
9 

The Lorentz-Dirac equation 

We return to the Lorentz model and add slowly varying external potentials. On a 
formal level one can carry out the expansion in s just as for the Abraham model. 
The net result is that the rotational degrees of freedom decouple from the transla­
tional degrees of freedom, and the latter are governed by 

(9.1) 

which includes radiation reaction. Equation (9.1) is the Lorentz-Dirac equation, 
written in microscopic units. mo is the experimental rest mass of the particle. We 
reintroduced the speed of light, c. F is the electromagnetic field tensor of the ex­
ternal fields, where for better readability we omit the subscript "ex" in this sec­
tion. The scaling parameters has been reabsorbed into the definition ofF, which 
amounts to setting s = I. It should be kept in mind that the radiation reaction is a 
small correction to the Hamiltonian part. 

If one fixes an inertial frame of reference and goes over to three-vectors, then 
the time component of the Lorentz-Dirac equation reads 

and the space part becomes 

moy K(v)v = e(E(q) + c- 1v x B(q)) 

+ (e2 j6nc3) y 2K(v) [v + 3y2 c-2 (v. v) v], (9.3) 

where as before K ( v) = n + c-2 y 2 v ® v. Equation (9.3) differs from its semirel­
ativistic sister (8.1) only through the proper relativistic kinetic energy. Equation 
(9.2) is identical to the energy balance (8.6), again with proper adjustment of the 
kinetic energy. Thus we can follow the blueprint of section 8.2 to establish the 
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existence of the critical manifold and to derive an effective second-order equation 
for the motion on the critical manifold. 

The Lorentz-Dirac equation makes definite predictions about the orbit of a 
charged particle, including the effects of radiation losses, and one would expect 
that these predictions can be verified experimentally. Of course, if radiation damp­
ing is neglected, there is a multitude of laboratory set-ups. The real challenge is to 
observe quantitatively the minute changes in the Hamiltonian orbit due to radiation 
losses. We will discuss two proposals in section 9.3. The first one is the motion of 
an electron in a Penning trap. In the quadratic approximation for the quadrupole 
field, this problem can still be handled analytically, which is done in section 9.2 
along with a few other examples of independent interest. The second proposal is 
the motion of an electron when hit by an ultrastrong laser pulse. In this case the ex­
ternal potentials are time dependent and one has to rely on a numerical integration 
of the effective second-order equation. 

9.1 Critical manifold, the Landau-Lifshitz equation 

We write (9.3) in the standard form of singular perturbation theory; compare with 
section 8.2. Then 

x = j(x,y), cy =g(x,y,c) (9.4) 

with 

j(x, y) = (xz, y), (9.5) 

g(x, y, c)= (6rrc3 je2)(mo y-1y- e y-2K(xz)- 1(E(x1) + c-1xz x B(x1))) 

- 3cy 2c-2(xz · y)y. (9.6) 

To conform with (8.1) we reintroduced the small parameter c. At ze­
roth order the critical manifold is {(x, h(x))lx E IPi.3 x V} with h(q, v) = 
(efmo)y- 1 K(v)- 1 (E(q) + c-1v x B(q)). Linearizing (9.5), (9.6) at y = h(x) 

the repelling eigenvalue is (6rrc3 je2) moy-1 + O(c), which vanishes as lvl/c--+ 
1. Thus we have to rely on the construction of section 8.2, which ensures that 
for given maximal velocity v one can choose c small enough such that the orbit 
remains on the critical manifold for all times. 

To order c the effective second-order equation is given by (8.31 ), except that 
now m(v) = mo yK(v). We work out the various terms and switch back to mi­
croscopic units. Then the motion on the critical manifold of the Lorentz-Dirac 
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equation is governed by 

q =V, 

e2 [ e moy K(v)v = e(E + c-1v x B)+ --3 - y (v · V)(E + c-1v x B) 
6nc- mo 

+ ( ____:____ )2 c- 1 ((Ex B)+ c- 1(v · E)E + c- 1(v · B)B 
mo 

+ (- E 2 - B2 + c-2 (v · E)2 + c-2 (v · B)2 

+ 2c- 1v ·(Ex B) )y2c- 1v) J. (9.7) 

While singular perturbation theory provides a systematic method, Eq. (9.7) 
can also be derived formally. In (9.3) we regard moy K(v)v = e (E + c-1v x B) 
as the unperturbed equation, differentiate it once, and substitute v inside the 
square brackets of (9.3). Resubstituting v from the unperturbed equation results 
in Eq. (9.7). This argument is carried out more easily and in greater general­
ity, because it allows for time-dependent potentials, in the covariant form of the 
Lorentz-Dirac equation. The unperturbed equation is 

moil= (e/c)F(q) · u. 

One differentiates with respect to the eigentime, 

(moc/e)ii = (u · 'V'g)F(q) · u + F(q) · il. 

Substituting (9.9) in (9.1) and resubstituting (9.8) yields 

e2 
moil= (ejc)F · u + --3 [ (e/moc)(u · 'V'g)F · u + (e/moc) 2F · F · u 

6nc 

(9.8) 

(9.9) 

-(e/moc2) 2 (F · u) · (F · u)u]. (9.10) 

In three-vector notation the space part of Eq. (9.1 0) coincides with (9.7), except 
for the additional term (e/mo)y(otE + c-1v X orB) because of the time depen­
dence of the fields. As usual, the time component of (9.10) provides the energy 
balance. 

Equation (9.10) and its formal derivation appeared for the first time in the sec­
ond volume of the Course in Theoretical Physics by Landau and Lifshitz. Hence 
it seems to be appropriate to call Eq. (9.1 0) the Landau-Lifshitz equation. The er­
ror in going from (9.1) to (9.1 0) is of the same order as that in the derivation of 
the Lorentz-Dirac equation itself. Thus we regard the Landau-Lifshitz equation as 
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the effective equation governing the motion of a charged particle in the adiabatic 
limit. 

9.2 Some applications 

(i) Zero magnetic field, one-dimensional motion. We assume B = 0 and ¢ex 
to vary only along the 1-axis. Setting v = (v, 0, 0), q = (x, 0, 0), and E = 
( -¢', 0, 0), the Landau-Lifshitz equation becomes 

2 
3· '· e e " moy v=-ecp(x)----y¢ (x)v. 

6rrc3 mo 
(9.11) 

The radiation reaction is proportional to -¢" (x )v, which can be regarded as 
a spatially varying friction coefficient. For a convex potential, ¢" > 0, such as 
an oscillator potential, this friction coefficient is strictly positive and the result­
ing motion is damped until the minimum of ¢ is reached. In general, how­
ever, ¢" will not have a definite sign, like in the case of the double well 
potential ¢ (x) :::::: (x2 - 1 )2 or the washboard potential ¢ (x) :::::: - cos x. At lo­
cations where ¢" (x) < 0 one has antifriction and the mechanical energy in­
creases. This gain is always dominated by losses as can be seen from the energy 
balance 

d [ e2 e J - mo y + ecp + --3 - y ¢' v 
dt 6nc- mo 

2 2 I 2 2 
e ( e ) , 2 ( e e ) , " =--- ¢ ----- ycpcpv 

6rr c3 mo mo 6n c3 mo · 
(9.12) 

The last term in (9.12) does not have a definite sign. But its prefactor is down by 
the factor e2 /moc3 and therefore it is outweighed by -¢' 2 . 

Equation (9.11) has one peculiar feature. If cp(x) =-Ex, E > 0, over some 
interval [a_, a+], then ¢" = 0 over that interval and the friction term vanishes. 
The particle entering at a_ is uniformly accelerated to the right until it reaches 
a+. From Larmor's formula we know that the energy radiated per unit time equals 
(e2 /6rrc3)(e/mo)2 E 2. Since the mechanical energy is conserved, the radiated en­
ergy must come entirely from the Schott energy stored in the near field. The 
same behavior is found for the Lorentz-Dirac equation. If, locally, E = const. and 
B = 0, then the Hamiltonian part is solved by hyperbolic motion, i.e. a constantly 
accelerated relativistic particle. For this solution the radiation reaction vanishes 
which means that locally the critical manifold happens to be independent of 8. The 
radiated energy originates exclusively from the Schott energy. 
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(ii) Zero magnetic field, central potential. For zero magnetic field the Landau­
Lifshitz equation simplifies to 

e2 [ e m0 yK(v)v=eE+--3 -y(v·V)E 
6nc mo 

+ (m:J2 ((v· E)E- y 2 E 2v+ y 2c-2(v· E)2v)]. (9.13) 

We take E = - V <Pex and assume that <Pex is central. Let us set q = r, lr I = 

r, f = r I lr I, <Pex (q) = <P (r) which implies E = -cp'f. Then (9.13) becomes 

mo y K( v)v = -e cp'f + _i_ [---=---- y (- ( v · f)</J"f - ~ ( v- ( v · f)f)¢') 
6nc3 mo r 

+ (m:J2 ¢' 2 ((v·f)f- y 2 v+ y 2 c-2(v·f)2 v)J. (9.14) 

The angular momentum L = r x moyv satisfies 

. e2 [ e 1 1 ( e ) 2 2 ( -2 A 2) 12 J L=-- ---¢- - y 1-c (v·r) <P L. 
6n c3 mo r moe 

(9.15) 

Thus the orientation of L is conserved and the motion lies in the plane perpendic­
ular to L. No further reduction seems to be possible and one would have to rely 
on numerical integration. Only for the harmonic oscillator, <P (r) = ~ mow5r2, can 
a closed form solution be achieved. 

(iii) Zero electrostatic field and constant magnetic field. We set B = (0, 0, B) 

with constant B. Then (9. 7) simplifies to 

We multiply by K(v)- 1 to obtain 

e e2 ( e )2 2 mo y v = - ( v x B) + -. - 3 - [ ( v · B) B - B v J. 
c 6nc- moe 

(9.17) 

The motion parallel to B decouples with v3 = 0. We set v3 = 0 and v = 
(u, 0), uj_ = ( -u2, u I). Then the motion in the plane orthogonal to B is governed 
by 

(9.18) 

with the cyclotron frequency We = eB I moe and f3 = e2 16nc3mo. Equation (9.18) 
holds over the entire velocity range. For an electron f3wc = 8.8 x w- 18 B [gauss]. 
Thus even for very strong fields the friction is small compared to the inertial terms. 
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Equation (9 .18) can be integrated as 

d 2 2 
- y = -f3w, (y - 1) 
dt c 

(9.19) 

with solution 

y (t) = [yo + I + (yo - I )e -2flw~t] [yo + I - (yo - I )e -2flw~tr 1, (9.20) 

which tells us how u(t)2 shrinks to zero. To determine the angular dependence we 
introduce polar coordinates as u = u (cos cp, sin cp). Then 

du dcp -1 
dcp = -f3WcU, dt = y W. (9.2I) 

Thus u ( cp) shrinks exponentially, 

u(cp) = u(O)e-f-iuJcCfl. (9.22) 

Since f3wc = 8.8 x 10- 18 B [gauss] for an electron, even for strong fields the 
change of u over one revolution is tiny. 

To obtain the evolution of the position q = (r, 0), lr I = r, we use the fact that 
for zero radiation reaction, f3 = 0, 

u 
r= -y. 

We 
(9.23) 

By (9.22) this relation remains approximately valid for non-zero {3. Inserting u(t) 

from (9.20) one obtains 

r(t) = roe-f-iuJ~t[1 +((yo- 1)/2)(1- e-2f-iuJ~t)r 1 (9.24) 

with ro the initial radius and u(O)jc =(yo- 1) 112 !Yo the initial speed which are 
related through (9.23). In the ultrarelativistic regime, Yo » 1, and for times such 
that f3wzt « 1, (9.24) simplifies to 

1 
r(t) = ro ------=­

I + Yof3w~t 
(9.25) 

and the initial decay is according to the power law t- 1 rather than exponential. 
For an electron f3wz = 1.6 x 10-6 (B [gauss])2 s- 1. Therefore if one chooses 

a field strength B = 103 gauss and an initial radius of ro = 10 em, which corre­
sponds to the ultrarelativistic case of y = 6 x 104 , then the radius shrinks within 
0.9 s to r(t) = 1 f.tm by which time the electron has made 2 x 1014 revolutions. 

(iv) The Penning trap. An electron can be trapped for a very long time in the 
combination of a homogeneous magnetic field and an electrostatic quadrupole po­
tential, which has come to be known as a Penning trap. Its design has been opti­
mized towards high-precision measurements of the gyromagnetic g-factor of the 
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electron. Our interest here is that the motion in the plane orthogonal to the mag­
netic field consists of two coupled modes, which means that the damping cannot be 
guessed by pure energy considerations using Larmor's formula. One really needs 
the full power of the Landau-Lifshitz equation. 

An ideal Penning trap has the electrostatic quadrupole potential 

I 2 ( I 2 I 2 2) ecp(x) = 2 mwz - 2x1 - 2 x 2 + x 3 , (9.26) 

which satisfies b..¢ = 0, superimposed with the uniform magnetic field 

B = (0, 0, B). (9.27) 

The quadrupole field provides an axial restoring force whereas the magnetic field 
is responsible for the radial restoring force, which however could be outweighed 
by the inverted part of the harmonic electrostatic potential. 

We insert E = -\7 <P and B in the Landau-Lifshitz equation. The terms propor­
tional to (v · \l)E, Ex B, (v · B)B, and B 2v are linear in v, respectively q. The 
remaining terms are either cubic or quintic and will be neglected. This is justified 
provided 

M «I (9.28) 
c 

and 

(9.29) 

if rmax denotes the maximal distance from the trap center. With these assumptions 
the Landau-Lifshitz equation decouples into an in-plane motion and an axial mo­
tion governed by 

Here q = (r' z), v = (u, z), (XJ' X2)j_ = ( -X2, xJ). 

(9.30) 

(9.3I) 

The axial motion is just a damped harmonic oscillation with frequency Wz and 
friction coefficient 

The in-plane motion can be written in matrix form as 

d 
-1/f = (A+ j3V)1/f 
dt 

(9.32) 

(9.33) 
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••••••••• • •••••••• 

Figure 9.1: Orbit of an electron in a Penning trap seen from above. 

with 1/f = (r, u) and Au = 0, A12 = 11, A21 = w~11, A22 = iwzO'v, Vu = 0, 
V12 = 0, V21 = iwcW~O'y, V22 = (w~ - wz) 11, where O'y is the Paul~i spin matrix 
with eigenvectors X±, O'yX± =±X±· The unperturbed motion is governed by the 
4 x 4 matrix A. It has the eigenvectors 1/f +.± = (±i(l I w+ h=r=, X::r=) with eigenval­
ues ±iw+ and 1/f-,± = (±i(ljw_)x'f, X::r=) with eigenvalues ±iw_, where 

W± = ~ (We ± J w2 - 2w~ ) . (9.34) 

The mode with frequency w+ is called the cyclotron mode and that with w_ is 
called the magnetron mode. Experimentally We » Wz and therefore w+ « w_. 
The orbit is then an epicycle with rapid cyclotron and slow magnetron motion, 
as shown in figure 9.1. The adjoint matrix A* has eigenvectors orthogonal to the 

1/f's. They are given by <P+.± = (:r=i(w~/w+h=r=, X=r=) with eigenvalues ±iw+ and 
<P-.± = ( -(w~/w-)x::r=, X=r=) with eigenvalues =r=iw_. 

Since f3 is small, the eigenfrequencies of A + f3 V can be computed in first-order 
perturbation. The cyclotron mode attains a negative real part corresponding to the 
friction coefficient 

e2 w3 
+ y + = ------=-- --'------

6rrc3mo w+- w_ 
(9.35) 

and the magnetron mode attains a positive real part corresponding to the antifric-
tion coefficient 

e2 w.3_ 
Y- = 6rrc3mo w_- w+ · 

(9.36) 

As the electron radiates, it lowers its potential energy by increasing the magnetron 
radius. 
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Experimentally B = 6 x 104 gauss and the voltage drop across the trap is 10 V. 

This corresponds to Wz = 4 x 108 Hz, w+ = 1.1 x 1012 Hz, w_ = 7.4 x 104 Hz. 
The conditions (9 .28), (9 .29) are easily satisfied. For the lifetimes (1 j Yz) = 5 x 
108 s, (lfy+) = 8 x 10-2 s, and (ljy_) = -2 x 1023 s are obtained. Thus the 
magnetron motion is stable, as observed through keeping a single electron trapped 
over weeks. The cyclotron motion decays within fractions of a second. The axial 
motion is in fact damped by coupling to the external circuit and decays also within 
a second. 

The variation with the magnetic field can be more clearly discussed in terms of 
the dimensionless ratio (wcfwz) =A. Then 

W± = Wz ~(A± JA2 - 2), Y± = ±,Bw;(A ± JA2 - 2) 3;8)A2 - 2. 

(9.37) 

For large A, w+ ~A, w_ ~ A- 1, while Y+ ~ A2, Y- ~ A-4 . As A---+ ,Ji, we 
have w+ = w_ = wz! ,Ji. However, the friction coefficients diverge as (A -
,Ji)-112 . Let us call Be the critical field at which the mechanical motion becomes 
unstable. For B > Be, one still has periodic motion with frequency wzl ,Ji, but 
the onsetting instability is revealed through the vanishing lifetime. In the men­
tioned experiment A = 2.7 x 103 and for fixed Wz the critical field strength is 
Be = 30 gauss. 

9.3 Experimental status of the Lorentz-Dirac equation 

Energy loss through radiation is a well-established phenomenon. Indeed, in syn­
chrotron sources electrons slow down because of radiation losses, and energy has 
to be supplied to maintain a steady electron current. The supplied power is com­
puted on the basis of Larmor's formula, and synchrotron sources are one promi­
nent example to confirm its validity. On the other hand, the Lorentz-Dirac equation 
goes way beyond mere energy balancing and claims to predict the orbit of an elec­
tron. Here synchrotron sources provide no test, since the modification of the orbit 
due to radiation damping is lost in the noise of experimental uncertainties. As a 
fair summary, thus we can say that while qualitative aspects of radiation damping 
are well tested, there is no single experiment which probes quantitatively the pre­
dictions of the electron motion by the Lorentz-Dirac equation. We propose and 
discuss here two experiments which are within the reach of present-day techni­
ques. 

To cope with the smallness of the radiation reaction, in essence, only two 
approaches seem feasible. The first one is to wait long enough until the effects 
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accumulate to something which may be detected, a route followed in the Penning­
trap experiment. The other option is to use ultrastrong fields. In either case, there 
is no way to monitor directly the electron orbit and one has to rely on indirect 
evidence, like lifetimes or emission spectra. 

(i) Penning trap. In the previous section we discussed the electron orbits for the 
Penning trap with the quadrupole potential in the quadratic approximation. The 
Lorentz-Dirac equation predicts, in particular, the lifetime of the cyclotron mode. 
For the field strengths used in the high-precision measurement ofthe g-factor, this 
lifetime is measured to 0.8 s in good agreement with the theoretical result. To 
have a more stringent test what would be needed is a systematic determination 
of how the lifetime depends on the magnetic field strength. Another option of 
interest is to turn the B-field out off the symmetry axis. For this case we have not 
computed the cyclotron lifetime, but could have done so by the scheme explained, 
with the welcome complication that all three modes couple. The dependence of 
the cyclotron lifetime on the orientation of the B-field would be a valuable test of 
the validity of the Lorentz-Dirac equation. 

(ii) Ultrastrong laser pulse. A strong laser pulse hits a bound electron. Since the 
atom ionizes instantaneously, the electron is subject only to the time-dependent 
laser field. Thus we set q0 = 0, v0 = 0, and for the external fields 

E(x, t) = h(wt- k · x)Eo cos(wt- k · x), 

B(x, t) = h(wt- k · x)Bo cos(wt- k · x), 

lEo I= IBol, Eo· k = 0 = Bo · k, Eo· Bo = 0. (9.38) 

h is a shape function. The motion of the electron is governed by the Landau­
Lifshitz equation (9.7) augmented by the term 

e2 e a 
---- y -(E + c- 1v x B) 
6rrc3 mo at (9.39) 

because of the time dependence of the external fields. Our dynamical problem is 
in fact two dimensional with the motion of the electron lying in the plane spanned 
by Eo and k. Nevertheless one has to rely on numerical integration, and we discuss 
the example from Keitel et al. (1998). 

The ultra-intense laser field has an intensity of 1022 W cm-2 . The frequency is 
chosen to be w = 3.54 x 1015 s- 1, which is in the near-infrared regime. We fol­
low the motion of the electron up to 3000 laser cycles, i.e. up to the final time 
t = 3000(2rr /3.54 X 1015) s = 0.53 X 10-11 s. Over that time span the shape 
function is assumed to interpolate linearly between zero and the full field strength. 
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k 

Figure 9.2: Orbit of an electron when hit by an ultrastrong laser pulse. 

The electron motion is highly relativistic, as can be seen from the strong redshift 
corresponding to only the seven electron cycles displayed in figure 9.2. The elec­
tron is displaced by 0.1586 em in the propagation direction and has a maximal 
amplitude of 0.795 x w-3 em in the electric field direction. 

The effects of radiation damping are minute. In the propagation direction the 
distance is increased by the fraction 7 X I o-7 and in the electric field direction it 
is decreased by the fraction 10-2 . Thus a direct verification of the radiation re­
action is out of reach. However, in the emission spectrum the radiation damping 
results in a roughly I% change as compared to the frictionless solution with the 
Lorentz force from the external fields of (9.38). In an experiment the radiation 
spectrum has to be measured with such precision that, after the theoretical spec­
trum, computed without radiation reaction, has been subtracted, there is still a sig­
nificant background which allows for a quantitative comparison with the emission 
spectrum predicted by the Lorentz-Dirac equation. 

Notes and references 

Section 9 

The name Lorentz-Dirac is standard but historically inaccurate. Some authors, 
e.g. Rohrlich (1997), therefore propose Abraham-Lorentz-Dirac instead. The 
radiation reaction term was originally derived in Abraham (1905); compare with 
chapters 7 and 8. Von Laue (1909) realized its covariant form. In the Pauli 
(1921) encyclopaedia article on relativity the equation is stated as in (9.1). Dirac's 
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contribution is explained in section 3.3. Plass (1961) is a summary of exact solu­
tions of the Lorentz-Dirac equation. 

Section 9.1 

Detailed case studies of the Lorentz-Dirac equation, including its center manifold, 
are listed in the Notes to section 8.2. Baylis and Huschilt (2002) critically explore 
the relation to the Landau-Lifshitz equation. The substitution trick seems to have 
been common knowledge. For example, without further comment it is used by 
Pauli (1929) and Heitler (1936) in the particular case of a harmonic oscillator. In 
its full generality the Landau-Lifshitz equation (9.10) appears already in the first 
edition of Volume II: The Classical Theory of Fields of the Landau-Lifshitz Course 
in Theoretical Physics. At no point is the reader given a hint on the geometrical pic­
ture of the solution flow and on the errors involved in the approximation. To me it 
is rather surprising that the contribution of Landau and Lifshitz is ignored in essen­
tially all discussions of radiation reaction, one notable exception being Teitelbom 
et al. (1980). Spohn (1998, 2000a) uses singular perturbation theory to rederive the 
Landau-Lifshitz equation. The appearance of singular perturbation theory is diffi­
cult to track. For a particular application it is clearly stated by Burke (1970). There 
have been attempts to replace the Lorentz-Dirac equation by a second-order equa­
tion (Mo and Papas 1971; Shen 1972b; Bonnar 1974; Parrot 1987; Valentini 1988; 
Ford and O'Connell 1991, 1993). Based on Ford and O'Connell (1991), Jackson 
(1999) uses the substitution trick for a radiation damped harmonic oscillator and 
discusses several applications. In the case of arbitrary time-dependent potentials, 
only Landau and Lifshitz provide the correct center manifold equation. The struc­
ture discussed here reappears whenever a low-dimensional system is coupled to a 
wave equation; for an application in acoustics see Templin (1999). 

Section 9.2 

Uniform acceleration is discussed in Fulton and Rohrlich (1960) and Rohrlich 
(1990). A constant magnetic field is of importance for synchrotron sources. Since 
the electron is maintained on a circular orbit, Larmor's formula is precise enough. 
Landau and Lifshitz (1959) give a brief discussion. The power law for the ultra­
relativistic case is noted in Spohn (1998). Shen (1972a, 1978) discusses at which 
field strengths quantum corrections will become important. His results are only 
partially reliable, since his starting point is not the Landau-Lifshitz equation. The 
Penning trap is reviewed by Brown and Gabrielse (1986), which includes a discus­
sion of the classical orbits and their lifetimes. They state the results (9.35), (9.36) 
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as based on a quantum resonance computation. Since the final answer does not 
contain n, it must follow from the Landau-Lifshitz equation (Spohn 2000a). In 
the classical framework, general trap potentials can be handled through numerical 
integration routines for ordinary differential equations. The self-force in the case 
of synchroton radiation is studied by Burko (2000). 

Section 9.3 

The Penning-trap experiment is proposed in Spohn (2000a). The numerical results 
on ultrastrong laser pulses are taken from Keitel et al. (1998). Another proposal, 
which apparently never received the proper funding, is to measure the mega-gauss 
magnetic bremsstrahlung for ultrarelativistic electrons (Erber 1971; Shen 1970). 
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