ON RANDOM INTERPOLATION
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(received 23 March 1959)

In a recent paper Salem and Zygmund [1] proved the following result:
Put ‘

2y
2n + 1
and denote the ¢,(f) the »-th Rademacher function. Denote by L,(¢, 0)

the unique trigonometric polynomial (in ) of degree not exceeding » for
which

a, = al® =

v=0,1,...,2n)

L.t a)=9¢,() (»=0,1,..., 2n).
Denote M ,(t) = max | L,(¢, 8)]. Then for almost all ¢

0s0<2n
lim M <2
n=co (log n)?}
I am going to prove the following sharper
THEOREM 1. For almost all ¢

Mﬂ(t) ___m Mn(t) __2

—loglogn geloglogn =
Instead of Theorem 1 we shall prove the following stronger (throughout

this paper ¢,, ¢,, .. will denote suitable positive constants)

THEOREM 2. To every c, there exists a constant ¢, = ¢4(c,) so that for
n > ny(cy, ¢;) the measure of the set in ¢ for which

2 2
—loglogn — ¢y < M, (t) < —loglogn + ¢,
7 7

is not satisfied, is less than 1/n‘,

Theorem 1 follows immediately from Theorem 2 by the Borel-Cantelli
Lemma. Thus we only have to prove Theorem 2.

First we need two simple combinatorial lemmas. Let m be a sufficiently
large integer, we define for 1 <+ < m (for the purpose of these lemmas)

Pm+i(t) = (), i) = @m_i(t)-
129
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LEMMA 1. Let m > my(c,). Then neglecting a set in ¢ of measure less
than 1/2m% there exists for every ¢ a 2, 0 =< & = m satisfying

(1) Prri(t) = @ro1—i(t) = (—1)" for all 0 <7 < }logm.
The measure of the set in ¢ for which £ = [r log m] satisfies (1) is clearly
equal to

2“2 [ (!o_ng_n] +1) < 9—logm .

But there are clearly [m/log m] + 1 possible choices of » (i.e.  can take
all the values 0 < » < m/logm). Thus by an obvious independence ar-
gument the measure of the set in ¢ for which none of the possible choices of
r satisfies (1) is less than

(1 —_ 2—logm)m/logm < %m-—cl
for every ¢, if m > my(c,), which proves Lemma 1.

LemMmA 2. To every c, there exists a ¢, so that for m > m,(c,, ¢;) neglecting
a set (in ¢) of measure less than {m — ¢, we have for every ¢, 7, (0 < 7 < m)
and », (— m/2 < v < m[2)

(2) Sye(t) = I‘Zo (—1)'@ess ()] < c5vE(log m)l.
It is well known that the measure 9f the set in ¢ for which

|3 (1) prns®)] = cs 94 (log m)t

§=0
holds is less than

(3) € c—hestlogm < %m-c,-z

for sufficiently large c;. In (3) there are fewer than m? possible choices
for r and », thus Lemma 2 clearly follows from (3).

Now we are ready to prove our Theorem. (Define for 0 <» < n
0_y = Oy, _,r0s,y, = &,). It is well known that

1 2n
= HD 6 —
{4) L,0.0) =5 —= 20,60 0.60 — )
where D,(0)=sin(n+})0/sin }0 is the Dirichlet kernel. Let o, < 6 < L SN
We have

1 n n
(6)  Lat0)= - i Eo @5 (£)Dn(0—0tyy,) + 2 Pr(O)Dn (0~ ,)) =21+ 2,.

Now we consider only the ¢ which satisfy Lemmas 1 and 2, (put m = 2n)
by our Lemmas we thus neglect a set in ¢ of measure less than #—:. P

(6) o =X+ 3V

ut
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where in 2] 0 < v < [log #] and in 2|’ [log n] < » < n. We evidently have
by |D,(6)] < 2n + 1 and a simple computation

7 > = Dn 0 — « ) I
) s SO L
1 1
=1 e ool .
B +2n+llsr§logn . e <7¢Og og 7 + ¢4
. 2n 41
Further by partial summation and Lemma 2
1 1 ,
b 2n 41 [losn]z<v5,n(sy'k(t) - s"‘l’k(t)) (—1) D,(0 — o)
1 n—-1

—_— - v — e — v+1 —_
o+ lv-ngnmsy’k(t)(( 1)’ D, (0—atgy,) — (— 1)1 D, (0—tp1p41))

. 1) {log n]+1D

1
(8) - én_—{——_i Sttogn, x(8) ( (0 _“k+[log3u]+1)

) (=1)"D,(0—ay,)

+2n+1
1

< ¢c;(log n)} v 4, <
o + 1 s(log )»51.:0” 6 7

since a simple computation shows that for o, <60 < a,,,

n
ID,,(O - ak-{-v)l < cs‘;‘

and

”n
1Da(0 — arss) + Da(0 — apa)l < 085
(6), (7) and (8) implies

log log n
(9) 2y <‘—g;:;§—+04+57-
Similarly we can show
log log n
(10) 2y < ‘—g;i T €

(9), (10) and (5) implies that for our ¢ (i.e. for all £ neglecting a set in ¢ of
measure < n~°1),

2
(11) L.t 0)] < ;log log n + ¢4.

Let now % satisfy Lemma 1 and put 6, = =(2k + 1)/(2n + 1).. Then we
have by (4) and the definition of %

https://doi.org/10.1017/51446788700025507 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025507

132 P. Erdés 4]

1 n
= t)D, (0, —
Ln(t’ 00) 2 + 1 EO(PV() n( 0 av)

(12) 1 1

= Dno-—a,-f- ptDno—a

2n + 1 |v—k|<}lognl ( ° )l 2n 41 1.«_;%}10”99 ( ) ( o ')

=2+ 2,

Further clearly
1 2
2y =
! 2n+1 |r|<§logn sin (27 + l)n
2(2n + 1)
(13)
! )3 2 >Eloglogn——c
= 2n + 1 Ir|<§logn (2" + l)ﬂ + 0 (i) T 11
2(2n + 1) nd
As in (8) we can show that
(14) |25 < €1-
(12), (13) and (14) implies
2

(15) ILa(t G) > ';;log logn —c¢yy — ¢y

(11) and (15) complete the proof of Theorem 2.
By more complicated arguments we could prove the following sharper,

THEOREM 3. There exists an absolute constant C so that neglecting a
set in ¢ whose measure tends to 0 as » tends to infinity we have

2
M, 6) = ;log log n 4+ ¢ 4 o(1).

(The exceptional set whose measure goes to 0 depends on z).
Using the methods of another paper by Salem and Zygmund [2] we can
prove the following

THEOREM 4. There exists a distribution function (y(a) (i.e.
p(a), — 00 < @ < 00 is non decreasing, y(— ) = 0, p(+ ) = 1), so that,
neglecting a set in £ whose measure tends to 0 as » tends to infinity, we have

m(0: L,(¢ 0) < a) > p(a).

In other words: If we neglect a set in ¢ of measure tending to 0 (the excep-
tional set may depend on n) we have for a ¢ not belonging to this exceptional
set the following situation: The measure of the set in 6 for which L, (¢, 6) < «
holds, equals p(a) + o(1).

We do not discuss in this paper the proofs of Theorem 3 and 4.
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