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be
y» In a recent paper Salem and Zygmund [1] proved the following result:

Put

888 and denote the 9?,,(£) the v-th Rademacher function. Denote by Ln(t, 0)
the unique trigonometric polynomial (in 0) of degree not exceeding n for

Dg which
tD, L n ( t , a v ) = <pv{t) {v = 0 , l , . . ., 2 « ) .

Denote Mn(t) — max | Ln(t, 0)|. Then for almost all t

«_«, (log ft)*

I am going to prove the following sharper

THEOREM 1. For almost all t

^ ^ log log n „.«> log log n n

Instead of Theorem 1 we shall prove the following stronger (throughout
this paper cv c2, . . will denote suitable positive constants)

THEOREM 2. To every cx there exists a constant c2 = ca(c1) so that for
n > «0(

ci» cz) the measure of the set in t for which

2 2
— log log n — c2 < Mn{t) < — log log n + c2

is not satisfied, is less than l/»c*.
Theorem 1 follows immediately from Theorem 2 by the Borel-Cantelli

Lemma. Thus we only have to prove Theorem 2.
First we need two simple combinatorial lemmas. Let m be a sufficiently

large integer, we define for 1 ^ i < w (for the purpose of these lemmas)

) = ^(O. <P-t(t) = P«-i(0-
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LEMMA 1. Let m > m^c-^). Then neglecting a set in t of measure less
than l/2mCl there exists for every t a k, 0 ^ k ^ m satisfying

(1) PwiW = ?*-i-i(*) = (-1)1 for all 0 ^ / < i log m.

The measure of the set in t for which k = [r log w] satisfies (1) is clearly
equal to

But there are clearly [w/log tn] + 1 possible choices of r (i.e. r can take
all the values 0 5̂  r < w/log w). Thus by an obvious independence ar-
gument the measure of the set in t for which none of the possible choices of
r satisfies (1) is less than

for every cx if w > wo(c1), which proves Lemma 1.

LEMMA 2. To every cx there exists a c3 so that for m > mo(cv cz) neglecting
a set (in t) of measure less than \m — cx we have for every t, r, (0 ^ r <̂  m)
and v, (— w/2 < v < m/2)

(2) s,.*(0 = I 2 ( - l )^ f c + i (01 < ^3^(log m)*.

It is well known that the measure of the set in t for which

i-0

holds is less than

(3) c4c-*e

for sufficiently large c3. In (3) there are fewer than m2 possible choices
for r and v, thus Lemma 2 clearly follows from (3).

Now we are ready to prove our Theorem. (Define for 0 < v ^ n
<x_v = a2n_^^a2n+v = <%„). It is well known that

Dn[P)=sin.(n-\-%)dlsia. £8 is the Dirichlet kernel. Let <xfc ̂  9 <
We have

2^n i ( o + i
Now we consider only the / which satisfy Lemmas 1 and 2, (put m = 2n)
by our Lemmas we thus neglect a set in t of measure less than n~\ Put
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where in E[ 0 ^ v ^ [log «] and in E[' [log n] ^ v ^ w. We evidently have
by |.Dn(0)| ^ 2« + 1 and a simple computation

(7) *i^5TT7 ^ IA.P-««.,)!
Z» -t" *0£rS[logn]

< - l o g l o g » + C4.r

2« +

Further by partial summation and Lemma 2

+ -

—— c5{logn)*

since a simple computation shows that for <x.k ^ 0 < <x.k+1

n

and

(6), (7) and (8) implies

/ v r, lOg lOg »

(9) A< 6 5

Similarly we can show

(9), (10) and (5) implies that for our t (i.e. for all t neglecting a set in t of
measure < n~°l).

(11) \Ln(t,d)\ < - l o g l o g « + c10.

Let now & satisfy Lemma 1 and put 00 — 7i(2k + l)/(2n + 1). Then we
have by (4) and the definition of k
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Further clearly
1 :

2» + l|r|<ilogn_._ (2r

(13)

(ir+I), /f\ > !
2(2»+l ) \n3/

As in (8) we can show that

(14) l^al<
(12), (13) and (14) implies

2
(15) \Ln(t, 60)\>~log log n - c u - cM.

71

(11) and (15) complete the proof of Theorem 2.
By more complicated arguments we could prove the following sharper,

THEOREM 3. There exists an absolute constant C so that neglecting a
set in t whose measure tends to 0 as n tends to infinity we have

Mn{6) = - l o g log n + c + o(l).
n

(The exceptional set whose measure goes to 0 depends on n).
Using the methods of another paper by Salem and Zygmund [2] we can

prove the following

THEOREM 4. There exists a distribution function (ip(a) (i.e.
y>(oc), — oo < a < oo is non decreasing, ip(— oo) = 0, y>(-}-oo) = 1), so that,
neglecting a set in t whose measure tends to 0 as n tends to infinity, we have

m{6:Ln{t, 0 ) < a ) - * v ( a ) .

In other words: If we neglect a set in t of measure tending to 0 (the excep-
tional set may depend on n) we have for a t not belonging to this exceptional
set the following situation: The measure of the set in 6 for which Ln(t, 6) < a
holds, equals y>(oc) -f o(l).

We do not discuss in this paper the proofs of Theorem 3 and 4.
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