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ON THE CYCLIC COVERINGS OF THE KNOT 52

by P. BANDIERI, A. C. KIM and M. MULAZZANI*

(Received 18 th November 1997)

We construct a family of hyperbolic 3-manifolds whose fundamental groups admit a cyclic presentation.
We prove that all these manifolds are cyclic branched coverings of S3 over the knot 52 and we compute their
homology groups. Moreover, we show that the cyclic presentations correspond to spines of the manifolds.
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1. Definitions and main results

In this paper we shall study a countable class of closed, connected, orientable 3-
manifolds Mn, whose fundamental groups are cyclically presented groups. We recall
the notion of cyclic presentation of a group. Let Fn be the free group on n free
generators x0, x,, • • •, xn_,, and let 0 be the automorphism of Fn defined by 0(x,) = x,+1,
for J = 0, 1, ••-,«— 1 (subscripts modn). For any reduced word w in Fn define
Gn(w) = FJR, where R is the normal closure in Fn of the set {w, 0(w), • ••, 0"~'(w)}. Then
G is said to be cyclically presented if G is isomorphic to Gn(w) for some n and w. Some
connections between cyclic presentations of groups and cyclic coverings of S3, branched
over knots or links, have been studied in [2], [8] and [15].

A group presentation < X \ R > is called geometric if there is a closed 3-manifold
M3 which admits a Heegaard diagram inducing < X \ R > as a presentation of 7t,(M3).
Equivalently, M3 admits a spine homeomorphic to the canonical complex associated
to < X | R > (see [17]). As is well known, the canonical complex associated to a group
presentation is a 2-dimensional cell complex consisting of a unique vertex, a 1 -cell for
each generator and a 2-cell for each relator, whose boundary is glued to the 1-skeleton
according to the corresponding relator. Some relations between cyclic presentation of
groups and spines of 3-manifolds are shown in [4].

Our main results show that the manifold Mn is the n-fold cyclic covering of the
3-sphere S3, branched over the knot 52 (Rolfsen Notation [18]), and that Mn is
spherical for n = 1, 2 and hyperbolic for n > 3. Moreover, we find a cyclic presentation
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for 7t|(Mn) and prove that such a presentation is geometric. Finally, since 52 has the
property of being a genus one knot, the homology characters of the manifolds can
easily be computed as shown in Section 6.

2. Construction of a family of 3-manifolds Mn

The manifolds Mn (n > 1) is defined by pairwise identification of the 2-faces of a
polyhedron Pn, which is homeomorphic to a 3-ball, whose boundary complex provides
a tessellation of the 2-sphere as depicted in Figure 1. The tessellation consists of An
quadrilaterals, in edges and An+ 2 vertices. The n quadrilaterals around the North
Pole N are labelled by Qt, Q2,. •., Qn. The n quadrilaterals around the South Pole S -
which is the point at infinity in Figure 1 - are labelled by Ru R2,..., Rn, and the other
2n quadrilaterals are labelled by Q\, R\, Q'2, R'2,..., Q'n, R'n, as indicated in Figure 1.
To obtain Mn, we glue Q, with Q- (resp. R, with R[), for each i — 1, 2 , . . . , n, by an
orientation reversing identification which matches N with At (resp. 5 with Bt). Via this
glueing we get, for each i= 1,2,... ,n, the following identifications on the edges:
NC|, = /4,C,_, = /1,_,B,_2 (which we shall call x,), SAi+l = B{Ai+2 = B,_,D,•, = Ci+]Di+l

(which we shall call y,), and CiD2 = C2D3 = ••• = CnD, (which we shall call z). As a
consequence the vertices match as follows: N = At = D: and S = B, = C,, for each
i = 1,2,... ,n. Observe that, here and in the following, subscripts are considered modn.
Thus, we obtain a 3-dimensional cellular complex Kn, having one 3-cell, 2M
quadrilaterals, 2n + 1 edges and two vertices. Since its Euler characteristic is

Figure 1
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= 2 — {In + 1) + In — 1 = 0, the space Mn = \Kn\ is a genuine closed, connected,
orientable 3-manifold according to the Seifert-Threlfall criterion (see [20, p. 216]).

3. Mn as branched cyclic covering of the 3-sphere

Let Qn be the clockwise rotation of 2n/n radians around the polar axis of the 3-ball
Pn. It is easy to see that all the above defined identifications are invariant with respect
to this rotation; therefore 9n induces an orientation preserving homeomorphism gn on
Mn. The set Fix(gn) consists of the points of the polar diameter NS and the points of
the edge z. Let Gn be the cyclic group of homeomorphisms of Mn generated by gn. Of
course, Gn has order n and Fix(g*) = Fix(#J for each J t = l , 2 , . . . , n — 1 . The quotient
space Mn/Gn is homeomorphic to M, and the canonical quotient map

pn : MJGn -+ M,

is an n-fold branched cyclic covering, whose branching set is the 1-subcomplex of
M, composed of NS and z (see Figure 2, where the branching set is shown by a thick
line and each of the boundary quadrilaterals Q, Q, R, R' is subdivided into four
triangles).

Figures 2-7 depict, in detail, the identifications performed on the 2-sphere of Figure 2
to obtain Mu showing the development of the branching set. More precisely, we have
successively performed the identifications between the following regions: ql and qA with
q\ and q4 (Fig. 2 -*• Fig. 3), q2 and q3 with q'2 and q'3 (Fig 3 -> Fig. 4), r, with r\ (Fig.
4 -v Fig. 5), r2 with r'2 (Fig. 5 -> Fig. 6). Notice that the complex is a three-ball at each
of these stages. As a final step we identify r3 and r4 with r2 and r\ obtaining a three-
sphere, where the branching set is a knot embedded as in Figure 7.'

Hence, M, is homeomorphic to a 3-sphere and the branching set is the two-bridge
knot b(7, 3), according to Schubert's notation (see [1. p. 181]), which is the knot 52 of
the Alexander, Briggs, Reidemeister table ([1, p. 312]).

So we have proved the following:

Theorem 1. The manifold Mn is the n-fold cyclic covering o/S3 , branched over the
two-bridge knot b(7, 3).

As already known, the 2-fold branched coverings of the two-bridge knot or link
b(p, q) is the lens space L(p, q) (see [19]). Therefore, we immediately have:

Corollary 2. The manifold M2 is the lens space L(7, 3).

Remark 1. From a result of [16], each Mn turns out to be an element of a certain
class of manifolds S(b, I, t, c), depending on four integer parameters, introduced in [13].

1 For the reader's convenience, the starred reference points in the figures underline the above identifications.
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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isotopy

b(7,3)
Figure 7

In particular, Mn is homeomorphic to the Lins-Mandel space S(n, 7,3, n — 1) —
S(n, 7,4,1).

4. Geometric structure on M„

The topological properties of Mn established by Theorem 1 easily allow us to derive
its geometric structure:

Proposition 3. The manifold Mn has a spherical structure for n = 1,2 and a
hyperbolic structure for n > 2.

Proof. As is well known, the n-fold cyclic covering of S3 branched over a knot K
has the same geometric structure of the orbifold (K, n), which has S3 as its underlying
space and K as its singular set with a cyclic isotropy group of order n (for example, see
[3, p. 69]). Since the orbifold (b(7, 3), ri) is hyperbolic for n > 2 and spherical for
n = 1, 2 ([9, Theorem 3.1]), the statement is proved. •

Remark 2. Observe that M3 is the Fomenko-Matveev-Weeks manifold Q,, which
is the hyperbolic 3-manifold with the smallest known volume (vol. = 0.9427...). For
more details, see [11], [14], [21] and Chapter 2 of [12].

5. A geometric cyclic presentation for nl (Mn)

From the 2-skeleton of Kn it is easy to get a presentation of the fundamental group
7r,(Mn). Orienting the edges of Kn as in Figure 1 and squeezing z to a point, we get 2n
generators x,, x2 , . . . , xn, y,, y2 yn subject to n relations of type x^^x,"1 = 1
(derived from Q,) and n relations of type y,x,+2>',}'1>i = 1 (derived from /?,-). Since the
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Figure 8

first relations give y,, = x^x,-, the second relations become xi+,x,xI+2xj+|X,x,+1x,+2 = 1.
Hence, the fundamental group of Mn admits the following cyclic presentation with n
generators:

> . (1)

A family of Heegaard diagrams Hn,n> 1, corresponding to such cyclic presentations
is depicted in Figure 8 (where the circle C, must be identified with the circle C-, for
each i = 0, . . . ,« — 1, according to the labelling of their vertices). Note that this family
has cyclic symmetry and it is a particular case of the ones studied in [4]. More
precisely, it is exactly the (7, 3, 0, 1, 2, —2) class of Table 1 of that paper.

It is easy to see that Hx is a Heegaard diagram of S3 and that it is the quotient of
Hn via the cyclic action. Therefore, Hn is a Heegaard diagram of a 3-manifold, which is
an n-fold cyclic covering of S3 with branching set independent of n. A simple test2

shows that H2 is a Heegaard diagram of the lens space L(7, 3). Since L(7, 3) admits a
unique representation as 2-fold branched covering of S3 (namely, over the two-bridge
knot b(7, 3)), we have the following result:

Proposition 4.
presentation (1).

The manifold Mn admits a spine which corresponds to the cyclic

2 The test has been conducted with the aid of a computer program, written by the first author's research group,
which checks topological and algebraic properties of (pseudo-) manifolds of relatively little "complexity" using
combinatorial tools. See [5] for a survey of these techniques.
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6. Homology characters of Mn

The two-bridge knot b(7, 3) is a genus one knot (see [7, Satz 5.1]), and so the
homology characters of Mn can be computed:

Proposition 5. The first homology group of Mn is

Z1M ® Z K , if n is even ^

ZI M © Z| 6 , if n is

where, for each n > 0:

a, = 1, a2 = 1, an+2 = an+) - 2an;

b, = 1, b 2 = - 3 , bn+2 — bn+i - 2bn.

Proof. A Seifert matrix of b(7, 3) is K = ( ^ ~ 2 j (see Table II of [1]). Thus,

Theorem 1 of [6] applies with y = det(K) = 2 and co = g.c.d.(yn, u12 + v2l, v22) = 1. D

The following table exhibits the torsion coefficients of/ / , (Mn), for n < 15.3

n 2

7
1

3

5
5

4

21
3

5

11
11

6

35
5

7

13
13

8

21
3

9

5
5

10

77
11

11

67
67

12

315
45

13

181
181

14

637
91

15

275
275

Table 1

7. How many different "cyclic" identifications can be defined on ?„?

Finally, we examined which 3-manifolds arise from different identification-systems
on the boundary of Pn. Of course, the general problem is intractable; therefore, we
investigated cases that were quite similar to the one studied in the previous sections.

In fact, we defined the identification-system in on Pn as being admissible when the
following conditions are fulfilled:

(a) in is orientation reversing and invariant with respect to the action of Gn;

(b) the space \KX\ = \PJi\\ is homeomorphic to S3;

(c) the space \Kn\ = \Pn/in\ is homeomorphic to a 3-manifold for each n > 1.

In this way, each element of the resulting (admissible) family is a cyclic covering of
S3, branched over a suitable subcomplex of the 1-skeleton of /C, and over the polar
diameter NS. Moreover, since a cyclic covering of a graph (with some vertices of

3 Compare Appendix of [13].
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degree > 2) cannot be a 3-manifold, the branching set of an admissible family must
be a knot or a link.

We developed this part of our research in two steps: first we studied all the possible
orientation reversing identification-systems4 on P,, checking that only three produced
the 3-sphere: Ku K\ and K'2'. Figure 9 shows the corresponding identification-systems
on P,, which glue Q with Q' and R with R', matching up their starred reference
points.

In each of these three cases, the cellular complex has two vertices (N and S) and
three edges connecting them (x, y and z). Hence, each family arising from these cases
(admissible or not) consists of branched cyclic coverings of a knot, or of a graph with
two vertices of degree > 2 (the points N and S). We then checked all 12 possible cases
with n = 2 arising from K]t K\ or K'[. In detail, starting from the complex 3(P2)
depicted in Figure 10, we tested - in the same way of Section 5 - all the spaces
obtained by gluing Qx with Tt and Q2 with Ti+2, for i = 1, 3 (note that the subscripts are
mod 4), combined with all the identifications of K, and R2, either with Ti_l and Ti+I

or with Tl+I and 7^_,. Among the resulting combinations, seven give S3, two give the
lens space UJ, 3) and the other three fail to produce 3-manifolds. Because of the
uniqueness of the representation of lens spaces (including the 3-sphere) as 2-fold
coverings of knots or links [10], these different admissible identification-systems
produce no non-trivial family of 3-manifolds, except the Mn's already studied.

4 There are 32 of them, up to symmetry.
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Figure 10
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