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Abstract

In this paper we study the space of multipliers M(r, s : p, ¢q) from the space of test functions
®, (G), on a locally compact abelian group G, to amalgams (LF, I9)(G) ; the former includes
(when r = 5 = 00) the space of continuous functions with compact support and the latter are
extensions of the L”(G) spaces. We prove that the space M(co : p) is equal to the derived
space (L? )o defined by Figa-Talamanca and give a characterization of the Fourier transform
for amalgams in terms of these spaces of multipliers.

1991 Mathematics subject classification (Amer. Math. Soc.): 43 A 22.

1. Introduction

The space of test functions ®__ (1 <5 < 00), on the real line, was originaily
defined by H. Holland [10]. The definition of @, (G) on a locally compact
abelian group G, is due to Bertrandias and Dupuis [2]. The amalgam spaces
(L?,1%) (1 < p,q < o) are Banach spaces of functions which belong
locally to L?(G) and globally to /. If p = g then (L”, /%) is the usual
LP(G) space. The purpose of this paper is to study the space M(r,s:p, q)
(1<r,s,p,q<oo) of multipliers from ®, (G) to (L”, I)(G). We prove
the following.
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1. For 1<r,s,p<o and 1 <¢g <2, the space M(r,s:p,q) is
trivial.

2. For r =5 = oo and p = ¢q, the space M(oo : p) is equal to the
derived space (L’ )o defined by Figa-Talamanca in [6].

3.forr=s=o00and 1 <r,p,q < o, the space M(r,s : p,q)
contains or is equal to a set of Fourier transforms of measures. In
particular a measure y is the Fourier transform of a function in L7
for 1 <p <2, if and only if y is a multiplier in M(p: oo).

2. Notation and preliminary results

Throughout this paper G is a locally compact abelian group with dual
group I'. The elements of I' are denoted by X and we write [x, X] instead
of X(x) (x € G). Asusual C(G) (Cy(G)) is the space of continuous func-
tions on G with compact support (which vanish at infinity). For a function
f on G,weuse f todenote the reflection f'(y) = f(-y), and for x in
G, the translation operator 7, is defined by 7 f(y) = f(y —x). If p isa
measure on G, then its reflection x4’ and its translation 7, u are defined by
1 (f) = pu(f) and t u(f) = u(t f)(f € C,(G)) respectively. The pairing
between a linear space B and its dual B* is given by (f, a) = a(f) for o
in B*,and f in B. We use J. Stewart’s definition of the amalgam spaces
(Lp ’ lq)(G) = (Lp ’ lq) s (Co’ lq)(G) = (Co’ lq) > (Lp s CO)(G) = (Lpa Co)
(1 < p,q < oo) and the space of measures Mq(G) = Mq(l < g < x)
[12]. We assume all the properties of inclusion, duality, and convolution
product of these spaces, Holder and Young’s inequalities, and the Hausdorff-
Young theorem for amalgams as given in [14], and all the properties of the
Segal algebra S;(G) given in [4] and [14]. We denote by 4 any of the
amalgams (L”, %), (L, ¢,) (1 <p <o), (G, I')(1 €5 < 00). We use
H. Feichtinger’s definition of the Fourier transform as an element of SO(G)*
[4, 14 Definition 2.3]. We write 2 (i) for the Fourier transform (inverse
Fourier transform) of an element u of SO(G)*(SO(F)'). If M is a subset
of SO(G)' , then M~ denotes the set of Fourier transforms of element M .
We let .#, be the space of transformable measures [1], and as usual p s
the conjugate of the number p. We finish this section with two preliminary
results.

PROPOSITION 1. If 0 € S,(G)" and h € Sy(G), then o * h is the element

of L™(G) given by (f,oxh) = (f+h,a) forall f in LY(G). Hence
(f,oxhy=(h,axf) forall f in L'(G).
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ProOOF. By [14, Proposition 2.8], ¢ » h is in SO(G)*.and for g in Sy(G)
we have that

(g, axh)| = (g *h,a)| < llallllhls ligll;-

The conclusion follows from the density of Sy(G) in L' (G) [14, Proposition
2.5 and (2.5)].

THEOREM 2. Let S be any of the spaces (L ,1'Y(G) (1 < p < ) or
(o ll) Af T:8S — S,(G) is alinear bounded operator such that T(f*g) =
Tfxg forall f and g in S, then there exists a unique u in SO(G)* such
that Tf =ux f forall f in S.

Hence (Tf) =of forall f in S, where 6 = ji.

ProoF. The proof is essentially the same as [14, Theorem 3.2]. Observe
that the functions 1, defined in the proof of [14, Theorem 3.2] belongs to
S,(G) [13, Lemma 6.4] and S,(G) is included in (C, 10)(G). The second
statement follows from [14, Proposition 2.8].

3. The space of multipliers

The space of test functions @, (G) = ¢,, (1 <r,s < o0), as defined in
[15, Definition 3.1] consists of continuous functions with compact support
¢ such that its Fourier transform ¢ belongs to (C,, P)T). It is normed
by ||@ll,; (see[14, (1.9)]). The duality between ®_(G) and its Banach dual,
M,T) if r =00, (L" , Isl)(l“) if r is finite [2, §2 c], [15, Remark 3.2ii)]
will be denoted by ({(¢, u})), hence

(1) (o, ) = /r P(~%) du(%)

for pe®, , pe M,I) if r=c0, pue (L ,F)I) if r < co. Clearly,
as sets, @ is equal to ®_, and as normed spaces ®_ is continuously
embedded into ¥, . The space ®_, is dense in S;(G) [123, Lemma 6.4;
5, p. 275] and it is the smallest of all the spaces @, .

DEFINITION 3. A multiplier from @, (G) (1 <r, s <oo) to the amalgam
A is a bounded linear operator which is translation invariant, that is, for any
xeG, 1, T=Tr,.

The space of multipliers will be denoted by M(r,s:p, q) if A= (L, [7),
by M(r,s:00,q) if A=(C,,1%),andby M(r,s:p,o00) if A=(L",¢,).
If r=5 or p=gq, then we write M(r:q).
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If T is a multiplier from @, to 4, then its adjoint T' is a bounded linear
operator from 4™ to &’ , and by (1) we have for g € A" and ¢ € ®,  that

/rp )dT g(%) = <<<o,T'g>>=(T¢,g>=/GT¢(x)dg'(X)-

We use this to prove that T commutes with convolution.

ProrosiTioN 4. Let T bein M(r,s:p,q) (1<r,s,p,q < o). Then
forall ¢ and y in &, wehave T(p*xy)=Topx*y.

ProoF. Let g bein A*. By (2) and Fubini’s theorem we have that
(To+w, g) // To(x - s)p(s)dsdg' (x)
- /G w(s)((e,0, T g)) ds = /r H(—2)P(~%)dT g(%)

={p+v,Tg)=(T(p+y), g).

If Tisin M(r,s:p,q) (1<r,s,p,q< ), x€G, g€ A and

@ € ®, , then as in the previous proof
(9, T't.8)) =(Tt,0,8) = (g, [x,.1T"8)).
Hence
' !
(3) Tt g=I[x,.1Tg.

If F is the Fourier transform on (D:S and T is multiplier in M(r, s, :
p,q) (1<r,s,p,q < ), then by (2), Proposition 4, and [14, Proposi-
tion 2.5, 2.8] the composition of F and T’ is a bounded linear operator

which commutes with convolution. That is, for g and f in (L” Ll "YG) if
1<p<ooandin (Cp, ') (G) if p=1 we have that

FT'(fxg)=FT fxg.

This together with Theorem 2, Proposition 4, and [14, Remark 2.4 ii)] implies
that there exists u € SO(G)* , hence a unique g € Sy(I')", such that

(4) FT f=uxf
(5) ff=of=*N".

Moreover, since S,(G) is included in (L” I, 'Y and (C,,!") we have by
Proposition 1, (5), and [14, (1.9)] that ux* f is a transformable measure for
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all f in Sy(G). Hence by [1, Corollary 3.1}, if ¢ € ® _(G), then ¢ belongs
to L'(T'f) and therefore

[oous fxdx = [o=sdT neo.
By (1) and Proposition 1 we conclude that

(uxo, N =(To, f)

forall f in Sy(G).
By the density of S;(G) in A4, and [14, Theorem 1.4], we conclude that
forall p € @,

(6) To =uxg.
From (4) and (5) and the fact that @, is included in the amalgams
(L? ,1') and (C,, I'y we have that

To=FT'gand (Tg)" =T ¢ forallped®, .

ProposITION 5. Let T bein M(r,s:p,q) (1<r,s,p,q <o0). The
functional o in Sy(I')" associated to T' in (5) belongs to M_ (). Moreover,
o belongs to
(L', I°)T) ifeither r is finiteor 1< q<2.

M) ifr=s5s=o00.

LWL ifr=s=o00 and 1< g <2.

. (L", I°YX) if r=2 and r is finite.

(L IYT) if1<g<2and 2<p, s<oo.

—

w» A W N

ProoF. We take E a compact subset of I, # a continuous function with
compact support contained in E, and g a function in ®_,(G) such that 2
isin C(G) and 2 =1 on E [12, Theorem 3.1]. By [14, (2.6] we have that

I, o) = (hg, o) = |(h, a&)| = |(h, T'8)]
<IT'gll Al < Celihll,

where C is a constant depending on E.
Therefore o is a measure of I" by [5, Theorem B1; 11, Theorem 5.1.4].

Now for 8 in I the function 58 is equal to one on Lﬂ , (I and Lﬂ as
in [14, Remark 1.3]) and T'([8,.]g) = arﬂg belongs to M(I') [14, (1.9)],
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hence

’

jol(L,)* [/ [t,21(3)d]al(% )]

= llot,2lls < IT'I° B, . Telsey = 1T’ gl
and therefore ¢ is a measure in M__(I'). To prove 1 we take a compact
subset K of I' with Haar measure zero, and a function ¢ in ®, (G) such
that ¢ =0 on K. If r is finite, then 0@ = T'¢ is a functionin (L™ , I° )(I)
and we have that

o(K) = / 6(%)da(% /M 2)d(%) =

Hence o is absolutely continuous with respect to the Haar measure on I
and we conclude from [3, Chapter V] that ¢ belongs to (Ll LKD) . If
1 < g < 2, then by (6) and [14, Proposition 2.8, Remark 2.7] we have
that o¢ = (Te)~ is a function on I". As before this implies that ¢ is in
(L', I=)D).

To prove 3 we note that ®__ is equal to ®_, as sets, and by (5), for any
¢ € ®__, the measure g¢ belongs to M,(I') thatis, o is a Fourier multiplier
on ®_, and by [15, Theorem 6.15], g is in M,(I"). Part 4 follows from 1
and 2. ,

Now, if r is finite and s = 2, then o¢ belongs to (L', 12)(1") for all
¢ € @, . Hence va¢ isin LY forany v in (I, I*)T).

Again by [15, Theorem 6.1], vo belongs to (L', I*)(T) and by the con-
verse of Holder’s inequality ¢ isin (L, [®)(T).

Part 5 is similar to 4; note that g = (Tp)” belongs to (Lq' , 12)(1") for
all p € ®

From (6) and Proposition 2.4 we see that M(r,s:p,q) (1<r,s,p,q<
oo) is isometrically isomorphic to the set of u € SO(G)* such that g is in
M_(T') if r=o00 and in (L', [*)(T) if r is finite, and norm equal to

Nalll = sup{llx * o|l,,l¢ € @, 19l < 1}.

We now use the concept of set of uniqueness, to show that for 1 < ¢ <2,
(1<r,s,p<oo) thespace M(r,s:p, q) is trivial (cf. [6, Theorem 3]).

DEFINITION 6. A subset E of T is a set of umqueness for (Lf, I7)(G)
(1<p,q<o0),if forany f in (L, 1?)(G) such that f vanishes outside
E, then f=0.

Sets of uniqueness for (L7, 17)(G) (1 < p, ¢ < 2) always exists [8, page
133], and also for (L", I7)(G) (2<r< o0, 1<q<2) because (L', ) c
(L, 1% for 1<p<2<r<oco.
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THEOREM 7. If 1 < p < oo, 1 €9 <2 and f is a function on T such
that fo belongs to (L”,1°)(G)” for all 9 € C(T). Then f =0 locally
almost everywhere.

ProoF. Suppose that f does not vanish locally almost everywhere. Then
there exists a compact set K of nonnegative measure such that f does not
vanish almost everywhere on K. Let ¥ be a continuous function with
compact support such that ¥ =1 on K. Then yf does not vanish locally
almost everywhere. Since y¢ is in C/(T") for all ¢ € C(I'), it follows
that ygf belongs to (L”, I?)(G)” for all ¢ € C(I'). Thus without loss
of generality we can assume that f vanishes off some compact set K of
nonnegative measure.

If p=q=1,then ¢f isin LI(G)A forall 9 € C,,s0 ¢f = £ for some
ge Ll(G). Since ¢ f isin L and L° C (L2 , I'), the function g belongs
to L'n (L™, 12) , then by the Riesz-Thorin theorem [13, Theorem 5.6; 10,
Theorem 5}, we have that g is in (L”, /?) for some fixed 1 < p < oo,
1 < g < 2, so we can further assume that ¢ f belongs to (L?, 7)(G)” for
some fixed 1 <p<oo, 1<g<2.

If p=o0o and g = 1, then as above g € (L™, ll) and ¢f isin LZ(F) ,
so g isin (L™, ! 1) N L?. By the same argument we can assume that ¢ f is
in (Lf, I9)(G)” for some fixed 2<p< oo, 1 <g<2.

If ¢ is a function in C,(I') such that 9 =1 on K, then ¢f = f, hence

f isin (L?,!?)(G)” and therefore f is a function in LY with compact
support, because f vanishes off K. Thus f belongs to LZ(F).

Let S be the map defined on C.(I') by (S¢)” = ¢f. An application
of the Closed Graph Theorem shows that § restricted to C.(E), for E
a compact subset of I', is continuous. Now we take E a compact subset
of I' and {¢,} a sequence in C (I') such that ¢, =1 on E forall n,
0<¢,(x) <1 forall ¥ in I', and the support of each ¢, is equal to
E,with E,  CE, and E =nNE,. Hence {¢,} C C.(E,) and converges
pointwise t0 xp, the characteristic function of E. Since E ., CE, for
all n, there is a constant C,, depending on E, such that |¢,|| < C. for
all n. Hence ||S¢,|,, <ll¢,l,, < Cg; thatis, {Sg,} is a normed subset
of (L7, 1%), and therefore it has a weakly convergent subset {S¢,}. Let g
in (L?, 1) be such that lim(Sg, , h) = (g, h) (h € (Lp' , lq’)(F)). Since
l9.f1 < |fl on I', we have that for h € C (')

(9> h) =1im((Se,)", k) =Xim(p, £, h) = (x, b) = ()", h).
We conclude that (x.f)” = g. But if E is a subset for K and a set of
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uniqueness for (L”, I7), then this is a contradiction because yf does not
vanish almost everywhere on E .

ProrositiOoN 8. If u is a multiplier in M(r,s:p,q) for 1 <r,s,p, <
oo, 1 <g<?2, then

fih € (L7, I7Y(G)™ for all h € C,(T).

Proor. By Proposition 5, i is a function in (Ll , )T . By [2, §2, ¢)]
for h € C/(I'), there is a sequence {h } in ®_ (G) such that
lim[|izn—h||°ol =0. Since [luxh,|,, < |||u|||||h | o > the sequence {uxh,} is
Cauchy in (L?, I)(T), so lim||z+h, —g|,, = O for some g in (L?, I)(G).
Since S,(G) is a subspace of (C,, [ l)(G) , the pointwise product of y and
h,—h belongs to L'(2) = (C,, I')(G), [13, Proposition 4.1]. Hence for y
in §,(G)

v, ah))| = 1w (h, —h), )]
< Nl 1wy, = 1)l ooy < Nl oWl = Bl
<l oo 19 i 1y = Pl
where k is equal to p if 1 <p<2andto 2 if 2 <p < . By the density
of Sy(I') in ( 0,1 )(F) we conclude that u(h —h) is a function in M, (T)
and therefore lim ||u( . — Ml =0 [14, page 125]. Since h — & belongs to

(qu ) lk)(l") and ﬁizn = (u*h,)” (cf. (5) and (6)) we have by the continuity
of the Fourier transform that
lih — &1,y < Nk, — ikl + ik, - &l
< Nath, = M)l + 12k, = 21l
< llath, = m))ly + Cllex b, — gl
where C isa constant dependingon G, p and g . This implies that gh = 2.

COROLLARY 9. The space M(r,s:p,q) for 1<r,s,p<oo, 1<g<?2
is trivial.

Proor. Theorem 7, Proposition 8, and the inclusions M(r,s : p,q) C
M(oco,r:p,q) C M(co, 1:p, q).

This last result is for any locally compact abelian group, and this improves

[11, Theorems 4.6.5 and 4.6.6] because as we will see in the next section, the
derived space (L )o defined in [6] is equal to M (oo : p).
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4. Special infinite cases

In this section we give necessary and sufficient conditions for an element
of $,(G)” to be a multiplier.

*

PROPOSITION 10. Let u be an element of Sy(G)" with the Fourier trans-
Jorm fuin (L, I®)YT) for 1 <r<oo (in M_()). If th is an element of
A foreach h in (L, F)YT) (in (C,, ’)(I)) (1 <5< 00), then u belongs
to M(r,s:p,q) (to M(co,s:p,q)) (1<p,q<o0).

PrOOF. We define the map S on (L', I')(I") by (Sh)™ = h. Let {h,}
be a sequence in (L", I') such that lim|h, — h||,, = O and suppose that
lim||h, — gll ,=0. For w € Sy(G) we have that

Ky, (Sh)” - &) < v, (Sh,)” = (SK)) + v, (Sh,)” - &)l
<Ky, ith, — ah)| + ¥, Sh, - g)|
< Kw(h, = h), )| + 1@l - [ISh, — &l ,
< Nl oW lloos Ny = il + 110114+ 1SR, — &1 4

From [14, Remark 2.4 iii)], the density of S,(G) in 4, and the Closed
Graph Theorem, the map S is continuous. Now, if ¥ € ¥ __, then by [14,
Proposition 2.8] we have that

rs?

le* wll g = 1Sl < ISHTEI,

The proof for r = 0o is similar.

REMARKS. The space Z(®,) (1 <r,s < oc) of resonant classes of mea-
sures relative to @, [15, Definition 3.3] consists of transformable measures
whose Fourier transform belongs to (L" , ")) if 1 <r<oo to M_ (I
if r=c0.

From Proposition 10, Corollary 7, [15, Corollary 3.5; 1, Theorem 2.5] we
have that

1. if u € .#, with jih eﬁ(d)p,ql) (1 <p<oo,1<g<2) for each
h € (C,, I'YI), then u=0.

2.if fe(LP,I)G) (1<g<2,1<p<oo)and fhe(L?, 1)
for each & € (C,, I‘)(F), then f = 0. That is, the subspace of
(L?, I*)(G) invariant under the product of Fourier transforms by
elements of (C,, I*)(T) is trivial.
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When p = ¢, this improves Figd-Talamanca’s result in [6] because (C,,, / l)
is a subspace of C; N L.

THEOREM 11. An element p € Sy(G)" is a multiplier in M(r, s : p, )
(1<r,s,p <o) ifand only if for each g in (LF , ll)(G) there exists a
measure v, in M,(T') if r=oc0 andin (L , I’ Y(I) if r is finite, such that
Uxg= ﬁg.

Proofr. The necessity part follows from (4) and (6). We now assume that
r is finite and let R be the Segal algebra (L’ [ l) if 1 <p<ooand (Cy,! 1)
if p=1. We define the map S on R by Sg =v,. As in the previous
proposition an application of the Closed Graph Theorem shows that S is
continuous. By Proposition 1 and the fact that (u * g)” = Sg(g € S,(G))
[14, Remark 2.4ii)] the convolution ux* g is a transformable measure. Hence
by [1, Corollary 3.1] for y € ®,(G) and g € §,(G) we have that

g, uxw)l=w, uxg)l=w, (uxg))|
=g, S < ISgll, ¢« I¥ll,, < ISl ll¥],s-

Since S,(G) isdensein R and gy = Sy forall y € §,(G), we conclude
as in the proof of Proposition 5 that u is a multiplier. The case r = co is
similar.

By [14, Theorem 6.2] we see that if T € M(occ : p, q), then the ele-
ment u associated to FT' in (4) belongs to (L?, /?)(I'). Hence by (6),
M(oco:p, q) c (L?, 1%, but this is not always the case, as we will see in §4.
The next theorem gives necessary and sufficient conditions for a function in
(L?, 19Y(G) to be a multiplier.

THEOREM 12. 4 function f in (L”,1?)(G) belongs to M(r,s : p,q)
(1<r,s,p,q <oo) ifand only if for each g in (L , 1 )(G), there exists
a unique measure v, in My(T) if r = oo in (L™, P YT) if r is finite, such
that fxg= v,

ProoF. Suppose that f is in M(r, s : p, q) and define the function F
on ® (G) by F(y) = f+gxy(0). Clearly F is linear and |F(y)] <
AN, 11,5 - By [15, Remark 3.2] there exists v, in d),s(G)* such
that (v, f*g) = (v, l/g)) . This implies that f x g is transformable and
(fxg)" = v, [1, §2], hence frxg= U, [14, Remark 2.4 ii)]. To prove the

converse we define the function S on (L ' I"’)(G) by (Sg)” =v, and, as
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in Theorem 11, the function § is continuous. Now for y € ®  we have
that

If *wll,, =sup{l(g, f*w)llg € B and | gliz < 1}

where B is the amalgam (L"I,lql)(G) if l<p,g<oo (C ,lql) ifp=1,
1<g<ooor (L”,¢) if 1<p<oo, g=1. Since

(g, f=w) =Ky, f*g)= Ky, (SENKw, Sg(l < [ISIHHlgllpllwl,
we conclude as in the proof of Theorem 11 that f is a multiplier.

ReMARK. From Theorem 12 and [6, Lemma 1] the space (L )o 18 equal
to M(oo: p). Moreover M(oco:p,q) C (L”,1"yn.#, for 1 <p, ¢ <o
{1, Theorem 2.3].

5. Spaces of Fourier transform of measures

In [6, §4] Figa-Talamanca showed that (L",)v CM(x:p) (2<p<x)
and Mlv = M(oo : 00). Similarly, in this section, we consider the problem
of finding a space of measures M such that M VeM (r,s:p,q).

THEOREM 13. 1. Let 2<p, g< o0, 1<s<o00, 1 <r<oo. If 1/x=
1/qg+1/r<1 and 1y =1/p+1/s <1, then (L* , P YT) c M(r,s:p, q)
and (L, F)T)Y = M(r, s : 00).

2. Let 2<qg< o, 2<p<o0, 1 <s<oo0. Ify isasinpart 1,
then (LY, P")T)Y € M(co,s : p,q), My()" C M(oo,s: p,o0) and
M, ()Y = M(co, 5:00).

3.Let 2<qg<o0, 1<p<2,1<r<oo, 1<s<o. If x isasin
part 1 and 1]y =1/24+1/s< 1, then (Lxl,lyl)(I‘)VCM(r,s:p,q).

4. Let 2<g< o0, 1 <p<2,1<s5s<oo. Ify isasinpart 3,
then (LY, P')YT)" ¢ M(co,s : p,q), M(T)' C M(co,s : p, o) and
(L', P)T)Y c M(c0:p, o).

ProOF. 1. Let f € (L* , P')T), h € Sy(G) and y € ®,(G). By [14,
Definition 2.3 and (2.5)] we have that
[k, [xw)l=[(hy, N < ||f||x'y'llh'/7||xy

<My Wl 1 g < WSy ClANL g N

where C is a constant depending on G, p and ¢, given by the Hausdorff-
Young theorem for amalgams [14, Remark 2.7].
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Since S,(G) is dense in (L” I , l"’) we conclude by [14, Remark 2.4 ii)]
that f isin M(r,s:p,q) and

(7 A< CUA ey

The inclusion (L'l , lsl)(l“)v C M(r, s : o0) is proven in a similar manner.
If fisin M(r,s: oo), then clearly the map F(y) = (¥, f) i§ a func-

tional on @, (G). Hence by [15, Remark 3.2 ii)] there exists u € (L, l”)(l“)

such that (y, f) = ((v, #)) = {(w, it) forall y € ®, (G), and in particular

forall w € ®_,. Since ®_, is dense in S,(G), we conclude that f = ji.
The proofs for 2, 3, and 4 are similar.

The amalgam (L1 , 12) is the biggest space of functions whose Fourier
transform is also a function [9]. Thus we see from Theorem 13, that if
y' > 2, then M(r,s : p,q) contains elements of SO(G)* which are not
functions. We will show that for certain values of p,q,r,s, the space
M(r,s : p,q) is included in an amalgam space, and contains a space of
Fourier transforms. The constant which appears in the next result is given
by the Hausdorff-Young theorem.

COROLLARY 14. 1. If2<qg< o0 and 2<p < oo, then
() (L, P )(I)" € M(co: p, q) € (L, I)(G) and | f1l,, < IIIFIll € ClA
(b) M,,'(I’)v C M(oo:p, 00) C (L%, I7)(G) and ||itll .o, < IZIICI2,

where C is a constant depending on G, p and q.
2.If2<qg<o0 and 1 <p <2, then

qlpl’

(a) (L7, 1%)(G)Y € Moo : p, q) C (L2, I)(G) and || fll,, < IFlll <
Clifll s

(b) My(I)Y € M(co : p,o0) € (L*,I°)G) and |,y < AN <
Cligll,,

where C is a constant depending on G and q .

3.If2<r, s<o0,2<g<o0and 1/x =1/g+1]s <1, then
(L, )T c M(r,s : 00,q) C (L', I')(G) and ||fl,, < CIIfIIl <
C2||f||x,sl where C is a constant depending on G, r, and s.

4. If 1 <r<2<s<ow, 2<qg<oc and x is as part 3), then
(L, )M € M(r,s 00, q) € (L2, I)(G)s and |Ifl, < CIIAN <
C2|l S, where C is a constant depending on G and s.

5. If2<s < oo, then M,(I)" € M(co,s : o) C (L*, I*)(G) and
Nl <lulll < C2||u||s, where C is a constant depending on G and s.

Soo —
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ProoF. 1. Let {y,} be the approximate identity of LI(G)) defined in
[15, page 462]. Since S,(G) is a Segal algebra we have for € M(co:p, q)
and h € §)(G) that

(A, w)

tim |(h * yy , @)] = lim|(h, 1 x ¢,
timn |||l 1| 19y oo Nl < N1l B

IN

By [14, Proposition 2.6] we conclude that y is in (L, [?) and ||ul|,, <

[[|]}] - The rest of the proof follows from (7) above. Part b) and 2 are proven
in a similar manner.

3. Let pe M(r,s:o00,q) and h € ®_ (G). As in the proof of part 1
using [14, Theorem 1.6] we have that

(A, )] < Hm|(yy,, o h)| <Timflyg ||l + 2l o,
< N * All o < Wl AN, < NIC AL,

By the density of ®_, in (le , l”)(G) [14, Proposition 2.5] we conclude
that ||ull,. < |llull|- The rest of the proof follows from (7) above. The proofs

rs —
of 4 and 5 are similar.
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