically (and thus not limited by resolution), likely allows us to
capture this ‘soft-landing’ preferred by the forest data. We cau-
tion however that these constraints on the EoR history at z > 6.3
are indirect, and as such become increasingly model-dependent
at increasingly higher redshifts. We will revisit this in the future
using alternate galaxy models that evaluate star-forming duty
cycles based on cooling efficiencies and feedback, and include an
additional population of early, molecular-cooling galaxies, which
might dominate the ionising background at z > 10–15 (e.g., Qin
et al. 2020; Muñoz et al. 2022; Ventura et al. 2024).

For illustration, we also plot various independent estimates of
the IGM neutral fraction using other probes:

1. Our results are consistent with upper limits from the dark
pixel fraction, applied to smaller forest samples (McGreer,
Mesinger, & D’Odorico 2015; Jin et al. 2023). These con-
straints are the most model-independent and probe large
volumes of the high-redshift IGM.

2. A significant portion of these probes relies on IGM
damping-wing absorption observed in high-redshift spec-
tra. These measurements depend heavily on the accurate
modeling of the intrinsic Lyα profile, particularly its red
side:

(a) Observations of high-redshift QSOs, including
DESJ0252-0503 at z = 7 (Wang et al. 2020),
ULASJ1120+0641 at z = 7.09 (Mortlock et al.
2011), J1007+2115 at z = 7.51 (Yang et al. 2020),
and ULASJ1342+0928 at z = 7.54 (Eduardo Bañados
et al. 2018) are generally consistent with our posterior
distribution (e.g., Eduardo Bañados et al. 2018; Davies
et al. 2018; Greig et al. 2022), lending confidence that
these analyses can be reasonably trusted despite the
associated systematics and modelling challenges (see
also Mesinger & Haiman 2004; Hennawi et al. 2024;
Kist, Hennawi, & Davies 2024).

(b) Deep Spectroscopic observations from JWST have
extended damping-wing analysis to higher redshifts
using bright galaxies such as JADES-GS-z11 at z =
11.5 (Curtis-Lake et al. 2023) and MACS0647-JD at
z = 10.2 (Hsiao et al. 2024) as well as stacked spec-
tra spanning z = 7–12 (Umeda et al. 2024). These
results are broadly consistent with our inferred EoR
history, although high-redshift measurements (e.g.,
MACS0647-JD) suggest a more neutral early universe.
However, we caution the observed sample at these
high redshifts are extremely limited and acknowledge
our conclusions regarding the early stages of the EoR
are also more model-dependent.

(c) Damping-wing absorption adjacent to Gunn-
Peterson troughs can also be measured using stacked
QSO spectra at lower redshifts. Recent results from
Spina et al. (2024) and Zhu et al. (2024) reveal

the presence of neutral regions at the end of EoR.
Their inferred neutral fractions align with our poste-
rior distribution, except at z = 5.6, where discrepan-
cies may arise from the simplistic smoothed step func-
tion used to model local neutral fractions near Gunn-
Peterson troughs (see more in Spina et al. 2024).

3. Probes involving Lyα emission from galaxies come with
significant uncertainties due to poor constraints on the
Lyα emerging into the IGM.

(a) Most inferred neutral fractions from Lyα LF stud-
ies are consistent with our results (e.g., Inoue et al.
2018; Wold et al. 2022; Kageura et al. 2025). However,
Morales et al. (2021) report a rapid evolution in the
reionisation history, finding a lower xHI at z = 6.6
and a higher xHI at z = 7.3 compared to our results.
Their assumption of a fully ionised universe at z = 6
may lead to an underestimation of the neutral fraction
at all redshifts, aligning their z = 6.6 estimate more
closely to ours while elevating the z = 7.3 neutral
fraction to > 0.83. Similarly, recent work by Umeda
et al. (2024) also reports a high neutral fraction at
z = 7.3 with xHI ∼ 0.75. Given that the survey areas
(∼ 1deg2) in these studies suggest minimal cosmic
variances, the discrepancy may point to an evolution
in the intrinsic Lyα profile between these redshifts.

(b) The redshift evolution of LAE clustering offers
smaller uncertainties in intrinsic profile modeling
compared to the LF. Current clustering data at z =
6.6, enabled by the Subaru narrow-band filter at
921 nm, are consistent with our inferred xHI ∼ 0.25
(Sobacchi &Mesinger 2015; Ouchi et al. 2018; Umeda
et al. 2024).

(c) JWST has significantly expanded direct measure-
ments of Lyα equivalent width of EoR galaxies, with
the inferred neutral fractions largely aligning with our
results (Bruton et al. 2023; Nakane et al. 2024; Tang
et al. 2024; Jones et al. 2025). Similarly, earlier studies
using ground-based telescopes are also mostly consis-
tent with our inferred EoR history. Notable exceptions
include Mason et al. (2019, xHI > 0.76 at z ∼ 8) and
Bolan et al. (2022, xHI ∼ 0.83 at z ∼ 8), which sug-
gest a more neutral universe and a rapid reionisation
timeline compared to our results. These discrepancies
likely arise from a combination of small sample sizes
and significant uncertainties in modeling the intrin-
sic Lyα profiles, highlighting the need for larger, more
robust datasets to constrain the high-redshift neutral
fraction more accurately.

In summary, our EoR posterior is qualitatively consistent with
most of these estimates, despite not including them in our likeli-
hood.

4.3 UVB and MFP evolution

Fig. 5 shows the inferred redshift evolution of the photo-ionisation
rate andMFP in our fiducial model. The forest data are able to con-
strain these global IGM quantities at percent level precision. The
total MFP converges to our assumed uniform value for the ionised
IGM post EoR at z� 5.2 (i.e. RMFP,LLS). Neutral patches during the
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Figure 5. The posterior of our fiducialmodel in the space of themean photo-ionisation
rate (toppanel) andpropermean free path (bottompanel). As in the previous figure, the
dark (light) shaded region corresponds to 68% (95%) C.I. In the lower panel, we addi-
tionally show the volume distribution of the MFPs from the MAP model (median and
scatters). The dotted line indicates the assumed RMFP, LLS. Various previous estimates
from the forests (Bolton & Haehnelt 2007; Wyithe & Bolton 2011; Calverley et al. 2011;
Worseck et al. 2014; Songaila & Cowie 2010; Becker et al. 2021; Gaikwad et al. 2023; Zhu
et al. 2023; Davies et al. 2024; Satyavolu et al. 2024) are also shownwith their 68% error
bars. Our results are in general agreement with these independent estimates, despite
not having used them in the inference.

EoR contribute increasingly to the MFP at earlier stages, as dis-
cussed in Section 3.2 (see also Roth et al. 2024). This results in
a more rapid drop in the MFP from z ∼ 5 to 6 than would be
expected in simple, uniform-UVB, post-EoR models (e.g., Becker
et al. 2021).

In the figure we also show several independent estimates from
the literature. These come from: (i) adjusting simulated Lyα opti-
cal depths to match the observed flux evolution (e.g., Bolton &
Haehnelt 2007; (ii) estimating the column-density evolution of HI
absorbers (Songaila & Cowie 2010); (iii) modelling the size evolu-
tion of quasar near zones (Wyithe & Bolton 2011); (iv) modelling
flux profiles around near zones (Calverley et al. 2011; Worseck
et al. 2014; Becker et al. 2021; Zhu et al. 2023; Satyavolu et al. 2024);
and (v) co-varying the MFP and UVB to match forest fluctua-
tions independently at each redshift (Davies et al. 2024; Gaikwad
et al. 2023). Our results are generally in good agreement with these
independent estimates, despite the fact that we do not use them
in our analysis. Our recovered MFP at z ∼ 6 is on the upper end
of the 68% error bars from Becker et al. (2021), Zhu et al. (2023)
This mild tension could point to additional systematics in these

Figure 6. The inferred UV ionising emissivity, ṅion. On the left axis we denote the num-
ber of ionizing photons per time per comoving volume, while on the right axis we show
the number of ionizing photons per time per baryon. As in the previous figure, the dark
(light) shaded red region corresponds to 68% (95%) C.I. For comparison, we include
other estimates from: (i) simulations tuned to match the forest opacity distributions
(Kulkarni et al. 2019; Keating et al. 2020; Cain et al. 2021); (ii) coupled hydrodynamic
and radiative-transfer simulations (Garaldi et al. 2022; Ocvirk et al. 2021); and (iii) a
simple empirical relation based on assuming a constant escape fraction and SFRD
extrapolated down to a fixed limitingmagnitude ofMUV = −13 (Bouwens et al. 2015a).

observational interpretations (see more in Satyavolu et al. 2024)
and/or missing physics in our models, such as gas relaxation (e.g.,
Park et al. 2016; D’Aloisio 2020) or the inhomogeneous post I-
front temperature (e.g., D’Aloisio et al. 2019; Davies et al. 2019).
We plan on investigating these effects in future work.

In the bottom panel of Fig. 5, we additionally present the vol-
ume distribution of the MFPs derived from our MAP model. The
black curve represents the median while the grey shaded regions
indicate 68% and 95% of the volume distribution. We see that 68%
of the volume has an MFP determined by RMFP, EoR at z ∼ 5.5, even
though reionisation completes at z = 5.44. This finding under-
scores that the assumed functional form of RMFP, LLS likely has a
minor impact on the MFP at these EoR redshifts. Nevertheless in
future work we will additionally sample the uncertainties in the
mean and scatter of RMFP, LLS.

4.4 UV ionising emissivity

In Fig. 6, we present the inferred ionising emissivity evolu-
tion, ṅion(z) (c.f. equation 3). Unlike many previous studies (e.g.,
Kulkarni et al. 2019; Keating et al. 2020; Cain et al. 2021), we
reproduce the Lyα opacity distribution without requiring a sharp
drop in the emissivity at z� 7. Such a rapid drop in the emissivity
would be difficult to reconcile with the more gradual evolution
implied by observations of galaxy UV LFs (e.g., Bouwens et al.
2015a), as it requires either fast evolving feedback in faint galax-
ies (e.g., Ocvirk et al. 2021; though see e.g., Sobacchi & Mesinger
2014; Katz et al. 2020) or in their ionising escape fractions. Even
under both such putative scenarios, it is difficult to physically jus-
tify cosmological evolution that is more rapid than characteristic
time-scales during this epochwhich are generally� 200Myrs (e.g.,
the duration of the EoR, halo dynamical and/or sound crossing
times; c.f. Sobacchi & Mesinger 2013). As discussed in Section 4.2,
one possible explanation is that simulating the end stages of the
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Figure 7. Comparison of the MAP model with and without recombinations. Clockwise from the upper left panel, we show the mean EoR history, photoionisation rate, proper
MFP and ionizing emissivity. In the bottom left panel we also show the emissivity rescaled by the ratio of 
ion from w/ rec to that from w/o rec, roughly mimicking what would be
required for the emissivity to compensate for the missing recombinations.

EoR requires very large-scale and very high-resolution hydrody-
namic simulations to track the rapid evolution of self-shielding in
the IGM and the strong spatial correlation between ionizing sinks
and sources. Our calibrated sub-grid approach could allow us to
capture the relevant recombination physics without requiring very
high resolution (Sobacchi & Mesinger 2014).

To better quantify this claim, we rerun the MAP model, turn-
ing off inhomogeneous recombinations. Fig. 7 shows the predicted
mean EoR history, photoionisation rate, MFP and ionizing emis-
sivity. In the absence of sub-grid recombinations, the end of
reionisation progresses significantlymore rapidly, leading to a cor-
respondingly sharp rise in both the MFP and photo-ionisation
rate (see also Sobacchi & Mesinger 2014). Since our models fix
the post-reionisation MFP to RMFP, LLS, these quantities eventu-
ally asymptote to the same values as in the fiducial run. In the
emissivity sub-panel, we also adjust the emissivity by rescaling it
with the ratio of 
ion from w/ rec to that from w/o rec. We see
that by matching the UVB (which roughly corresponds to what
forest observations would require for the w/o rec case), the emis-
sivity would need to decrease rapidly during the second half of
the EoR, countering the premature rise in the MFP caused by the
lack of recombinations. This lends further credibility to our claim
that unresolved, inhomogeneous recombinations are responsible
(at least in part) for the rapid drop in the emissivity required by
some large-scale hydro simulations in order to match the forest
data.

We note from Fig. 6 that our inferred emissivity is consis-
tent with simple estimates assuming a constant escape fraction
and integrating the observed UV LFs down to MUV = −13. This
is somewhat coincidental, since in our fiducial model more than

half of the ionizing photons are provided by galaxies fainter than
MUV > −13 due to a strong MUV-dependence of the ionizing
escape fraction (see later Fig. 10). As discussed further in Section 5,
the forest data combined with UV LFs strongly constrain the red-
shift evolution of the EoR and the ionizing emissivity. However,
determining which galaxies produce the ionizing photons respon-
sible is more model dependent.

4.5 Effective clumping factor in HII regions

Modelling the complex interplay between ionizing sinks and
sources during the EoR is best achieved with large-scale numerical
simulations. However, simple analytic estimates of the EoR his-
tory can be very convenient and help build physical intuition. A
common choice is the following (e.g., Bouwens et al. 2015a):

Q̇HII = ṅion,H −QHII/trec, H (11)

where

trec, H≡ 1
CeffnHαB

=
(
1+z
6

)−3 (
Ceff

3

)−1 (
T

104K

)0.75

Gyr. (12)

Here, QHII∼1− xHI and Q̇HII are the volume filling factors of HII
regions and its growth rate while trec, H is a characteristic recombi-
nation time-scale parameterised by an ‘effective’ clumping factor,
Ceff. The first term on the right-hand side of equation (11) is
the ionizing emissivity per hydrogen atom while the second term
approximates the global recombination rate per hydrogen atom.
This equation is especially useful in high-redshift galaxy studies, as
it allows us to connect the ionizing emissivity from galaxies to the
EoR history simply by assuming some value of Ceff to capture the
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impact of recombinations. Common choices for Ceff range from
∼ 1–10 (e.g., Bouwens et al. 2015a; Mason et al. 2018; Davies et al.
2019; Bruton et al. 2023).

One can compute the recombination rate in a given patch of the
IGM by defining Ceff = 〈n2HII〉/〈nHII〉2, where the averaging is per-
formed over the ionised hydrogen (accounting for self-shielding
and using local values of temperature and ionisation rates; e.g.
Finlator et al. 2012) with nHII being the local HII density. However,
when estimating the global recombination rate to be used in equa-
tion (11) there is not an obvious way of defining Ceff in terms of
other global IGM quantities. In particular, ionizing sources and
sinks are strongly correlated on large scales. Recombinations pref-
erentially occur in regions proximate to galaxies that were the
first to reionise, which have biased, time-evolving, and spatially
fluctuating properties.

Here, we investigate what choice of Ceff can give the same
EoR history as the MAP parameter set in our fiducial model.
Specifically, we assume the EoR history and emissivity of ourMAP
model (c.f. Figs. 4 and 6), and solve for Ceff(z) using equation (11).
The resulting effective clumping factor is plotted as a red curve in
the bottom panel of Fig. 8. We see Ceff starts around unityj and
then rises rapidly towards the late stages of reionisation when ion-
isation fronts penetrate deeper into overdensities (e.g., Furlanetto,
Oh, & Briggs 2006; Finlator et al. 2012; Sobacchi &Mesinger 2014;
Cain et al. 2024; Davies, Bosman, & Furlanetto 2024).

Fundamentally, Ceff cannot be a constant during the EoR. We
illustrate EoR histories resulting from common assumptions of a
constant Ceff = 1, 3, 10 in the top panel of Fig. 8. All curves assume
the same emissivity as the MAP. However, no constant choice of
Ceff can reproduce the EoR history of the MAP (red curve).

We offer a fit for Ceff(z) using a rational function (equation 10)
with coefficients {m0,m1,m2,m3, n0, n1, n2, n3} = {238.9, −94.35,
11.76, −0.404, 22.6, −3.97, −0.877, 0.1636}. This can be used in
analytic models to approximate the EoR history resulting from a
given emissivity. In future work we will quantify how sensitive this
effective clumping factor is to different reionisation or emissivity
models.

4.6 Galaxy UV LFs and scaling relations

In Fig. 9 we show the inferred UV LFs for our fiducial model.
As in Fig. 4, the blue shaded regions correspond to our posterior
without including forest data (i.e. only including UV LF data and
τe), while the red regions additionally include the τeff distributions
from XQR-30+. In the figure we also show observational esti-
mates from both Hubble and JWST, with blue points highlighting
those Hubble datasets that are used in the likelihood (see Section
3.5). The MAP model and [16, 84]th percentiles are also listed in
Table A2.

From the figure we see that the Hubble estimates we use
in the likelihood already constrain the inferred UV LFs at
magnitudes brighter than −17, where we have observational
estimates. Overall, the predictions also remain consistent with
recent JWST measurements (e.g., Donnan et al. 2023; Harikane
et al. 2023; Willott et al. 2024), though observations at 10<

z� 13 appear slightly higher. At z ∼ 16, however, UV variability

jThe clumping factor can also decrease rapidly during earlier stages of reionisation as
the gas relaxes from an increase in the Jeans mass after it is photo-heated (e.g., Emberson,
Thomas, & Alvarez 2013; Park et al. 2016; D’Aloisio 2020). However, it is likely that X-
ray preheating (e.g., HERA Collaboration et al. 2022, 2023) diminishes this evolution in
practice.

Figure 8. Top panel: Evolution of the HII filling factor from the MAP model (red curve),
together with analytic estimates using equation (11) assuming the samemean ionizing
emissivity as the MAP but taking a constant ‘clumping factor’. Curves corresponding to
Ceff=1, 3, 10 are shown in grey. Bottompanel: the effective clumping factor obtained by
solving equation (11) for Ceff(z) when assuming the EoR history and emissivity from the
MAPmodel.

(Shen et al. 2023; Nikolić et al. 2024) sourced by enhanced star
formation (e.g., Qin, Balu, &Wyithe 2023;Wang et al. 2023;
Chakraborty & Choudhury 2024) or differences in stellar popu-
lations (e.g., Ventura et al. 2024; Yung et al. 2024) may be indeed
necessary to explain the observed trends. This offset suggests that a
redshift evolution in f∗ (or τ∗) might also be needed in our model,
similar to the adjustments made for fesc (see equation 2). We will
explore this further as JWST data continue tomature. On the other
hand, the posteriors in blue widen greatly at fainter magnitudes,
since there is no observational consensus regarding a faint-end
turn-over (see also Gillet, Mesinger, &Park 2020 and Atek et al.
2024). Once we include the forest data however, the posteriors
shrink significantly at the faint end of the UV LF. The forest data
imply significant star formation in galaxies down to the atomic
cooling limit (MUV ∼ −10).

Note that the Lyα forest is not sensitive enough to directly
distinguish between different reionisation morphologies (see sec-
tion 5.3 in Q21). Therefore the preference for star formation in
UV faint galaxies indirectly comes from the mean EoR history
shown in Fig. 4. Abundant, faint galaxies appear earlier and evolve
more slowly, compared to rare, bright galaxies (e.g., Behroozi et al.
2019). Therefore they more naturally drive the kind of slower
reionisation histories with a ‘soft-landing’, which is preferred by
the Lyα forest. Yet, given sufficient flexibility in assigning ionizing
escape fractions, one could in principle force a bright-galaxy-
dominated EoR to have the same history as the one shown in Fig. 4,
which is driven by faint galaxies. This, in practice, is constrained
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Figure 9. The inferred galaxy UV luminosity function. As in the previous figure, the dark (light) shaded region corresponds to 68% (95%) C.I. Observed luminosity functions are
grouped into pre-JWST (light grey; Bouwens et al. 2016, 2015b; Finkelstein et al. 2015; Oesch et al. 2016, 2018; Livermore, Finkelstein, & Lotz 2023; Atek et al. 2018; Ishigaki et al.
2018; Bhatawdekar et al. 2019; Bouwens et al. 2016; Kauttmann et al. 2022; Leethochawalit et al. 2023) with those used in the likelihood (see Section 3.5) highlighted in dark blue,
and results using recent JWST observations (dark grey; Donnan et al. 2023; Finkelstein et al. 2022; Harikane et al. 2023; Naidu et al. 2022; Pérez-González et al. 2023; Willott et al.
2024).

by the fact that the escape fraction cannot exceed unity, and that
bright galaxies reside in the exponential tail of the mass function.
Thus very extreme evolutions in the ionizing escape fractions,
exceeding unity, would be required for our model to have a ‘bright
galaxy dominated EoR’ that is consistent with Lyα forest data.
Such models are not in our prior volume.

We further quantify the contribution of faint galaxies to the
EoR in Fig. 10. In the top panel we plot the CDF of the galax-
ies contributing to the ionizing background at z = 6, 8, and 11
as functions of MUV. There is a mild evolution with redshift, but
in general we find that galaxies fainter than MUV �−12 con-
tribute more than half of the ionizing photons that have reionised
the universe. Galaxies above the current direct detection limits of
MUV �−15 only contribute a few percent to the ionizing photon
budget with gravitational lensing enabling the detection of even
fainter sources and extending constraints on their contribution
(e.g., Vanzella et al. 2023, 2024). This highlights the power of the
IGM as a democratic probe of the emissivity of all galaxies.

In the bottom panel of Fig. 10 we show the mean ion-
izing escape fraction as a function of UV magnitude, at the
same three redshifts, z = 6, 8, and 11. We see that the data
prefer a population-averaged fesc that increases towards faint
galaxies. This is consistent with simulations including RAMSES
by Kimm & Cen (2014), First Billion Years (Paardekooper,
Khochfar, & DallaVecchia 2015), Renaissance (Xu et al. 2016) and
Cosmic Dawn II (Lewis et al. 2020) while others such as FIRE-
II (Ma et al. 2020), SPHINX(Rosdahl et al. 2022), IllustrisTNG

Figure 10. The inferred (68%C.I.) ionizing contribution of galaxies as a function of their
UV magnitudes at z= 6, 8 and 11. The top panel shows the normalised cumulative
number of ionizing photons while the bottom panel shows the escape fraction. Our
results imply reionisation is driven by faint galaxies, far below current direct detection
limits (roughly corresponding to the grey shaded region).
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Figure 11. Upper panels: lightcones of MAPmodels from Evolving_fesc and Constant_fesc. From top to bottom, the panels correspond to the overdensity (�), neutral hydrogen
fraction (xHI), locally-averagedUVB (
ion), temperature (Tg), residual neutral fractionwithin the ionised regions (xHI,res) and Lyα transmission.Bottompanels: Similar to Figs. 4 and 10
(z= 6 only) but for comparisons between Evolving_fesc and Constant_fesc and showing the 68% and 95% C.Is of their posterior distributions. Although the two models reach
qualitatively the same conclusions about the EoR, the fiducial Evolving_fesc model favors an EoR that is driven by ultra-faint galaxies close to the atomic cooling threshold,
resulting in a slightly more extended and patchy EoR.

(Kostyuk et al. 2023), THESAN (Yeh et al. 2023), SPICE (Bhagwat
et al. 2024) show different trends in their results. As the posterior
distribution of βesc peaks at∼ −1.6, the ionizing escape fraction at
a given halo mass decreases at earlier times However, as shown in
this panel, such a redshift dependence becomes verymild when fesc
is plotted against UVmagnitude. The fact that such a mild redshift
evolution in the ionizing escape fraction is so strongly preferred by
the Bayesian evidence (Evolving_fesc vs Constant_fesc) high-
lights again the incredible constraining power of the XQR-30+
forest data.

5. How do the results depend on our model?

In the previous section we presented constraints on IGM and
galaxy properties using the Evolving_fesc model, which was
strongly favored by the data. Here, we explore how our main con-
clusions are affected by the choice of galaxy model. Specifically,
we compare our fiducial model to Constant_fesc where the UV
ionizing escape fraction is solely dependent on the host halo
mass. If our results remain largely unaffected by the choice of
galaxy model, this would increase confidence in their robustness,
regardless of their relative Bayesian evidences.
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Fig. 11 shows lightcones corresponding to the MAP in both
models (upper panels) and their posteriors for the EoR history
(bottom left panel), the cumulative contribution to the z = 6 ioniz-
ing background of galaxies below a given UV magnitude (bottom
middle panel), and the ionizing escape fraction as a function of UV
magnitude (bottom right panel). Note that the inferred τeff CDFs
look indistinguishable to those shown in Fig. 3. Both models sug-
gest a qualitatively similar conclusion – reionisation finishes at z <

5.5 with the process primarily driven by ionizing photons emitted
by faint galaxies. The end (corresponding to xHI = 0.01) and mid-
point of reionisation are at z = 5.33± 0.03 and z = 7.2± 0.1 in the
Constant_fesc model, respectively, compared to z = 5.44± 0.02
and z = 7.7± 0.1 in our fiducial Evolving_fesc model.

From the bottom panels of Fig. 11 we see that the mod-
els differ quantitatively in which galaxies drive reionisation. The
Constant_fesc model prefers the EoR to be driven by slightly
brighter galaxies, with half of the ionizing photons being con-
tributed by Muv �−14 galaxies (compared to Muv �−12 in the
fiducial model). This is due to the fact that without the additional
flexibility of a time-evolving fesc, the Constant_fesc model results
in an EoR history that is too rapid compared with what the data
prefer. It is a testament to the constraining power of the XQR-30+
data that only a small redshift evolution in the ionizing escape frac-
tion (c.f. bottom panel of Fig. 10) results in amuch higher Bayesian
evidence for the Evolving_fesc model.

6. Conclusions

The Lyα forests observed in the spectra of high-redshift quasars
provide critical insight into the final stages of reionisation. In this
work, we introduced a novel framework of 21cmFAST that inte-
grates large-scale lightcones of IGM properties and incorporates
unresolved sub-grid physics in the Lyα opacity, calibrated against
high-resolution hydrodynamic simulations for missing physics on
small scales. By sampling only 7 free parameters that are capable of
characterizing the average stellar-to-halo mass relation, UV ioniz-
ing escape fraction, duty cycle and timescale of stellar buildup for
high-redshift galaxies, we performed Bayesian inference against
the latest Lyα forest measurement from XQR-30+ complemented
by the observed high-redshift galaxy UV LFs and the CMB opti-
cal depth. We demonstrated that current data can constrain global
IGM properties with percent-level precision.

One of the key outcomes of our model is the ability to repro-
duce the large-scale fluctuations in Lyα opacity without requiring
a sharp decline in the ionizing emissivity from z ∼ 7 to 5.5, a
feature that has been invoked by several other models. In par-
ticular, our fiducial model finds reionisation occurs at z = 5.44±
0.02 with a midpoint at z = 7.7± 0.1. The ionizing escape frac-
tion in this model increases towards fainter galaxies, exhibiting
only a mild redshift evolution at a fixed UV magnitude. This
suggests that half of the ionizing photons responsible for reioni-
sation are sourced by galaxies fainter than MUV ∼ −12, which lie
below the detection threshold of current optical and near-infrared
instruments including JWST.

Additionally, we explored an alternative galaxy model that lim-
its the redshift evolution in the ionizing escape fraction, allowing
it to only vary with the host halo mass and reducing the num-
ber of free parameters to 6. Although this model demonstrates
lower Bayesian evidence relative to our fiducial case, the posteriors
for the evolution of IGM properties are in qualitative agreement.
This lends confidence that our conclusions on the progress of the

EoR are robust. The models do differ somewhat on which galaxies
were driving reionisation, with the lower evidence model suggest-
ing galaxies fainter than MUV ∼ −14 provided half the ionizing
photon budget (compared toMUV ∼ −12 for the fiducial model).

Future observations both in the Lyα forest and in direct galaxy
surveys, will be crucial to further refining these models and
improving our understanding of which galaxies drive reionisation
as well as the early stages of the EoR (where we currently only have
indirect constraints). Our Bayesian framework, allowing us to con-
nect galaxy properties to IGM evolution in a physically-intuitive
manner, represents a significant step forward, offering a versatile
and efficient tool for interpreting upcoming observational data.
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Appendix A. Detailed posteriors

Fig. A1 presents the marginalised 1D and 2D posterior distri-
butions of the model parameters of various models discussed
in the work, including the fiducial model Evolving_fesc, and
this model without XQR-30+ data, as well as Constant_fesc.
Tables A1 and A2 list the inferred neutral fraction, UVB, MFP and
galaxy UV LFs for the MAP model and [16, 84]th percentiles of
Evolving_fesc.

Figure A1. Marginalised 1D and 2D posterior distributions of model parameters from the fiducial model Evolving_fesc (red), and this model without XQR-30+ (blue) as well as
Constant_fesc (purple). Regions inside the curves or indicated in shades represent the 95th percentiles.
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Table A1. The inferred neutral fraction, photoionzing rate and MFP for the MAP model and the [16, 84]th percentiles (see also
Figs. 4 and 5).

xHI xHI 
ion/10−12s−1 RMFP/pMpc
z z z

MAP† 16th 84th MAP† 16th 84th MAP 16th 84th MAP 16th 84th

15.20 0.99 0.99 0.99 14.88 0.99 0.99 0.99 8.68 0.01 0.01 0.01 0.04 0.04 0.05

14.57 0.99 0.99 0.99 14.26 0.98 0.98 0.99 8.49 0.01 0.01 0.01 0.05 0.05 0.06

13.96 0.98 0.98 0.98 13.67 0.98 0.98 0.98 8.30 0.01 0.01 0.02 0.06 0.06 0.08

13.38 0.97 0.97 0.98 13.10 0.97 0.97 0.97 8.12 0.02 0.02 0.02 0.08 0.07 0.09

12.82 0.96 0.96 0.97 12.55 0.96 0.96 0.96 7.94 0.02 0.02 0.02 0.09 0.09 0.11

12.29 0.95 0.95 0.96 12.03 0.94 0.94 0.95 7.77 0.02 0.02 0.02 0.12 0.11 0.14

11.77 0.93 0.93 0.94 11.52 0.92 0.92 0.93 7.60 0.02 0.02 0.03 0.14 0.13 0.17

11.28 0.91 0.91 0.92 11.04 0.90 0.90 0.91 7.43 0.03 0.02 0.03 0.17 0.16 0.20

10.80 0.89 0.89 0.90 10.57 0.87 0.87 0.89 7.26 0.03 0.03 0.03 0.21 0.20 0.25

10.34 0.86 0.86 0.87 10.12 0.84 0.84 0.85 7.10 0.03 0.03 0.04 0.26 0.25 0.30

9.90 0.82 0.82 0.84 9.69 0.80 0.80 0.82 6.94 0.04 0.04 0.04 0.32 0.30 0.37

9.48 0.77 0.77 0.79 9.27 0.75 0.75 0.77 6.78 0.04 0.04 0.05 0.40 0.38 0.45

9.07 0.72 0.72 0.75 8.87 0.70 0.70 0.72 6.63 0.05 0.05 0.06 0.50 0.47 0.57

8.68 0.67 0.67 0.69 8.49 0.64 0.64 0.66 6.48 0.06 0.06 0.07 0.62 0.59 0.71

8.30 0.61 0.61 0.63 8.12 0.57 0.58 0.60 6.34 0.07 0.07 0.08 0.79 0.74 0.89

7.94 0.54 0.54 0.57 7.77 0.51 0.51 0.54 6.19 0.08 0.08 0.09 1.02 0.97 1.15

7.60 0.47 0.48 0.50 7.43 0.44 0.44 0.47 6.05 0.10 0.10 0.11 1.37 1.29 1.53

7.26 0.40 0.41 0.44 7.10 0.37 0.37 0.40 5.91 0.13 0.12 0.14 1.86 1.77 2.04

6.94 0.33 0.34 0.36 6.78 0.29 0.30 0.33 5.78 0.16 0.16 0.18 2.55 2.44 2.78

6.63 0.26 0.26 0.29 6.48 0.22 0.23 0.25 5.64 0.20 0.21 0.23 3.32 3.46 3.89

6.34 0.19 0.19 0.21 6.19 0.15 0.15 0.17 5.51 0.32 0.30 0.33 5.65 5.32 5.86

6.05 0.11 0.12 0.14 5.91 0.08 0.08 0.10 5.39 0.43 0.42 0.45 8.23 7.94 8.47

5.78 0.05 0.05 0.07 5.64 0.03 0.03 0.04 5.26 0.54 0.53 0.57 10.91 10.88 11.06

5.51 0.01 0.01 0.02 5.39 0.00 0.00 0.01 5.14 0.58 0.56 0.61 12.12 12.12 12.32

5.26 0.00 0.00 0.00 5.14 0.00 0.00 0.00 5.02 0.62 0.60 0.65 13.46 13.46 13.68

5.02 0.00 0.00 0.00 4.90 0.00 0.00 0.00 4.90 0.66 0.64 0.70 14.96 14.95 15.19
†The inferred MAP xHI(z) can be represented by a simple ratio of two polynomials with high accuracy (|�xHI| < 0.01) using the following functional
form: xHI(z)= (292.6− 105.47z + 7.824z2 + 0.312z3)/(− 24.3+ 22.9z − 4.96z2 + 0.694z3).
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Table A2. The inferred galaxy UV luminosity functions for the MAPmodel and the [16, 84]th percentiles (see also Fig. 9).

log10 [φ/Mpc−3mag−1] log10 [φ/Mpc−3mag−1] log10 [φ/Mpc−3mag−1] log10 [φ/Mpc−3mag−1]
MUV z z z z

MAP 16th 84th MAP 16th 84th MAP 16th 84th MAP 16th 84th

−20.0 −8.40 −8.51 −8.33 −6.54 −6.63 −6.48 −5.75 −5.83 −5.70 −5.19 −5.26 −5.14
−19.0 −7.18 −7.27 −7.15 −5.57 −5.65 −5.54 −4.89 −4.96 −4.87 −4.41 −4.47 −4.39
−18.0 −6.12 −6.22 −6.10 −4.73 −4.80 −4.71 −4.14 −4.20 −4.12 −3.73 −3.78 −3.71
−17.0 −5.20 −5.30 −5.17 −3.98 −4.06 −3.96 −3.47 −3.54 −3.46 −3.11 −3.18 −3.10
−16.0 −4.38 −4.50 −4.35 −3.31 −3.41 −3.29 −2.87 −2.96 −2.85 −2.56 −2.64 −2.55
−15.0 −3.65 −3.79 −3.62 −2.72 −2.83 −2.69 −2.33 −2.43 −2.31 −2.06 −2.15 −2.04
−14.0 16 −3.00 −3.16 −2.97 13.3 −2.18 −2.30 −2.15 12 −1.84 −1.95 −1.82 11 −1.61 −1.71 −1.59
−13.0 −2.43 −2.60 −2.41 −1.70 −1.84 −1.68 −1.40 −1.53 −1.38 −1.20 −1.31 −1.18
−12.0 −1.95 −2.13 −1.93 −1.29 −1.44 −1.27 −1.02 −1.16 −1.00 −0.84 −0.97 −0.82
−11.0 −1.57 −1.78 −1.56 −0.96 −1.14 −0.95 −0.71 −0.88 −0.70 −0.54 −0.70 −0.54
−10.0 −1.34 −1.63 −1.33 −0.75 −1.00 −0.75 −0.52 −0.74 −0.51 −0.35 −0.56 −0.35
−9.0 −1.37 −1.88 −1.29 −0.76 −1.19 −0.70 −0.50 −0.90 −0.46 −0.33 −0.69 −0.29
−8.0 −1.83 −2.79 −1.57 −1.13 −1.93 −0.92 −0.83 −1.56 −0.65 −0.62 −1.28 −0.45

−20.0 −4.67 −4.74 −4.63 −4.20 −4.26 −4.16 −3.78 −3.83 −3.74 −3.09 −3.13 −3.05
−19.0 −3.97 −4.02 −3.95 −3.57 −3.62 −3.55 −3.21 −3.26 −3.19 −2.64 −2.67 −2.62
−18.0 −3.35 −3.40 −3.34 −3.01 −3.05 −3.00 −2.71 −2.75 −2.69 −2.23 −2.26 −2.22
−17.0 −2.79 −2.85 −2.78 −2.50 −2.55 −2.49 −2.24 −2.29 −2.23 −1.85 −1.88 −1.84
−16.0 −2.28 −2.35 −2.27 −2.03 −2.10 −2.02 −1.82 −1.87 −1.81 −1.49 −1.53 −1.48
−15.0 −1.82 −1.90 −1.80 −1.61 −1.68 −1.59 −1.42 −1.49 −1.41 −1.15 −1.21 −1.14
−14.0 10 −1.40 −1.49 −1.38 9 −1.21 −1.30 −1.20 8 −1.06 −1.14 −1.04 6 −0.83 −0.90 −0.82
−13.0 −1.01 −1.12 −0.99 −0.85 −0.95 −0.84 −0.72 −0.81 −0.70 −0.54 −0.61 −0.52
−12.0 −0.67 −0.80 −0.66 −0.53 −0.65 −0.52 −0.42 −0.52 −0.40 −0.26 −0.35 −0.25
−11.0 −0.39 −0.54 −0.39 −0.26 −0.40 −0.26 −0.16 −0.28 −0.15 −0.02 −0.13 −0.01
−10.0 −0.21 −0.40 −0.20 −0.08 −0.26 −0.07 0.03 −0.14 0.03 0.17 0.03 0.17

−9.0 −0.17 −0.50 −0.14 −0.03 −0.33 −0.00 0.09 −0.19 0.11 0.26 0.04 0.27

−8.0 −0.42 −1.03 −0.28 −0.24 −0.80 −0.12 −0.08 −0.58 0.03 0.18 −0.21 0.24
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