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ON THE UNRAMIFIED EXTENSIONS OF THE PRIME
CYCLOTOMIC NUMBER FIELD AND
ITS QUADRATIC EXTENSIONS

NORIKATA NAKAGOSHI

§1. Introduction

It is interesting to know what kinds of primes are the factors of the
class number of an algebraic number field, and especially to find ones
being prime to the degree. About this matter it is desirable to construct
the unramified Abelian extensions plainly. In this paper we shall show
some of them for the prime cyclotomic number field and its quadratic
extensions using the units of subfields.

Let 1 be an odd prime and { be a primitive I-th root of unity. Let
k = Q) be the I-th cyclotomic number field over the field @ of rationals.
If [ is irregular, then there is an even integer r with 2<r <! — 3 such
that the Bernoulli number B, ,_, is divisible by /. In §3 it will be
proved that the existence of this even index r is equivalent to that of
the cyclotomic unit in the subfield of %, of degree (I — 1)/(r, ] — 1), giving
the unramified extension of k, of degree ! by adjunction of its I-th root
to k, under the assumption of Vandiver’s conjecture on the second factor
of the class number. When /= 1 (mod 4), this equivalence is related to
N.C. Ankeny, E. Artin and S.D. Chowla’s conjecture that u = 0 (mod I)
for the fundamental unit ¢, = (t + u+/ 1)/2> 1 of Qv 1) which is not
yet proved. We shall give in detail that u = 0 (mod /) if and only if
k(V'e,) is unramified of degree ! over k without Vandiver’s conjecture.

In §4 we shall consider a relative quadratic extension K = k(v d)
where d is a square free rational integer prime to I. Let [* = (—1)%-v7[,
If d is a quadratic residue modulo /% then we shall give the elementary
conditions to obtain the unramified Abelian extensions of degree ! and
I* over K by adjunctions of the I-th roots of the real units of Q(v 7%, v d)
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without any assumption on the class numbers of K and its subfield.
Some examples satisfying these conditions are shown in §5. In order to
get these conditions we utilize the structure of the prime residue class
groups modulo the /-th powers of the prime divisors of K lying above I.
This elementary construction of unramified extensions is nowhere to be
seen. _

Here we call to mind some papers dealing with the class numbers
of relative quadratic extensions. M. Gut [4] proved that if an algebraic
number field F contains { and has a prime divisor lying above [, of
absolute degree 1, then there exist infinitely many relative quadratic
extensions of F' whose class numbers are multiples of / and their primi-
tive elements are quadratic units over F. O. Neumann [7] constructed
infinitely many quadratic extensions whose class numbers are divisible
by 3, over an algebraic number field whose class number is prime to 3.
G. Gras [3] showed that if the class number of Q(v'd) is divided by I,
then there exists a unit & of k((¢ — )4/ d) such that k(v/d, % ¢) is
unramified over k(v d) where k, is the maximal real subfield of k2. C.J.
Parry [8], [9] denoted the necessary and sufficient conditions that the
class number of Q(v/'5, v d) is divisible by 5. G. Gras’ and C.J. Parry’s
results are based on the class number relations and the “Spiegelungssatz”’
for k(v d).

I am thankful to Prof. H. Yokoi for his pertinent suggestion.

§ 2. Preliminaries

Let K= k(v d) be a quadratic extension of the /-th cyclotomic
number field £ where d is a square free rational integer prime to . We
assume that d is a quadratic residue modulo /. Let 1 =1—{ be a
generator of the prime ideal of k& lying above I. Then the ideal (2) splits
completely in K, say (1) = 2,8, where &, = &,. If there is a unit ¢ of K
such that ¢ is an /-th power residue modulo & for i = 1, 2, then K(¥ ¢)
is unramified over K. Since the prime residue class group modulo £!
is of type I —1,1,-.-,1) for each i = 1,2 (cf. Theorem 3 of [6]), we
can choose Takagi’s basis {¢,};<.<;-; for their Sylow l-subgroups (cf. [10]):
k£, 1 < a <l — 1) are integers of k defined uniquely by

k=, £k, = 1— 1 (mod 2¢%Y),
k2 = ££" (mod A'*')
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where g is a primitive root modulo / and ¢ = ({ —{?) is a generator of
the Galois group of & over Q. For any number p of K which is prime
to ¥, we let £,(1) be the exponents determined by the congruence

*) p= g g @ (mod 9).

If 1 is in &, then ¢,(x) are given by Kummer’s logarithmic derivatives.
For an algebraic number field F, numbers «, 5 and an ideal % of F

we use the notation ¢« = § in F, and a = (mod %) in F, if «/f is an
0 )

I-th power of a number of F, and «/8 is congruent to an I-th power of a
number of F modulo ¥, respectively.

Now we look through the exponents t,(y) of the congruence (¥). Let
I* = (—1)-v7,

Lemma 1. (i) If pis @ unit of k and congruent to a rational integer
modulo 2, then =1 (mod ) in k.
()

() If pisin QW'I*) and prime to 1, then t,(u) =0 for a with
1<a<l—1and a+ (—1)/2. In particular, if 1 is a unit of Q(v %),
then t,_,(u) = 0.

Proof. (i) Let p = r (mod 2') with a rational integer r. Since there
is a rational integer v such that p' = v (mod #-%), it follows from (*)
with respect to the modulus 2-' that r=v T[] «%*» (mod2-!). By the

1gasl-2

(- 1)‘st power of this congruence we have (I — 1){,() = 0 (mod [), also
t()=0fora=1,..--,1—2.

For the unit 4 of & we have ¢,_,(¢) = (1 — Ny o(w)/! = 0 (mod ) (cf. [10]).
Thus g =1 (mod 2).

)

(ii) Let g be a primitive root modulo ! and ¢ = (¢ — {¢) be a gen-
erator of the Galois group of k& over Q.

Let 4= x + y+ {* with rational numbers x and y. From the con-
gruence (*) with respect to the modulus 2’ it follows a{y) = (a{p))* ] £8"=®
(mod 2%). Since v ¥ = li (!l)—)(;” where (%) are Legendre’s symbols, we

b=1

have o(v/ 1¥) = (%—)«/Fz —+/1*. Hence we have

x— yVIF = (x — y/ T¥) [] #8%w (mod 2.

Therefore
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Nocjmplp) = x* — ¥y = (& — I*¥y?) [] 780w (mod 2Y)

where (x? — I*y?)-'=1 (mod 2**). Thus (1 + g“)ta(y) =0 (mod !) for
a=1..-.,1—2 alsota(,a):Oforawith1§a<l‘—-1 and a # (I — 1)/2.
If 4 is a unit of Q(+/7¥), then ¢,_,(x) = 0.

LEmMMA 2. Let d be a square free rational integer prime to I. Assume
that d is a quadratic residue modulo 1.

(i) If pisin QW d), prime to &, then t,(u) =0fora=1,...,1— 2.
(i) Let I*d > 0 and p be a unit of Q(v 1¥d). Then t,(u) =0 for a
with1<a<l~—1and a+ (- 1)2

Proof. We also denote by ¢ = ({ —¢%) a generator of the Galois
group of K over Q(v d).

(i) Since L, is an ambiguous ideal with respect to (¢}, it follows
from (*) that

a() = (o) [[ g (mod £),

that is,
p=p [T g (mod RY).

Hence (g* —1)t,(x) =0 (mod!) for a=1,-..,1—1, also ¢,(y) =0 for
a=1,.-.-,1—2

(ii) Let g be a unit of the real quadratic number field Q(v I*d).
From the congruence (*) we have

a(p) = (e(w) T] ££™» (mod ).
Since ’

p-0(p) = Nomp ) = £1,
we have

+p!

It

(£p) [1 487  (mod ).

Therefore (1 + g% ¢,(x) =0 (mod I) for a=1,-.-,1— 1, also t,(x) =0
for a with 1<a<!—1and a+ (— 1)/2. The lemma is proved.

Now the system of the fundamental units of Q(+v [*, ¥/ d) is composed
of those of its real quadratic subfields, or the 2nd roots of their products.
When we wish to obtain the unramified extensions of K, of degree ! using
the Il-th roots of the units of Q(vI1*, v d), it is sufficient to examine
the fundamental unit of each quadratic subfield, taking into account of
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Lemmas 1 and 2. If 4 is the fundamental unit of Q(v d) or Q(v I*d),
then Lemma 2 does not make the exponent ¢,_,(u) or £,_,,(¢) clear. In
§4 we shall show that if d is a quadratic residue modulo /%, then the
exponents £,(u) for y of Qv I*, v d) are all determined by Kummer’s
logarithmic derivatives in k.

§ 3. Unramified extensions and prime cylotomic units

Let B, be the Bernoulli numbers defined in a power series about the
origin of x/(e® — 1). Let g be a primitive root modulo ! and ¢ = (£ — &%)
be a generator of the Galois group of k2 over . For a positive divisor
r, of (I — 1) we denote by k,, the fixed field to the subgroup {¢™), which
is of degree r, over Q.

a=1

Let A(r) = lﬁl (i — ga)ar be cyclotomic units of & for positive integers
r. When r, is a positive divisor of (I — 1), we define e(r/r)) = N, (A(r)).
We let h* be the class number of the maximal real subfield of k. Van-

diver’s conjecture is that A* == 0 (mod I).

THEOREM 1. Let r 2 < r <1 — 3) be an even integer and d, = (r,1 — 1)
be the greatest common divisor of r and I — 1.

Then B,_._, = 0 (mod I) if and only if k(Y &(r/r,) is unramified over k
where r, = (I — 1/d,. If h* % 0 (mod 1), then [k(V (r[ry)): k] = L

Proof. Since Zia’ =0 (mod !) and r r, = 0 (mod I — 1), we have

-1

o™ A(r) = [] {1 — £*#™)/(1 — &}

a=1

_ -1 1 — Cag”o 1 _ Cg"g )a."
aul( 1—-¢ 1-¢

_ -1 0] Ca)brg<l—1~ro>r _a

0) b=[1 ( 1-¢ ) r).

Therefore

do—~1
e(rfry) = Ny, A(r) = _ﬂoa'*”A(r) = A(r)®,
;2

also k(W e(rfry)) = k(Y A(@r)). If B,_,., = 0 (mod [), then by Theorem 2 of
[12] we find that A(r) =1 (mod 2*!), and thus k(¥ A(r)) is unramified
(3}

over k.

https://doi.org/10.1017/50027763000001598 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001598

156 NORIKATA NAKAGOSHI

Conversely, suppose that k(¥e(r/r)) is unramified over k. Then
e(rfry) % 1 (mod #) and A(r) % 1 (mod #%). Since the I-th power of an
intege;' of k is congruent to ;1 rational integer modulo ‘-, A(r) is con-
gruent to a rational integer modulo 2-!. Thus B,_,_, =0 (mod !) by
Theorem 2 of [12].

Let ¢, = (£ — %) be elements of the Galois group of & over Q and

1-1 ~ 1 — Cg)al‘l—wgl
E —_ a-g)/2
bt aI;Il (C 1-¢

be the cyclotomic units defined in Chapter 8 of [11] for even r with
2<r<!l— 3. Then we have as above

E_ .= l]:[l ( 1-—-¢% /1~ Cb)m

mv=1\1—¢ 1—-¢

l_l 1 - Ca>a’,(gzkl_rv]) l—1—r_
= = (A £ 1,
® aUl ( 1—-¢ ® (Ar)

If h* %0 (mod /), then E,_,_,#1 in k by Corollary 8.15 of [11], and
@)
therefore [R(V e(riro)): k] = L.

Remark. If r is a positive integer and r, is a positive divisor of
I —1 such that rr; £ 0 (mod [ — 1). Then e(r/r)) = N,,, A(r) =1 in &,
)

@-1)/ro-1
because >, g/t~ =0 (mod I).
i=0

In Table 1 we show some irregular primes I for which
dy=rl—1—-r)>2 and r,= (- 1/d, < (- 1)/2.

Let /=1 (mod 4) and consider whether k(¥¢,) is unramified over k
by the fundamental unit & of Q(v 7).

ProOPOSITION 1. Let =1 (mod 4) and ¢ = (t+ uv/ 1)/2> 1 be the

fundamental unit of Q(v' 1). Then k(¥¢,) is an unramified extension of
degree 1 over k if and only if u= 0 (mod I).

Proof. First we can prove that ¢, = 1 in k. Indeed, if ¢, = 2* for
@)

some z of k, then N1 = 2l, also ¢""* = 2! where 2z, = N,o/7)2
Hence z; is a unit of Q(v 1) and we have ¢, = ¢l/el! = (¢,/2)". Since ¢,
is the fundamental unit of Q(+/ ), there is a rational integer ¢ such that
e,/2* = +¢. It then follows that ¢, = +¢f' which is impossible.
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It follows from Lemma 1 that
g = el (mod 2%).

Now suppose that k(¥ ¢,)/k is unramified. Then ¢, = 1 (mod 1%), 50 t;_,,.(e;)
(€]

= 0. Since there is a rational integer @, such that & = g, (mod 1'-'), we
have ¢, = a, (mod 2*~?) and hence uv/ I = 2a, — t (mod 2'-!) which implies
20, — t= 0 (mod 1), so uv/ I =0 (mod 2-!). Thus u = 0 (mod ).

Conversely, suppose that u = 0 (mod /). Then ¢ = t/2 (mod 29). It

then follows from Lemma 1 that ¢, = 1 (mod 1) and k(¥ e, ) is unramified
)

over k.
Now it is known in [5] and [1] that

%h(Q( 1) = By (mod 1)
where A(Q(v' 1)) is the class number of Q(v 1) and AMQ(v 1)) < I. This

shows that v = 0 (mod /) is equivalent to B_,, = 0 (mod ).
We note that

el_zmQuT)) _ L]i[i (1 — go)ern = lﬁi (i _ ga)(a/l)
?

=TS = ae-on),

because (a/l) = a“»* (mod I).

Remark. We have no primes /=1 (mod 4) such that B,_,,=0
(mod 1) for [ < 6,270,713 (cf. [2]).

§ 4. Relative quadratic extensions

Let d be a square free rational integer prime to ! and K = k(v d).
We shall give the sufficient conditions of a unit ¢ of Q(v 7*, v/ d) making
it possible that K(¥ ¢) is an unramified extension of K, of degree I,

ProposiTiON 2. Let d be a square free rational integer such that
d = x2 (mod %) with a rational integer x,, prime to l. Let

e=a,+ avi* + avd + avi*d

be a unit of QW 1*, V' d) with a,€Q. Let t = (W d— —+d) be a gen-
erator of the Galois group of Q(v/ d) over Q.
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Suppose that (i) e+ 1in K, (i) &) =1 in QW I*),
1 o W
(iii) t([—l)/Z(aO + a‘zxo + (al + anO)«/ l*) = O’
(1v) {(ay + ax,)* — I*(a; + a,x)*}* 22 =1 (mod /?).
Then K(¥¢) is an unramified extensicn of K, of degree l.

Proof. We identify r with a generator of the Galois group of K over
k. Let , = z(2,). Since [ = (,%,)'"!, we have

d— x= (\/—(T — xo)(«/7 + x)=0 (mod (2,2,)% )

where 20 —1)>1 If v/d —x =0 (mod %), then z(+#d — x)=0
(mod 2,2,) and also x, = 0 (mod [) which is contrary to the assumption.

Hence we may assume that +/ d = x, (mod 2!). Then

e=a+ aV I* + av'd + a/ 1%d
= a, + a%, + (@, + asxo)\/F (mod ).

Put & = a;, + ax, + (@, + a,x,)+/ I* which is a number of Q(v I*), prime to
2. For this number ¢ we can obtain the exponents ¢,_;,.(£) and £,_,(§) by
Kummer’s logarithmic derivatives. It then follows from Lemma 1

(**) £ = &P 9rii®  (mod 20

If trzq)/z(f) =0 and ¢.,&)=(01-— ka/Q(g))/l =1 - ]\70(‘/?)/0(5)“*1)/2)/1 =0
(mod 1), then ¢ = £ = 1 (mod @) Moreover, if ¢-z() = 1 in Q(+ [*¥), then
) )

by (**) we have

o(e) = (O el ki ®  (mod LY,
also

-1 — -1\ - - 14
e = (™) Lyt (mod LY.

If the conditions (ii), (iii) and (iv) are satisfied by the unit ¢, then e = 1
®

(mod ) for i =1, 2. Thus K(¥¢) is unramified over K. Finally, if
e+ 11in K, then [K(V¢): K] = 1.

@)
THEOREM 2. Let d be a square free rational integer such that d = x3
(mod [?) with a rational integer x, prime to l.
(I) Let d>0 and ¢, = a, + a,+/ d > 1 be the fundamental unit of
QW d) (ay, a,€ Q). If (a, + ax,) ' = 1 (mod 1%). then K(V ¢,) is an unrami-
fied extension of K, of degree I.
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(M) Let I¥d> 0 and e., = a, + a;v [¥d > 1 be the fundamental unit
of QW T*d) (ay, a,€ Q). If ty_ypla, + ax,v/ 1¥) =0, then K(¥epy) is an
unramified extension of K, of degree l.

According to H. Yokoi [13] we know that (i) if d = b*l* 4 4 is square
free for a rational integer b > 0, then (bl* + Vb!* + 4)/2 is the funda-
mental unit of Q(v d); (ii) if d = b** + 1 is square free for a rational
integer b > 0, then ¢, = bl*> + +/b*l* + 1 is the fundamental unit of Q(v d).
These units satisfy the condition of (I) of this Theorem. Some pairs
(I, d) satisfying the condition of (I) are also shown in Table 2.

Proof. (I) Suppose that ¢, = w' for some w in K. Then Ny 764

— — l -1
= Ngsoj0,W', also &

= wh where w, = Ny, 5,w. We see that w, is a
unit of Q(v/ d). Since &, = eifel! = (e,/w,)' and e, is the fundamental
unit of Q(v/ d), it is a contradiction. Thus ¢, = 1 in K.

We let ¢, be ¢ of Proposition 2 with a, = a(al)z 0. Then

es-t(es) = Nou?)/QEd = +1= (%1 and t(z—n/z(ao + a,x) =0,

because a, + a,x, is a rational number prime to /. Thus, if (a, + a,x,) ' =1
(mod [?), then by Proposition 2 we see that K(¥¢;) is an unramified
extension of K, of degree [

(II) Let I*d > 0 and ¢, be the fundamental unit of Q(+/ /*d). Then
it can be proved that ., = 1 in K as above. We let ¢.; be ¢ of Pro-

1)
position 2 with a, = @, = 0. It then follows that

el*d'T(El*d) = NQ( JL—*E)/Qel*d = (13 _— l*da§
_[*1l= (£1), if I=1 (mod 4) and d > 0,
T l+1=(+1, ifl= —1 (mod 4) and d < 0.

Since d = x} (mod [%), we have a} — l*da} = a} — [*aix} (mod [*), and then
(@@ — I*ax3)*""2 =1 (mod ). Thus the conditions (i), (i) and (iv) of
Proposition 2 are satisfied by e = ;s If £y, (a + @%,4/ 1¥) = 0, then
K(¥ ¢4,) is an unramified extension of K, of degree /, as desired.

ProrositioN 3. Let d be a square free rational integer prime to
I. Let I*d> 0 and ¢., = a, + a,4/ 1*d > 1 be the fundamental unit of
Q(\/T*—J) (ay, a,€Q).

If d* = 1 (mod 1% and a, = 0 (mod 1), then K(¥ ¢,.;) is an unramified
extension of K, of degree l.
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Proof. Let  be a prime divisor of K lying above [ and ¢ = (v d —
—+ d) be a generator of the Galois group of K over k. Since  and
7(Q) are unramified over & and ¢, # 1 in K, it is enough to show that

;g 18 the I-th power residue modulo(l)ﬁ‘ and ¢(Q)*. Under the assumption
of Proposition 3 it follows that ¢, = a, (mod ') where @, = alxii7**
(mod 2Y) and ¢,_,(a,) = (1 — Nyela))/l = (1 — al™?)/l = 0 (mod ). Therefore
&g (_f 1 (mod &) and =+ (guq)™! (_T_) 1 (mod z(R)"), as was to be shown.

For example, let /=1 (mod 4) and bz 0 (mod ). If d = b(bl® + 2)
is square free for > 0 and if ¢, = bl* + 1 + I¥VbI(bl® + 2) is the funda-
mental unit of Q(v Id), then K(4V¢,,) is unramified over K, of degree I

There are some examples of [ and d satisfying the conditions of
Proposition 3 which are shown in Table 3.

CoROLLARY. Let =1 (mod 4), d> 0 and d = x} (mod 1) with a
rational integer x, prime to I. Let ¢, = ap + a;v/' d > 1, e, = ay + ;4 Id
> 1 be the fundamental unit of Q(v d) and Q(v Id), respectively.

If (ay + a,x) "' =1 (mod %), a};' =1 (mod !*) and @, =0 (mod 1),
then K(¥e;, ¥ &,2) is an unramified extension of K whose Galois group over
K is of type (I, D).

We have some pairs (/,d) satisfying these conditions which are
shown in Table 4.

Proof. From the 1st assertion (I) of Theorem 2 and Propositon 3 it
follows that K(¥e,) and K(¥&,) are both unramified extensions of K,

of degree I. It is enough to show that ¢; #+¢, in K. Suppose that
)

e, = ¢,0' for some w in K. Since a(e,,) = ay — v/ 1d and Ny o, 7(cs) =
Nijocja(ea0’), we have ' = (£1)¢" 9%}, = o}, where w, = Ny o ;0(w) and
(I —1)/2=0 (mod 2). Then w, is a unit of Q(+' d) and ¢ = e/} =
(es/wy)* which is impossible, because ¢, is the fundamental unit of Q(v d).
Thus we have the corollary.

Remark. If d is prime to ! and if there is a real unit ¢ of Q(v I*, v d)
such that ¢ is the I-th power residue modulo the I-th power of each
prime divisor of K lying above I, then K(%¥ ¢) is unramified over K, even
though d is not a quadratic residue modulo /2. For examples, if d = b%* + 2
is square free for >0 and ¢, = b%* + 1 + bI*Vb** + 2 is the funda-
mental unit of Q(v d), then ¢, =1 (mod /%), so K(¥e,) is unramified
over K, of degree [.
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§5. Examples

In the following Tables 2, 3 and 4 we denote by A, the class number
of a quadratic number field Q(v m). The odd prime factors of the class
number of Q(v m,, v m;) are those of the class number of its quadratic
subfields.

I am grateful to Y. Kida of Kanazawa Univ., giving me these many
examples using a computer with his excellent programs.

Table 1 (Examples for Theorem 1)

l I—1—r r dy=(r,1—1) r,=(0-1)/d,
37 32 4 4 9
103 24 78 6 17
421 240 180 60 7
491 336 154 14 35
613 522 90 18 34
631 80 550 10 63
647 272 374 34 19
673 408 264 24 28
761 260 500 20 38
929 520 408 8 116
1129 348 780 12 94
1983 1058 874 46 42
2017 1204 812 28 72
2357 2204 152 76 31
2441 366 2074 122 20
2861 352 2508 44 65
3329 1378 1950 26 128
3433 1300 2132 52 66
3617 16 3600 16 113
4003 2610 1392 58 69
4027 2332 1694 22 183
4523 456 4066 38 119
4951 1914 3036 66 75
6263 3286 2976 62 101
6529 1564 4934 68 96
6871 2010 4860 30 229

7309 324 6984 36 203
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Table 2 (Examples for (I) of Theorem 2)

X, d he  hug l X, d he Ry
3 1 82 4 12 7 1 295 2 4
2 58 2 12 2 494 2 40
4 43 1 12 3 303 2 40
51 5 2 4 4 1 1 82
2 629 2 4 : “oo2 16
3 109 1 2 6 771 2 40
4 191 1 2 8 505 4 28
6 161 1 2 9 179 1 32
7 574 6 4 10 149 1 8
8 39 2 4 11 28 1 16
9 581 1 2 12 2594 2 160
1 9 1 9 13 218 2 48
12 6 1 o 15 470 2 64
16 403 2 32
17 583 2 48
18 1353 2 72
19 1194 2 48
20 449 1 56
22 1121 1 56
23 1754 2 80
24 1311 4 48
Table 3 (Examples for Proposition 3)
1 d I*d he hug 1 d I*d he P
3 —26 78 6 2 7 —34 238 4 2
—53 159 6 2 —~73 511 4 2
—107 321 3 3 —118 826 6 2
5 14 70 1 2 13 61 793 1 4
23 115 1 2
26 130 2 4
31 155 1 2
123 615 2 4
127 635 1 2
129 645 1 2
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Table 4 (Examples for Corollary).

X, d d hg Piyrg
5 1 426 2130 2 4
2 629 3145 2 4
3 509 2545 1 4
4 191 955 1 2
6 2386 11930 2 4
7 574 2870 6 4
8 1389 6945 1 10
9 581 2905 1 2
11 2671 13355 1 4
12 3169 15845 1 4
13 1 23830 309790 2 4
9 9883 128479 1 2
12 2003 26039 1 6
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